
Learning Based Approximate Model
Predictive Control for Nonlinear Systems ?

D. Gángó ∗, T. Péni ∗ R. Tóth ∗∗

∗ Systems and Control Laboratory, Institute for Computer Science and
Control, Hungarian Academy of Sciences, H-1111 Bp. Kende u. 13-17.

(e-mail: gango.daniel@sztaki.mta.hu, peni.tamas@sztaki.mta.hu).
∗∗ Eindhoven University of Technology, P.O. Box 513, 5600 MB

Eindhoven, The Netherlands. (e-mail r.toth@tue.nl)

Abstract: The paper presents a systematic design procedure for approximate explicit model
predictive control for constrained nonlinear systems described in linear parameter-varying
(LPV) form. The method applies a Gaussian process (GP) model to learn the optimal control
policy generated by a recently developed fast model predictive control (MPC) algorithm based
on an LPV embedding of the nonlinear system. By exploiting the advantages of the GP
structure, various active learning methods based on information theoretic criteria, gradient
analysis and simulation data are combined to systematically explore the relevant training
points. The overall method is summarized in a complete synthesis procedure. The applicability
of the proposed method is demonstrated by designing approximate predictive controllers for
constrained nonlinear mechanical systems.

Keywords: model predictive control; Gaussian process; linear parameter-varying systems;
machine learning.

1. INTRODUCTION

Model predictive control (MPC) has several attractive
features that make it an important control technology for
engineering applications (Rakovic and Levine, 2019). For
example, MPC can naturally handle strict state and input
constraints and various performance specifications can be
easily added to the design process. However, the price to be
paid for these advantages is the high computational effort
needed to obtain the control input: at every time instant
a constrained optimization task has to be performed to
get the next control action. This computational demand
makes MPC less attractive for systems with fast dynamical
components, e.g. mobile robots, aerospace applications
and automotive systems. In order to apply predictive
controllers to these model classes, the computational time
has to be significantly decreased.

One approach to speed up the MPC is to compute the op-
timal control input as a function of the measured variables
(e.g. as a function of the state if the state is available for
measurement), store this function in memory and simply
evaluate it during the control process. This strategy is
called explicit MPC. If the optimization problem is linear
or quadratic (this is the case if the system to be controlled
is linear, the constraints are linear and the cost is linear
or quadratic), the procedure that can be used to construct
the parametric control function is multiparametric linear
or quadratic programming (mpLP, mpQP), see e.g. Borrelli
et al. (2019) for more details.

? This work was partially supported by the János Bolyai Research

Scholarship of the Hungarian Academy of Sciences and the ÚNKP-
18-4 New National Excellence Program of the Ministry of Human
Capacities. It was also supported by the research program titled
”Exploring the Mathematical Foundations of Artificial Intelligence
(2018-1.2.1-NKP-00008)”.

For nonlinear problems, the multiparametric optimiza-
tion is currently under development (Johansen, 2003;
Dominguez et al., 2010), however, reliable solvers are not
available yet.

This is where approximate solutions come into the pic-
ture. Here the goal is to approximate the optimal con-
trol input up to some predefined tolerance. Theoretically,
any function approximation method can be used, e.g.,
piecewise linear functions (Johansen, 2003), set member-
ship methods (Canale et al., 2010), neural networks and
machine learning (ML) solutions (Parisini and Zoppoli,
1995), (Csekö et al., 2015), (Hertneck et al., 2018). The
latter methods are especially promising, because the re-
sulting control laws can be efficiently implemented by
using recently developed parallel software and hardware
architectures, enabling applicability even for large-scale
systems. As the approximation is independent of the un-
derlying MPC algorithm, (it sees only the training data),
this approach can be used for nonlinear MPC (NMPC)
problems as well. Motivated by these attractive features
of ML methods, the paper proposes a practical procedure
for learning based approximate NMPC design. Compared
to the other approaches, we put our focus on numerical
efficiency: first, a fast nonlinear MPC algorithm based
on linear parameter-varying (LPV) embedding is applied
to speed up the training point computation, second, a
systematic procedure is proposed for exploring the most
relevant training samples in order to improve the accuracy
of the approximation while keeping the training set at a
manageable size.

The paper is organized as follows. In Section 2 the LPV
embedding based NMPC algorithm is introduced, while
in Section 3, the concept of Gaussian process model
based policy approximation is summarized. These are the

core components of the approximate MPC design method
presented and analyzed in Section 4. The applicability
of the proposed procedure is demonstrated in Section 5
on two application examples. The paper is finished with
conclusions from the results achieved.

