
Passivity analysis of rational LPV systems using Finsler’s lemma
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Abstract— In this paper, we show and utilize new results on
the relationship between passivity, zero dynamics and stable
dynamic invertibility of linear parameter-varying (LPV) sys-
tems. Furthermore, an optimization-based systematic passivity
analysis procedure and a passivating output projection are
proposed for asymptotically stable rational LPV systems in the
linear fractional representation (LFR) form having at least as
many independent output signals as input signals. The storage
function is searched in a quadratic form with a symmetric
rational parameter-dependent matrix. In order to form a
square system and then to satisfy the Kalman-Yakubovich-
Popov (KYP) properties, a parameter-dependent output pro-
jection matrix is searched in the LFR form. The nonlinear
parameter dependence from the linear matrix inequality (LMI)
and equality (LME) conditions provided by the KYP lemma
is factorized out using the linear fractional transformation
(LFT). Then, Finsler’s lemma and affine annihilators are used to
relax the sufficient affine parameter-dependent LMI and LME
conditions. As an application example, a stable system inversion
is addressed and demonstrated on a benchmark rational LPV
model.

I. INTRODUCTION

The importance of passivity of a dynamical system has
been recognized in the literature [1] due its advantageous
properties related to stable zero dynamics, internal stability,
(vector) relative degree 1.

These system properties allow stable input-output feed-
back linearization of nonlinear systems [2] and global sta-
bilization of a wide class of dynamical (possibly intercon-
nected) systems [3]-[6]. Important passivity-based results
(including stability conditions for feedback systems) are
introduced by [7] for linear time-varying (LTV) systems.
Asymptotically stable zero dynamics are exploited in dy-
namic system inversion and fault diagnosis [8, Chapter 3].
With relative degree 1, only the first derivative of the output
vector is required for unknown input estimation. Several
inversion-based fault diagnosis results are available by e.g.
[9]-[12] for linear parameter-varying (LPV) systems with
stable zero dynamics.
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To ensure the passivity property of a nonlinear dynam-
ical system, the dissipativity inequality with a special sup-
ply function, or equivalently, the Kalman-Yakubovich-Popov
(KYP) properties have to be satisfied [1]. These results are
further improved in [3], where robust passivity conditions
together with the robust KYP lemma is introduced for nonlin-
ear systems with structural uncertainty. Passivity conditions
for LTV systems are presented in [7].

In [13] and [14], two LMI approaches are proposed to
computationally check that an affine or switched LPV system
is passive. In the general case, the dynamic equation of
an LPV model is not necessarily affine in the parameter
variables. Therefore, the KYP properties for passivity are
generally infinite-dimensional problems in the sense that
the equivalent (non-linearly) parameter-dependent LMI/LME
conditions for passivity should be tested in infinitely many
parameter points. To find a conservative solution for these
not-convex problems, different LMI-relaxation techniques
are proposed in the literature. In [15], a passivity analysis
procedure is proposed using the computational framework
of the integral quadratic constraints (IQC), which can han-
dle nonlinear, time-varying or uncertain components of the
system dynamics.

The most closely related results in the field of LMI-based
passivity analysis of nonlinear systems are published in [16]-
[19]. In [16], the authors addressed local passivity anal-
ysis. Furthermore, a dissipativity-based stabilisable output
feedback synthesis is proposed in [17]-[19] based on the
analysis of the passivity indices using the standard dissipativ-
ity relation. In [16]-[18], a sum-of-square (SOS) relaxation
technique is adopted to solve the nonlinear dissipativity
relation for polynomial nonlinear systems. Whereas, in [18],
[19], a polytopic approach is presented based on Finsler’s
lemma [20] and affine annihilators. The latter approach is
capable to handle rational nonlinearities both in the system
equations and in the storage function. In [16]-[19], the
authors emphasize the fundamental theory of computational
analysis of the passivity indices using the SOS-approach, re-
spectively, the polytopic approach with Finsler’s lemma and
affine annihilators. Systematic model and storage function
construction is not addressed in these references.