2. NONLINEAR MPC BASED ON LPV EMBEDDING

This section presents the nonlinear MPC algorithm devel-
oped by H. Werner and his co-authors in Cisneros et al.
(2016). This algorithm is used to compute the optimal
state feedback control policy that is then learned by a
function approximator. The NMPC method is based on
embedding of the nonlinear dynamics in an LPV model
and applies iterative quadratic programming (QP) to solve
the nonlinear optimization problem associated with the
MPC synthesis. The algorithm is highly efficient as it has
been demonstrated on moderate scale practical problems,
although the convergence of the QP iteration has not been
completely proven.

To begin, consider a nonlinear, discrete-time system rep-
resented in an LPV form:

xk+1 = A(ρ(xk))xk +B(ρ(xk))uk (1)

where k is the time index, xk ∈ Rnx is the state, u ∈ Rnu

is the control input and ρ(·) denotes the state-dependent
scheduling parameter. For simplicity, we assume that the
state is available for measurement. The control goal is to
perform the standard regulation task, i.e., to steer the
state from some initial value x0 6= 0 to the origin while
minimizing a quadratic cost and satisfying a set of linear
constraints prescribed for the state and input trajectory.
In the MPC setting this can be formalized by the following
nonlinear optimization problem that has to be solved at
each time instant to obtain the next control action uk:

min
uk|k, . . .
uk+N−1|k

N−1∑
i=0

x>k+i|kQxk+i|k + u>k+i|kRuk+i|k+

+ x>k+N |kWxk+N |k (2a)

xk+i+1|k = A(ρ(xk+i|k))xk+i|k+

+B(ρ(xk+i|k))uk+i|k (2b)

xk|k = xk (2c)

Fxk+i|k +Guk+i|k ≤ h (2d)

xk+N |k ∈ XT (2e)

Here xk+i|k, i = 0 . . . N are the predictions of the future
states based on the actual measurement xk and the control
input sequence uk|k, . . . uk+N−1|k. Inequalities (2d) repre-

sent the constraints, xTWx and XT are the terminal cost
and terminal set, respectively. The terminal ingredients
used to ensure stability guarantees can be constructed
by one of the several methods available in the literature.
A commonly used approach is to linearize the dynamics
around the origin and construct the maximal ellipsoidal
controlled invariant set for the linear system obtained. The
details of this procedure are described, e.g., in Cannon
et al. (2011).

To solve (2) Cisneros et al. (2016) proposes an iterative
algorithm. In each iteration the parameter trajectory is
fixed by using the state sequence obtained in the previous

step. This simplifies the dynamic model (2b) to a linear
time-varying (LTV) system so the optimization problem
can be solved by quadratic programming. The result is
a new control input sequence. By applying this sequence
on the nonlinear model, the next prediction of the state
trajectory is obtained. The method is summarized in
Algorithm 1.

Algorithm 1 NMPC by LPV embedding

Input: State vector x, control horizon N .
Output: Control input u

1: Let x̄0 = x̄1 = . . . = x̄N−1 = x
2: while the state and input trajectories do not converge

do
3: Compute ρ̄i = ρ(x̄i), i = 0, . . . , N − 1.
4: Solve (2) with the LTV dynamics

xi+1 = A(ρ̄i)xi +B(ρ̄i)ui, x0 = x.
The result is the optimal u∗0, . . . , u

∗
N−1 sequence.

5: Compute the state response of the nonlinear plant
for u∗0, . . . , u

∗
N−1

x̄i+1 = A(ρ(x̄i))x̄i +B(ρ(x̄i))u
∗
i ,

for i = 0, . . . N − 1, x̄0 = x.
6: Let u = u∗0

It has been shown in Cisneros et al. (2018) that the
iteration converges very quickly in practice: the stopping
criterion is reached typically after 5-10 iterations. Since the
procedure is based on quadratic programming, it requires
much less computation time than a general nonlinear
solver. This represents a serious advantage of Algorithm
1, compared to other NMPC methods in training set
generation, where Algorithm 1 has to be performed several
times with different initial states.