The polytopic method with Finsler’s lemma and affine
annihilators is an efficient technique to solve LMI conditions
with rational parameter dependence, since the nonlinear
terms are separated from the LMI, but their algebraic in-
terdependence are implicitly injected into the LMI condi-
tion through an affine annihilator accompanied by a free
matrix Lagrange multiplier (notion introduced by [20]). It
is also fortunate, that systematic model construction tech-
niques were developed for the Finsler’s lemma-based control
optimization problems. In [21], an efficient procedure is
proposed to construct a so called maximal affine annihilator



for a vector of rational functions and the linear fractional
transformation (LFT, [23]) is proposed to factor out the
rational terms from the system equation and to build up a
differential-algebraic (or implicit) system representation, that
is needed for Finsler’s lemma relaxation.

Unlike in [17]-[19] where dissipativity-based output feed-
back synthesis is considered for a class of nonlinear (time-
invariant) systems, we cope with computational output pro-
jection synthesis to ensure strict passivity and hence stable
dynamic invertibility of rational strictly proper (D = 0)
LPV models. Strict passivity of a dynamical system is a
stronger property than the passivity indices-based dissipativ-
ity condition considered in [17]-[19]. In other words, strict
passivity ensures the existence of a positive output feed-
back passivity index and a non-positive input feed-forward
passivity index. The main challenge is to systematically
compute a parameter-dependent storage function (PDSF) and
design an appropriate (possibly parameter-dependent) output
transformation, such that the system with the new output
function satisfies the KYP equality condition [1, Eq. (2.3b)].

The paper is organized as follows. After two concise
subsections on notations and problem formulation, the strict
passivity property for LPV systems and its relation to the
zero dynamics and stable dynamic invertibility is discussed
in Section II. The main contributions on computational pas-
sivity analysis and passivating output selection are presented
in Section III. A simulation example in Section IV highlights
the applicability of the proposed method. The main theorem
of Section II is given in the Appendix accompanied by an
auxiliary lemma.

A. Notations, abbreviations

The dimensions of signals x (state), u (input), y (output),
p (parameter) at any time instant are denoted by nx, nu, ny ,
np, respectively. Vx(x, p) and Vp(x, p) denote the gradient
(row vectors) of a scalar valued (positive definite storage)
function V : Rnx+np → R+ with respect to x and p.

Matrix Im, 0n×m denotes the m × m identity matrix
and the n × m zero matrix. Let He{A} denote A> + A,
where A is a real-valued square matrix and A> denotes
its transpose. Ker(A) = {v ∈ Rm|Av = 0} denotes the
kernel space of the n × m matrix A. Operator P � 0
and P � 0 denotes that symmetric matrix P is positive
and negative semidefinite, respectively. The lower LFR of a
rational parameter-dependent matrix is denoted as follows:

G(p) = Fl
{(

M11 M12

M21 M22

)
,∆

}
= M11 +M12(I −∆M22)−1M21,

and is called well-posed if (I −∆M22) is invertible for all
p in a given subset P of Rnp .

The number of rows of rational matrices Π, Π1, Π2, Πa,
Πc, . . . are denoted by m, m1, m2, ma, mc, respectively.
Vectors of rational functions π = Πx, π1 = Π1x, π2 =
Π2u, πa = Πax, πc = Πcu, . . . are often called as sets
of rational functions. The arguments of signals x, u, . . . ,
rational matrices Π, Π1, . . . , and vectors π, π1, . . . are
suppressed and only used when it is necessary. Matrices
N(p), Na(p, ṗ), Nc(p) of dimensions s × m, sa × ma,
sc × mc denote affine parameter-dependent matrices, that
satisfy the following algebraic equality property: N(p)Π =

0, Na(p, ṗ)Πa = 0, Nc(p)Πc = 0, for all p and ṗ, thus, they
are called annihilators of matrices Π, Πa, Πc, inherently,
they are also annihilators for vectors π, πa, πc, respectively.

When we use the notion of rational/affine parameter-
dependent linear matrix inequality or equality condition,
we refer to an inequality (�,�), respectively element-wise
equality constraint of a matrix-valued expression, which is
rational/affine in some parameter values (belonging to a
bounded set) and is linear (more precisely affine) in the free
decision variables (that are meant to be found to satisfy the
condition for all admissible parameter values).

B. System class, strict passivity and problem formulation
We consider MIMO LPV systems of the form:(

ẋ(t)
y(t)

)
=
∑K
j=1

q1j(p(t))
q2j(p(t))

(
Aj Bj

Cj 0

)(
x(t)
u(t)

)
, (1)

where x(t), u(t), y(t) and p(t) are the state, input, output
and the scheduling parameter signals, respectively. Scalar
functions q1j and q2j are multivariate polynomials and q11 =
q21 = 1. System (1) can be written in a state-space form with
rational parameter-dependent matrices A(p), B(p), C(p) (of
appropriate dimensions), as follows:

Σ :

{
ẋ = A(p)x+B(p)u

y = C(p)x
. (2)

Assumption 1: We assume that the parameter trajectory
is bounded and real-time available with a bounded time
derivative, more specifically, p(t) ∈ P and ṗ(t) ∈ R, where
P and R are compact polytopic subsets of the parameter
space Rnp .

Assumption 2: We assume further that q2j(p) > ε for all
j ≥ 2 and p ∈ P and for some ε > 0.

Matrices A(p), B(p) and C(p) are called well-defined if
Assumption 2 holds, namely, they have bounded norm on P ,
equivalently, they admit a well-posed LFR [23].

Definition 1 (based on [6, Section 10.7]): System Σ with
nu = ny is called strictly passive if there exists a (possibly
parameter-dependent) positive definite storage function V :
Rnx+np → R+ such that for all x(0) ∈ Rnx , all t1 ≥ t0, all
input functions u and for all parameter trajectories satisfying
Assumption 1 the following inequality holds:

V (x(t1), p(t1))− V (x(t0), p(t0)) ≤ (3)

≤
∫ t1
t0

(
2u>(t)y(t)− α(‖x(t)‖)

)
dt,

for some positive increasing unbounded function α(·), with
α(0)=0. System Σ is called passive if (3) holds for α(·)=0.

We consider a quadratic PDSF candidate of the form

V (x, p) = x>P(p)x, (4)

where P(p) = P>(p) is positive definite and well-defined for
all p ∈ P , and P(·) is also continuously differentiable in all
parameter variables.

Problem 1: Having ny ≥ nu, find a PDSF (4) and an
output projection ȳ = M(p)y, such that system Σ with the
projected output ȳ is strictly passive.

Remark 1: A strictly passive system with PDSF V (x, p)
of the form (4) is always asymptotically stable with Lya-
punov function V (x, p) if the input u = 0.



In order to analyze the strict passivity of a square (nu =
ny) system Σ, we can check the equivalent KYP properties,
which is recalled in the following theorem. A proof for
Theorem 2 can be found in [24, Section 4.1].

Theorem 2: System Σ is strictly passive with the proper
positive definite PDSF (14) and for some α(‖x‖) = α0‖x‖2
with α0 > 0 if and only if Σ has the KYP property, namely:

He{P(p)A(p)}+Ṗ(p, ṗ)+α0Inx � 0, ∀(p, ṗ) ∈ P×R, (5a)
P(p)B(p) = C>(p), ∀p ∈ P, (5b)

are satisfied, where Ṗ(p, ṗ) =
∑np

i=1(∂P/∂pi )ṗi.

In Section II, we analyze the relationship of strict passivity
with zero dynamics and dynamic invertibility of rational LPV
systems. In Section III, we introduce a computational method
for passivating output projection synthesis. The rational
parameter-dependent structure for the PDSF x>P(p)x and for
the output projection matrix M(p) are given in subsections
III-A and III-B, respectively.