3. GAUSSIAN PROCESS BASED FUNCTION
APPROXIMATION

Next, to obtain an explicit form of the control law repre-
sented in Algorithm 1, we apply a Gaussian process (GP)
to approximate the general optimal control policy. GP,
which represents a single layer based neural network, is
chosen for this task, because it has a simple, expressive
structure, that depends on relatively few tuning param-
eters and its training is fast and efficient. Moreover, GP
provides information on the reliability of the approxima-
tion, which can be used to systematically select relevant
training samples (active learning). A deep theoretical anal-
ysis of Gaussian processes can be found in Rasmussen
and Williams (2006) while various engineering applications
exploiting the attractive features of this structure are pre-
sented e.g. in (Liu et al., 2018), (Darwish, 2017), (Sharif,
2018), respectively.

From mathematical point of view, a GP is an infinite
dimensional extension of the multivariate Gaussian dis-
tribution. Formally, a Gaussian process GP : Rn → R is a
mapping that assigns to every point x ∈ Rn a random vari-
able GP(x) ∈ R such that for any finite set x(1) . . . x(M) the
joint probability distribution of GP(x(1)), . . . ,GP(x(M)) is
Gaussian with mean m and covariance K, where:

m = [m(x(1)), . . .m(x(M))]T (3)

[K]ij = κ(xi, xj). (4)

Here [·]ij denotes the (i, j)-th entry of a matrix and κ is a
suitable kernel function. (In the paper, we often use κ(·)
with matrix arguments, so we may write K = κ(X,X)).

Both m(·) and κ(·) depend on additional tuning variables,
denoted by θ. These are called the hyperparameters of
the model. For given m(·) and κ(·) the sampling of the
GP means sampling the Gaussian random variables at all
x ∈ Rn. The samples define a (deterministic) function
g : Rn → R, so the Gaussian process can be interpreted
as a distribution over functions as well. If GP is used
for regression, the goal is to learn a continuous function
f : Rn → R by using a training set composed of (x, f(x))
tuples. The training is based on assuming that f is a
sample of a GP and the goal is to find the most probable
GP that can generate the training set. For this, the first
step is the selection of the mean and kernel functions
(model selection). By correcting the training data with its
mean, m(·) ≡ 0 can be chosen in general. It is thus enough
to focus on the selection of the kernel function. The kernel
is the core of the GP model. It determines the function
class the GP is able to approximate. If the function
to be learned is smooth and its characteristic length is
almost constant, a simple Squared Exponential (SE) kernel
is a good choice. On the other hand, if fast changes
and discontinuities are expected, a more complex kernel,
e.g. the Matérn class kernel has to be chosen. Further
kernel functions with the related modeling capabilities are
discussed in detail in Rasmussen and Williams (2006).

The next phase of the training is the tuning of the hyper-
parameters θ. The most common learning rule is obtained
by maximizing the marginal likelihood of the training
samples. Specifically, if T = {(x(1), ȳ(1)), . . . , (x(M), ȳ(M))}
is the training set and p(y|X, θ) with X = [x(1) . . . x(M)]
denotes the M dimensional joint Gaussian distribution
of GP(x(1)) . . .GP(x(M)), then the goal is to maxi-
mize the marginal likelihood log p(ȳ|X, θ) where ȳ =
[ȳ(1) . . . ȳ(M)]>. Since the gradient of log p(ȳ|X, θ) in θ can
be easily evaluated, a simple gradient ascent algorithm can
be applied.

Now, assume that the GP has already been trained. An
approximation of f at a test point x∗ ∈ Rn is ob-
tained by taking the M + 1 dimensional joint distribu-
tion p([y(1), . . . , y(M), y] | [X,x∗], θ) and computing the
one dimensional conditional distribution p(y|x∗, y(1) =
ȳ(1), . . . y(M) = ȳ(M), X, θ). The mean m∗ of this distribu-
tion is considered to be the approximation for f(x∗), while
the variance σ∗ provides information on the uncertainty of
the regression. As all distributions above are Gaussian,
the evaluation of a GP requires only elementary matrix
manipulations so it can be performed efficiently.

4. ACTIVE LEARNING OF APPROXIMATE MPC
POLICY

4.1 Outline of the concept

In many safety critical mechatronic and automotive ap-
plications, it is highly important to ensure deterministic
computation time of the control law under a fast sampling
rate. Even if Algorithm 1 has one of the fastest solution
times, its rate of convergence to an optimum is problem
dependent. Hence, to enable reliable real-time execution
of the LPV MPC method, we intend to construct an
approximate controller that is much faster to evaluate
online and has a deterministic execution time. For this,
a training set T = {(x(1), u(1)), . . . , (x(M), u(M))} is gen-
erated by performing Algorithm 1 M times with initial

values x(1) . . . x(M) and then a GP is trained by using this
data to learn the optimal control policy.