II. PROPERTIES OF STRICTLY PASSIVE LPV SYSTEMS

The notions of this section are based on [1], [24] and [6,
Chapter 10] applied for LPV systems of the form (2). In this
section, we assume that Σ is a square system (nu = ny).

In the followings, we analyze a few important conse-
quences of strict passivity, which will be exploited later for
stable dynamic inversion.

Lemma 3: Assume that system Σ is passive with storage
function (14) and rank(B(p)) = nu for all p ∈ P and p
satisfies Assumption 1. Then, rank(C(p)B(p))=nu,∀p∈P .

Proof: Suppose that rank(C(p0)B(p0)) < nu for some
p0. Then there exists a non-zero vector v ∈ Rnu such that
C(p0)B(p0)v = 0. From Theorem 2, we have that C(p0) =
B>(p0)P(p0), which implies the following identity:

0 = v>C(p0)B(p0)v = v>B>(p0)P(p0)B(p0)v

Since rank(B(p0)) = nu and P(p0) is positive definite
symmetric, v = 0 follows, which is a contradiction.

Remark 2: We say that system Σ has (vector) relative
degree 1, if C(p)B(p) is invertible for all p ∈ P .

With reference to [1, Section 4], the non-singularity of
C(p)B(p) implies the existence of a well-defined mapping
z = T2(p)x ∈ Rnx−nu , which together with y = C(p)x
qualify as a new set of local coordinates for Σ. The state
variables of Σ in the new coordinates system are:

( yz ) = T (p)x, with T (p) =
(
C(p)
T2(p)

)
∈ Rnx×nx . (6)

The dynamic equation of Σ in the new coordinates has a
special normal form [25, Eq. (9.17), Section 9.2]:

Σy,z :

{
ẏ = Ayy(p, ṗ) y +Ayz(p, ṗ) z +By(p)u

ż = Azy(p, ṗ) y +Azz(p, ṗ) z
, (7)

where(
Ayy Ayz

Azy Azz

)
=
(
Ṫ (p, ṗ) + T (p)A(p)

)
T−1(p), (8)

By(p) = C(p)B(p), Ṫ (p, ṗ) =
∑np

i=1 ∂T (p)/∂pi ṗi.

A possible numeric construction of the transformation matrix
T (p) is given in the Appendix in Lemma 6.

In this normal form, the invertibility of By(p) makes
also possible to compute the output-zeroing input u∗(t) for
system Σy,z , which can force the output vector y(t) to be
identically zero for y(0) = 0, any z(0) ∈ Rnx−ny , and
any parameter trajectory p(t) satisfying Assumption 1. If we
force ẏ(t) = 0, we can express u∗ algebraically from the
first equation of (7) as follows: u∗ = −B−1

y (p)Ayz(p, ṗ)z.

The so-called zero dynamics of system Σ describes the
internal behaviour of Σ, when the output zeroing input u∗
is applied to it. The zero dynamics of system Σ in the new
coordinates are characterized by

ż = Azz(p, ṗ)z. (9)

The strong relation between passivity and the zero dy-
namics first was shown in [1] for nonlinear time-invariant
systems, and it was generalized to a class of (time-varying)
uncertain nonlinear systems in [3]. In the following theorem,
we adapt these results for rational LPV systems. The proof
of Theorem 4 is given in the Appendix.

Theorem 4: Assume that p(t) is continuously differen-
tiable and system Σ is strictly passive with a proper positive
definite PDSF (14). Then, the zero dynamics (9) is asymp-
totically stable.

Note also that the stability of the zero dynamics involves
the stability of the dynamic inverse as well. Based on the
derivation in [25, Section 9.2] the dynamic inverse of Σ can
be constructed as follows:

Σ−1 :

{
˙̂z = Azz(p, ṗ)ẑ +Azy(p, ṗ)y,

û = B−1
y (p)(ẏ −Ayy(p, ṗ)y −Ayz(p, ṗ)ẑ),

(10)

According to Theorem 4, system Σ−1 is an asymptotically
stable dynamic inverse of system Σ.

III. PASSIVITY ANALYSIS WITH CONVEX CONDITIONS

In this section, we present our main results related to
computational passivity analysis and passivating output pro-
jection synthesis for rational LPV systems.

A. Model representation and storage function candidate

Let us consider the LFT decomposition of the model
matrices of Σ, as follows:(
A(p)
C(p)

)
= Fl


F11

F21

F13

F23

F31 F33

 ,∆1

, B(p) = Fl
{(

F12 F14

F42 F44

)
,∆2

}
.

(11)

Using (11), the system equation of Σ can be written in
the following structured LFR:

ΣF :

(
ẋ
y
η1
η2

)
=

(
F11 F12 F13 F14

F21 0 F23 0
F31 0 F33 0
0 F42 0 F44

)(
x
u
π1
π2

)
(12)

with π1 = ∆1η1, and π2 = ∆2η2,

where Fij are constant matrices and π1, η1 ∈ Rm1 , respec-
tively π2, η2 ∈ Rm2 are the feedback signals through the
parameter-dependent blocks ∆1 = ∆1(p) and ∆2 = ∆2(p)
corresponding to the two LFRs in (11). Eliminating vectors
η1 and η2 from the last two equations of ΣF , we obtain the



explicit expressions for both vectors π1 and π2, namely

π1(x, p) = Π1x ∈ Rm1 , π2(u, p) = Π2u ∈ Rm2 , (13)
where Π1 = (I −∆1F33)−1∆1F31, Π2 = (I −∆2F44)−1∆2F42.

Note that this particular structure considered for the LFR
model ΣF allows us to separate the state and input depen-
dence in vectors π1(x, p) and π2(u, p). Due to Assumption
2, both LFRs in (11) are well-posed, namely, the inverse
matrices in (13) are well-defined.

A positive definite PDSF for model ΣF is searched in the
following parameterized form:

V (x, p) = x>P(p)x = x>Π>P (p) Πx > 0, (14)

where Π = Π(p) =
(
Inx

Π1

)
∈ Rm×nx , m = nx +m1,

where the rational algebraic structure of matrix P(p) is deter-
mined by the rational terms of A(p) and C(p) through matrix
Π1 generated from the first LFR of (11). The symmetric
matrix P (p) in (14) is allowed to be an affine function of
p, namely P (p) = P0 +

∑np

i=1 pi Pi ∈ Rm×m, where Pi are
constant free indefinite symmetric matrix variables.

B. Passivating output projection synthesis

Assume that Σ has at least as many output signals as input
signals (nu ≤ ny). In order to form a square system, a
rational parameter-dependent output projection is searched
in a special parameterized LFR form:

ȳ=M>(p) y, where M(p)=M(p)Πc(p) ∈ Rny×nu . (15)

In (15), M(p) ∈ Rny×mc is an affine matrix with free
coefficient values, Πc(p) is a fixed rational matrix generated
from the system’s LFR. The value of Πc(p) is given in (22).

Remark 3: The second KYP condition (5b) for a prelim-
inarily structured rational matrix P(p) is fairly strict, not to
mention the fact that the structure of matrix P(p) composed
of the rational terms of matrix A(p) and C(p) and it does not
contain the rational terms of matrix B(p). However, if M(p)
has a similar structure to matrix B(p), system Σ with the
modified output vector is more likely to satisfy the relaxed
KYP property

P(p)B(p) = C>(p)M(p). (16)

In this section, we give a computationally more tractable
sufficient condition for (16) by using affine annihilators.

Remark 4: For the case when nu > ny , we consider the
dual problem with (A>(p), C>(p), B>(p)), then, the output
projection for the dual system constitutes a passivating input
blending transformation.