A crucial part of training is to select the most relevant
training samples and keep the size M of the training
set minimal. This gives rise to the need for a systematic
method for exploring the most informative training points
that help to reduce the approximation error.

Along with the results presented in Krause et al. (2008),
Brochu et al. (2010) and Boef, den P. (2019) we apply
the following method for training point selection. First the
training set is initialized, then active learning methods are
applied to select additional training points. Finally, the
training set is refined by controlling the system such that
both the NMPC and the approximated control inputs are
simultaneously computed at each time instant. The points
where the GP performs poorly compared to the NMPC
are added to the training set. Note that the simultaneous
control can be implemented in simulation, or on a real
plant provided that a suitably powerful computing device
is available to run the NMPC and GP in real time. Of
course, after the required level of precision is reached, the
online NMPC can be removed from the loop. This can be
seen as a procedure of tuning in a laboratory environment
before the approximate MPC can be deployed on the real
system.

4.2 Step I: Initial training set generation

Let (X,U) denote the admissible input and state space.
Moreover, let V ⊂ X denote a set of discrete samples,
the potential places of training points. A straightforward
way to specify V is to generate a dense, equally spaced
grid over the state space, but it can be also generated
by random sampling as well. The initial training set T0

can be determined in two different ways. One approach
is to randomly draw entries from V, and calculate their
corresponding input values using the NMPC algorithm.
The other, more structured method is to get the instances
of V which lay on a sparse, equally spaced grid of the state
space. In the sequel, we will denote by A all the points of V
that are present in the training set T . The complementer
set V\A, collecting the free points is denoted by Ā.

4.3 Step II: Active learning based training point generation

Once the initial training set T0 has been generated, addi-
tional training points are selected from Ā, to reduce the
approximation error of the GP. In this phase, we want
to ensure that each point selected decreases the most
the global approximation error reduction of the GP with
respect to the control policy. For this purpose, 3 training
point selection methods are proposed. They can be used
individually, or at the cost of computational complexity
can be combined to achieve better performance.

Maximum gradient: It is straightforward to assume that
the more abruptly the approximated function changes, the
more training points are needed for its accurate approx-
imation. Therefore, the gradient of the mean function of
the GP can be used as a query function to the training
point selection. In case of one test point x∗, the gradient
of the mean function is

∇f̄x∗ = ∇k>∗ K
−1
A y, (5)

where XA =
[
x(1) x(2) . . . x(M)

]>
is a matrix assembled

from the elements of A, y =
[
y(1) y(2) . . . y(M)

]>
is the

vector of input values corresponding to the elements of A,
k∗ = κ(XA, x∗) is the vector of covariances between the
test point x∗ and the points in A, and KA = κ(XA, XA) is
the covariance matrix of the points inA. After the gradient
has been calculated for each potential training point in Ā,
we calculate the norm of the gradients, and choose the
point with the highest gradient norm to be added to the
training set.

Maximum variance: Besides the predictive mean, the
variance can be also calculated for any x∗ test point. The
variance is an indicator of the uncertainty of the GP,
and thus is a suitable query function for training point
selection. According to Rasmussen and Williams (2006),
for a single test point the variance can be written as

σ2
x∗|A = κ(x∗, x∗)− k>∗ K

−1
A k∗. (6)

Similarly as before, the potential training points can be
ranked based on their variance values, and the one with
the highest variance is added to the training set.

Mutual information: In the training point selection
process, our goal is to select the element of A such that it
reduces the uncertainty of the predictions in Ā the most.
According to Krause et al. (2008), this is equivalent to
finding the set A that maximizes the mutual information
MI(A) = I(A, Ā). Using a greedy selection approach,
we sequentially choose the points which maximize the
increment of the mutual information

arg max
x∈Ā

MI(x ∪ A)−MI(A), (7)

This can be simplified to

arg max
x∈Ā

H(x|A)−H(x|Ā), (8)

where H(x|A) is the entropy of x conditioned on the
elements of A, and can be expressed as a function of the
variance,

H(x|A) =
1

2
log(σ2

x|XA) +
1

2
(log(2π) + 1). (9)

The calculation is analogous for H(x|Ā) with the replace-
ment of A with Ā. For the details of the derivation and
the technical aspects of the selection algorithm see (Krause
et al., 2008).