In Theorem 2, we formulated the sufficient and neces-
sary conditions for the strict passivity of a square system.
Also note that (in)equalities (5) are nonlinear parameter-
dependent. Therefore, in its original formulation the KYP
properties (5) should be checked in infinitely many parameter
points. In the next theorem, we give sufficient but convex
conditions for strict passivity.

Theorem 5: System Σ in representation ΣF with output ȳ
is strictly passive if the following affine parameter-dependent

linear conditions are satisfied for all p ∈ P and ṗ ∈ R:

P (p) + He{LN(p)} − α̂0Ib � 0, (17a)
R(p, ṗ;P )+He{LaNa(p, ṗ)}+ α0Ia � 0, (17b)

P (p)Bc−C>cM(p)+N>(p)L>c,1+Lc,2Nc(p) = 0, (17c)

where P (p), M(p) are free affine matrix functions, P (p)
is symmetric, L, La, Lc,1 and Lc,2 are free full matrix
variables (with the appropriate dimensions), N(p) ∈ Rs×m,
Na(p, ṗ) ∈ Rsa×ma and Nc(p) ∈ Rsc×mc are affine
annihilators for the rational matrices Π, Πa and Πc. In (17c),
Bc and Cc are constant matrices and their values are given
in (21). The values of Πa, Πc and R(p, ṗ;P ) are given in
(19), (22) and (18). The upper-left nx×nx block of matrices
Ib and Ia is the identity matrix, the other values of Ib and
Ia are zeros.

Proof: Due to Finsler’s lemma presented by [20], LMI
(17a) directly implies the strict positive definiteness of P(p)
of the PDSF (14).

In order to give a sufficient condition in the form of a
convex affine LMI for the KYP property (5a), we give a
quadratic LFR decomposition for the left hand side of (5a),
as follows:

He{P(p)A(p)}+ Ṗ(p, ṗ) = Π>aR(p, ṗ;P )Πa � 0, (18)

with R(p, ṗ;P ) = He
{
E>aP (p)Aa

}
+ E>a Ṗ (ṗ)Ea,

with Ṗ (ṗ) =
∑np

i=1 Pi ṗi.

Matrices Aa, Ea and Πa are given below.

Aa =
(
F11 F13 0 0 0
0 0 Im1

Im1
Im1

)
, Ea =

(
Inx 0 0 0 0
0 Im1 0 0 0

)
,

Πa =

( Π
Π1F11

Π1F13Π1∑np

i=1(∂Π1/∂pi )ṗi

)
∈ Rma×nx , (19)

and ma = nx+ 4m1. Applying Finsler’s lemma, a sufficient
condition for (18) can be given by LMI (17b) if Na(p, ṗ) is
an annihilator for Πa.

Finally, let us rewrite the KYP equality (5b) with the
projected output vector ȳ = M>(p)C(p)x as follows:

0 = Π>
(
P (p)Bc − C>cM(p)

)
Πc, (20)

= Π>
(
P (p)Bc − C>cM(p) +N>(p)L>c,1 + Lc,2Nc(p)

)
Πc,

where Bc =
(
F12 F14 0 0
0 0 Im1

Im1

)
, Cc = ( F21 F23 ), (21)

where Πc =

(
Inu

Π2

Π1F12

Π1F14Π2

)
∈ Rmc×nu , (22)

and mc = nu + 2m1 +m2. On the other hand, multiplying
(17c) from the left hand side by Π and from the right hand
side by Πc we obtain (16).

Remark 5: In order to solve the nonlinear PDLME (16),
the equality conditions between the coefficients of the identi-
cal rational terms in each element of the matrix identity have
to be extracted, which requires computationally demanding
symbolic operations. However, the computationally more
tractable PDLME P (p)Bc−C>cM(p) = 0 is only a sufficient
condition for (16). In order to make it less conservative, we
use again affine annihilators, which introduce new degrees
of freedom into (17c).