Note that it is possible to use these selection concepts
by themselves, but the combined use of them with ap-
propriately chosen weights (wv, wg, wmi) ≥ 0, wv + wg +
wmi = 1 can be also beneficial. The pseudo-code of the
active learning algorithm is summarized in Algorithm 2.
A comparison of different selection methods is shown in
Figure 1.

4.4 Step III: Control refinement in closed loop

After the augmentation of the training set it is still possible
that at certain points of the state space the approximation
error of the GP exceeds the allowed tolerance. (In our algo-
rithm, the threshold is set a-priori by analysing the robust-
ness properties of the NMPC algorithm.) To ensure that
all the control relevant points are included in the training
set, we propose the following refinement strategy. First,
a large number of initial states are generated randomly
within the bounds of the state constraint. For each initial

Algorithm 2 Training point selection by using active
learning

Input: Gaussian process model GP, training set T , set
of potential and current training point locations Ā, A,
weigths wv, wg, wmi, number of training points to be
added j
Output: GP, T

1: for i = 1 to j do
2: for x ∈ Ā do
3: δv

x ← σ2
x|A

4: δg
x ← ∇f̄x

5: δmi
x ← σ2

x|A/σ
2
x|Ā

6: δv
max ← maxx∈Ā δ

v
x

7: δg
max ← maxx∈Ā δ

g
x

8: δmi
max ← maxx∈Ā δ

mi
x

9: x∗ ← arg maxx∈Ā(wvδ
v
x/δ

v
max + wgδ

g
x/δ

g
max+

+ wmiδ
mi
x /δmi

max)
10: A ← A∪ x∗
11: Ā ← Ā\x∗
12: uMPC ← calculate optimal MPC input for x∗
13: T ← T ∪ (x∗, uMPC)
14: GP ← retrain GP with T

150 200 250 300 350 400 450 500

number of training points

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m
e

a
n
 a

b
s
o
lu

te
 e

rr
o
r

variance (random initial set)

variance

mutual information (random initial set)

mutual information

variance and gradient norm

mutual information and gradient norm

55% varance and 45% gradient norm

Fig. 1. The comparison of various active learning methods
and their effect on the global absolute mean approxi-
mation error computed on V. The criterion functions
to be maximized are indicated in the legend for each
curve. The curves with solid lines share the same
initial training set with training points placed on an
equidistant grid, whereas the curves with dashed lines
also share an initial training set with randomly placed
training points.

state, the system is simulated until it reaches the terminal
set. During the simulation, both the NMPC algorithm and
the GP are evaluated to calculate both the optimal input
value uMPC and its approximation uGP. At each step the
difference of the optimal and the approximated input is
checked: if it exceeds a certain threshold ε, then the current
state and optimal input pair (x, uMPC) is included in the
training set and the GP is retrained. After a sufficient
number of simulations, this method should result in a GP
model with a finalized training set, which is able to fulfill
the control task with near-optimal control inputs (within
the specified tolerance bounds). Guaranteed robustness
against the approximation error can be achieved by choos-
ing a suitable small tolerance ε and applying constraint

tightening in the MPC design. One possible procedure is
proposed in Hertneck et al. (2018). The pseudo-code of the
refinement method is summarized in Algorithm 3.

Algorithm 3 Control oriented learning with simulation
data

Input: Gaussian process model GP, training set T ,
system matrices A and B, terminal set, error tolerance
ε, number of simulations j
Output: GP, T

1: for i = 1 to j do
2: x ← assign random value within constraints
3: T+ ← initialize empty set
4: while x is outside the terminal set do
5: uMPC ← calculate optimal MPC input
6: uGP ← infer GP at test point x
7: if |uMPC − uGP| ≤ ε then
8: u← uGP
9: else

10: T+ ← T+ ∪ (x, uMPC)
11: u← uMPC

12: x← Ax+Bu
13: T ← T ∪ T+
14: GP ← retrain GP with the new training set

5. APPLICATION EXAMPLE: CONTROL DESIGN
FOR A SIMPLIFIED HELICOPTER MODEL

In this section the approximate NMPC design procedure
is presented on an application example.

Consider the simplified 2D helicopter model from Cannon
et al. (2011).

ÿ = (u1 + g) sin(α), z̈ = (u1 + g) cos(α)− g, α̈ = u2

(10)
where y, z and α denote the position and orientation of
the helicopter. The net thrust and moment acting on the
helicopter are proportional to the inputs u1 and u2, re-
spectively. The control task is to drive the helicopter from

any arbitrary initial hovering state x0 = [y0 z0 0 0 0 0]
>

to the terminal set placed at the origin. The constraints of
the system are |y| ≤ 1, |z| ≤ 1, |ẏ| ≤ 0.5, |ż| ≤ 0.5, |α| ≤
0.3, |α̇| ≤ 0.5, |u1| ≤ 10, |u2| ≤ 10, with cost weight ma-
trices Q = diag(0.1, 0.1, 1, 1, 10, 1), R = diag(10−4, 10−3).
The LPV form of the system is formulated as

ẏ
ż
ÿ
z̈
α̇
α̈

 =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 gρ1 0
0 0 0 0 gρ2 0
0 0 0 0 0 1
0 0 0 0 0 0

y
z
ẏ
ż
α
α̇

+

0 0
0 0
ρ3 0
ρ4 0
0 0
0 1

[
u1

u2

]
= (11)

= A(ρ)x+B(ρ)u,

ρ1 =
sin(α)

α
, ρ2 =

cos(α)− 1

α
, ρ3 = sin(α), ρ4 = cos(α).

For control design, the continuous model was discretized
by Euler’s method:

xk+1 = (I + hA(ρk))xk + hBuk, (12)

where h = 0.1 s is the sampling time. In the GP model, due
to the expected discontinuities of the explicit MPC law, a
Matérn class kernel was used (Rasmussen and Williams
(2006)), namely

κ(xp, xq) = σ2
f (1 +

√
3r) exp(−

√
3r), (13)

r = (xp − xq)>M(xp − xq),

where M = diag(l−2
i), i = 1, . . . , 6 and σf , l1, l2, . . . l6 are

the hyperparameters of the model.

Since the system has 2 inputs, two separate GP models
were required for the approximation, however, during our
calculations we used one common training set for the two
models.

First, a validation set was constructed to be used for
qualifying the approximation. For this, we calculated the
optimal input values on an equidistant grid with 0.1
spacing from −1 to 1 in y and z, and with constant 0 in the
other 4 state variables. We also included in the validation
set all the states along the predicted trajectories with
their corresponding input values on an N = 30 prediction
horizon obtained from the NMPC algorithm. This resulted
in a set that fairly represents all the states the system can
reach while executing the control task.

Then the set of potential training point locations V was
obtained by gridding the whole state space (with 0.2
spacing along all 6 dimensions) and selecting only those
points that lay inside the convex hull of the points in
the validation set. The initial training set was assembled
by using a sparser grid with 0.5 spacing along y and z
and 0.2 spacing along the remaining 4 dimensions. This
resulted in 257 initial training points. Afterwards, the
active learning algorithm increased the number of training
points to 945. The selection criteria were the maximum
variance and the maximum gradient norm, with weights
wv = 0.55 and wg = 0.45, respectively. In each iteration,
one point was selected for each GP, and both points (if
different), were added to the same, shared training set.
Finally, the refinement process with tolerance ε = 0.1
increased the number of training points to 990. Figure 2
shows the average absolute error of the approximations
during the training process, compared to the validation
set described earlier. Figure 3 shows that the GP models
were able to learn the control input. In the figure, 500
trajectories are shown which were generated by controlling
the system with the fully trained GPs alone.

During the simulation the average runtime of the 2 GP’s
inference together was 0.2321 s, whereas the average run-
time of the NMPC algorithm was 1.1880 s. This shows,
that after a certain level of system complexity, the real
time evaluation of the NMPC algorithm becomes in-
tractable, while the time required to GP inference does
not increase significantly.

Finally, the GP regression was compared with linear
interpolation. The interpolation was evaluated on the
same dataset over which the GP is defined. By examining
the control performance from the 500 initial conditions
depicted in Fig. 3, we found that GP performed better
in several aspects: first, the computation of the control
input by interpolation was approximately 20 times slower
compared to the GP (we used the built-in interpolation
routines of Matlab). Second, the dataset was proved to
be inadequate for linear regression: in some cases the
linear interpolation produced high approximation error
resulting in poor control performance or unstable closed-
loop behavior.