Fig. 1. Dynamic inversion for system in Example 1.

Remark 6: Due to the fact that matrices P (p), M(p),
R(p, ṗ;P ) and annihilators N(p), Na(p, ṗ), Nc(p) are affine
matrices in p and ṗ, it is enough to check the feasibility of
(17) only in the corner points of polytopes P and R.

The computed (strict) passivating output projection (15)
provides an asymptotically stable zero dynamics and vector
relative degree 1 for system Σ. Therefore, we can given
an asymptotically stable inverse dynamics for Σ, which can
reconstruct the input signal u applied to Σ from the projected
output signal ȳ and of its time-derivative.

Applying the systematic symbolic model generation tools
proposed by [21], [22], the procedure for passivating output
projection design can be summarized as follows:

1) Compute an LFR for both
(
A(p)
C(p)

)
and C(p), e.g.

by using the direct LFT implementation of the LFR-
Toolbox.

2) Generate the maximal annihilators N(p), Na(p, ṗ) and
Nc(p) for vectors Πx, Πax, Πcu as proposed by [21].

3) Solve the affine parameter-dependent feasibility prob-
lem (17) over the corner points of P ×R.

IV. COMPUTATIONAL EXAMPLE

In this section, we illustrate the operations of the proposed
passivity analysis procedure through an illustrative LPV
system model. The results were computed in the Matlab
environment. For LFR modeling, we used the object oriented
LFT-realization implemented in the sym2lfr function of
the Enhanced LFR-Toolbox for Matlab (LFR-Toolbox) [26].
To model and solve LMI problems, YALMIP [27] with
Mosek solver [28] was used.

Example 1: Consider the following rational LPV system
with 2 inputs and 3 outputs and with two time-varying
parameters p1 and p2:

(
A(p) B(p)
C(p) 0

)
=



−p2
2 − 1 5 0 0 p1+1

p22+1
+ 1 1

0 p1 − 4 0 0 p1 0
1
10 0 −5p1−9

p1+2 0 0 0
0 p1

p2−5 0 −1 0 4− 2p2

1 1
p2−5 2 0 0 0

2 0 1 0 0 0
0 0 1 1 0 0


P = [−1, 2]× [−1, 2], R = [−1, 1]× [−3, 3]. (23)

The rational structure of the PDSF V (x, p) and of matrix
M(p) are determined by rational matrices

Π1 =



0 p1 0 0

0 0
p1

p1+2
0

0
p1p2
p2−5

− p1 0 0

p22 0 0 0
p2 0 0 0

0
p2

p2−5
0 0


, Π2 =



p1 −
p1p22
p22+1

0

p1 0

p22
p22+1

0

p2
p22+1

0

0 −p2


.

and by affine matrices P (p) ∈ R10×10 and M(p) ∈ R10×14.
The values of M(p), P (p) alongside with Π ∈ R10×4,

Πa ∈ R24×4, Πc ∈ R14×2, with their annihilators N(p) ∈
R7×10, Na(p, ṗ) ∈ R29×24, Nc(p) ∈ R16×14 and other
symbolic/numeric variables are available on-line at [29].

The feasibility problem (17) includes a 10× 10 PD-LMI
(17b), a 24 × 24 PD-LMI (17b), and 10 × 14 PDLME
(17c), which were evaluated in 4, 16, and 4 corner points,
respectively. Number of free decision variables in P (p), in
M(p) and in the matrix Lagrange multipliers L, La, Lc,1
and Lc,2 is 1315. The LMI computations last 3 seconds on
a PC with Intel Core i7-4710MQ CPU at 2.50 GHz. and 16
GB of RAM.

The computed matrices M(p), P(p) satisfy the KYP equal-
ity (5b) with a 10−10 tolerance, namely for some p(i) ∈ P
(including the corner points) the absolute value of the worst
nonzero element of P(p(i))B(p(i)) − C>(p(i))M(p(i)) was
less than 10−10.

Using M>(p)y as the new output vector, a stable dynamic
inverse was computed as presented Eq. (10) of Section II.
The results of the dynamic inversion of system Σ are illus-
trated in Figure 1. Note that the estimation errors u− û are
affected by the numeric approximation of the time derivatives
of signals y and p.

V. CONCLUSIONS

We have have shown that a strictly passive LPV system
has relative degree 1 and asymptotically stable zero dynam-
ics. We proposed an efficient systematic procedure for the
passivity analysis of rational LPV systems in the LFR form
with parameter-dependent storage functions. In order to relax
the KYP equality condition, a rational parameter-dependent
output projection is co-designed through LMI computations,
which also allows the handling of non-square systems. The
LPV system equation is given in a structured LFR form,
from which we generate the rational algebraic structure of
the PDSF and of the output projection matrix. The main
contributions in the field of dissipativity analysis of nonlinear
systems is that we gave an automatic procedure to generate
a fixed rational structure for the PDSF candidate with free
coefficient variables, and then systematically formulate suf-
ficient convex LMI conditions for (strict) passivity analysis
and passivating output projection synthesis. As presented
in Theorem 4, we proposed a new way to use maximal
affine annihilators with matrix Lagrange multipliers to solve
a matrix-valued equality condition (e.g. the KYP equality
condition (17c)).

APPENDIX

Lemma 6: Assume that system Σ is strictly passive. Then,
there exists an invertible state transformation (6), such that



the system equation in the new coordinates has the normal
form (7).

Proof: By assumption, By(p) = C(p)B(p) is non-
singular, therefore, both matrices C(p) and B(p) are full-
rank matrices for all p ∈ P . Due to the fact that B(p) is well-
defined on the compact set P (in a well-posed LFR form),
there exists a well-defined matrix T2(p) in a well-posed LFR
form [30] with rank(T2(p)) = nx− nu and with a bounded
norm for all p ∈ P , such that T2(p)B(p) = 0, namely, T >2 (p)
is a basis for the kernel space Ker(B>(p)) of B>(p). The
non-singularity of matrix C(p)B(p) implies that the rows
of C(p) are are not in Ker(B>(p)), additionally, C(p) ∈
Rnu×nx contains linearly independent rows. Therefore, the
square matrix T (p) =

(
C(p)
T2(p)

)
is invertible ∀p ∈ P . If we

apply the state transformation ( yz ) = T (p)x to Σ, we obtain
its partitioned equivalent Σy,z .

In the proof of Theorem 4, we followed the derivations of
[24, Section 5.1].

Proof of Theorem 4: Due to the fact that the quadratic
PDSF (4) is continuously differentiable with respect to t,
inequality (3) can be written in a differential form as follows:

V̇ + α(‖x‖) ≤ y>u+ u>y. (24)

Assume that x(0) ∈ Ker{C(p(0))} and inequality (24)
holds. Applying the output zeroing input u∗(t), y = 0
implies V̇ < 0 along the solutions x(t) ∈ Ker(C(p(t)))
of the forced dynamics

ẋ = A(p)x+B(p)u∗, with x(0) ∈ Ker{C(p(0))}. (25)

Due to the quadratic form (14) of the PDSF, V̇ < 0 implies
the asymptotic stability of (25).

As it is shown in Lemma 6, mapping z = T2(p)x can
be chosen such that the parameter-dependent (non-singular)
transformation matrix T (p) is a well-defined rational func-
tion of p, and hence it is also continuously differentiable in pi
[23, Section 7.1.14] and Ṫ (p, ṗ) has a bounded norm for all
p ∈ P and all ṗ ∈ R. Then, according to [31, Section 9.1],
the state transformation T (p) in (6) preserves the internal
stability of system Σy,z if additionally p is continuously
differentiable.

Finally, the asymptotic stability of (25) implies the asymp-
totic stability of the zero dynamics (9).
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