6. CONCLUSION

In this paper a practical approach is presented for con-
structing a learning based approximate explicit LPV

200 300 400 500 600 700 800 900 1000

number of training points

0

0.005

0.01

0.015

0.02

0.025

m
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

 initial grid

 initial grid

active learning period

re
fi
n
e
m

e
n
t
w

it
h
 s

im
u
la

ti
o
n

u
1

u
2

Fig. 2. The average absolute error of the approximation
of the optimal input for the helicopter, compared to
the validation set. The jumps in the average absolute
error of u2 are the result of the parameters in the GP
model converging to different local optima during the
training.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z

Fig. 3. Trajectories of the helicopter model controlled using
the GP based explicit controller from random initial

states x0 = [y0 z0 0 0 0 0]
>

to the terminal set.

model predictive controller for nonlinear systems. Special
attention is paid to the systematic collection of relevant
training samples. It has been shown that active learning
methods and closed loop simulations can be successfully
blended in an efficient training point selection algorithm.
The applicability of the procedure has been demonstrated
by designing an approximate predictive controller for a
nonlinear mechanical system.

REFERENCES

Boef, den P. (2019). Frequency Domain LPV System Iden-
tification Using Local Data. Master’s thesis, Eindhoven
University of Technology.

Borrelli, F., Bemporad, A., and Morari, M. (2019). Predic-
tive Control for Linear and Hybrid Systems. Cambridge
University Press.

Brochu, E., Cora, V.M., and Freitas, N.D. (2010). A
tutorial on Bayesian optimization of expensive cost

functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599.

Canale, M., Fagiano, L., and Milanese, M. (2010). Effi-
cient model predictive control for nonlinear systems via
function approximation techniques. IEEE Transactions
on Automatic Control, 55(8), 1911–1916.

Cannon, M., Buerger, J., Kouvaritakis, B., and Rakovic,
S. (2011). Robust tubes in nonlinear model predictive
control. IEEE Transactions on Automatic Control,
56(8), 1942–1947.

Cisneros, P.S.G., Sridharan, A., and Werner, H. (2018).
Constrained Predictive Control of a Robotic Ma-
nipulator using quasi-LPV Representations. IFAC-
PapersOnLine, 51(26), 118–123.

Cisneros, P.S.G., Voss, S., and Werner, H. (2016). Efficient
Nonlinear Model Predictive Control via quasi-LPV Rep-
resentation. In Proceedings of Conference on Decision
and Control, 3216–3221.

Csekö, L.H., Kvasnica, M., and Lantos, B. (2015). Explicit
MPC-Based RBF Neural Network Controller Design
With Discrete-Time Actual Kalman Filter for Semiac-
tive Suspension. IEEE Transactions on Control Systems
Technology, 23(5), 1736–1753.

Darwish, M.A.H. (2017). Bayesian identification of linear
dynamic systems. Ph.D. thesis, Eindhoven University of
Technology.

Dominguez, L.F., Narciso, D.A., and Pistikopoulos, E.N.
(2010). Recent advances in multiparametric nonlinear
programming. Computers & Chemical Engineering,
34(5), 707–716.

Hertneck, M., Köhler, J., Trimpe, S., and Allgöwer, F.
(2018). Learning an approximate model predictive con-
troller with guarantees. IEEE Control Systems Letters,
2(3), 543–548.

Johansen, T.A. (2003). Approximate explicit receding
horizon control of constrained nonlinear systems. Au-
tomatica, 40(2), 293–300.

Krause, A., Singh, A., and Guestrin, C. (2008). Near-
optimal sensor placements in Gaussian processes: The-
ory, efficient algorithms and empirical studies. Journal
of Machine Learning Research, 9(Feb), 235–284.

Liu, M., Chowdhary, G., da siLva, B.C., Liu, S., and
How, J.P. (2018). Gaussian Processes for Learning
and Control - A tutorial with examples. IEEE Control
Systems Magazine, 38(5), 53 – 86.

Parisini, T. and Zoppoli, R. (1995). A receding-horizon
regulator for nonlinear systems and a neural approxi-
mation. Automatica, 31(10), 1443–1451.

Rakovic, S.V. and Levine, W.S. (eds.) (2019). Handbook
of Model Predictive Control. Birkhäuser.

Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian
Processes for Machine Learning. MIT Press.

Sharif, B. (2018). Linear Parameter Varying Control of
Nonlinear Systems. Master’s thesis, Eindhoven Univer-
sity of Technology.

