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Abstract 

Series of molecular dynamics simulations for 2-propanol-water mixtures, as a function of 

temperature (between freezing and room temperature) and composition (xip= 0, 0.5, 0.1 and 

0.2) have been performed for temperatures reported in the only available experimental 

structure study. It is shown that when the all-atom OPLS-AA interatomic potentials for the 

alcohol are combined with the TIP4P/2005 water model then near-quantitative agreement 

with measured X-ray data, in the reciprocal space, can be achieved. Such an agreement 

justifies detailed investigations of structural, energetic and dynamic properties on the basis of 

the simulation trajectories. Here we focus on characteristics related to hydrogen bonds (HB): 

cluster-, and in particular, ring formation, energy distributions and lifetimes of HB-s have 

been scrutinized for the entire system, as well as for the water and isopropanol subsystems. It 

is demonstrated that, similarly to ethanol-water mixtures, the occurrence of 5-membered 

hydrogen bonded rings is significant, particularly at higher alcohol concentrations. 

Concerning HB energetics, an intriguing double maximum appears on the alcohol-alcohol HB 

energy distribution function. HB lifetimes have been found significantly longer in the 

mixtures than they are in the pure liquids. 
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1. INTRODUCTION 

Aqueous solutions of alcohols, the latter showing both hydrophobic and hydrophilic 

characters, have provided an excellent testing ground, from many aspects, for scientific 

research for many decades
1-24

. Additionally, these solutions are of basic importance in 

numerous fields, ranging from fundamental science to industrial applications. 

Recently, the temperature dependent structure of methanol/water
25

 and ethanol/water
26

 

liquid mixtures, as well as the microscopic dynamics
27

 in ethanol/water solutions has been 

investigated extensively in water-rich mixtures, using molecular dynamics (MD) simulations. 

The basis for detailed discussions of structure and dynamics has been provided by very good 

agreements with measured
15

 X-ray diffraction data.  

The temperature-dependent experimental work of Takamuku
15

 extends to aqueous 

solutions of yet another alcohol, isopropanol (a.k.a. 2-propanol, or propan-2-ol), again, at low 

alcohol concentrations (between molar ratios, xip, of 0.05 and 0.2). Since findings of our 

previous investigations
25-27

 have proven to be rather thought-provoking, we have decided to 

follow on with a detailed T-dependent MD study on isopropanol/water mixtures. 

The first explanation to the perturbation of a hydrophobic probe (originally alcohols) 

induced to the water structure was proposed Frank and Evans in 1945
1
, and was based mainly 

on thermodynamic properties of these solution. Since that time, the proposed ‘iceberg’ 

formation of water molecules around hydrophobic solutes has provoked a significant debate 

in the scientific community. The main conclusion of this hypothesis is that water in the 

solvation shell of a hydrophobic species (a molecule, or part of a molecule) has a somewhat 

higher degree of hydrogen bonding than bulk water does. However, there is still no consensus 

concerning this hypothesis, and about details of the atomistic picture that cause the non-ideal 

behaviour in terms several of their macroscopic properties at low alcohol concentrations. 2-

propanol is the simplest example of a secondary alcohol, where the alcohol carbon atom is 

attached to two other carbon atoms and in this sense, the OH-group of this molecule has a 

compact hydrophobic environment.  

It is known
28-35

 that various physicochemical quantities like enthalpy of mixing, 

dielectric properties, diffusion constant, excess molar volume have minimum values for 2-

propanol/water mixtures at low alcohol concentration, as well as for other short chain length 

alcohols
3,9,11,13,14,28,31,33,35

. The rapid change in the dynamical properties of water and alcohol 

(self-diffusion coefficients, rotational correlation time) in the water-rich region (up to about 

0.15-0.2 mole fraction)
12,32

 indicates that there is a significant structural change in the 

solution, in comparison with pure liquid water. From earlier studies
6,10

 it is possible to 

conclude that with increasing the size of the nonpolar head group of alcohols, more 

pronounced effects on different thermodynamic quantities and dynamical properties can be 

observed. Multiple studies indicate that alcohol molecules (n-propanol
17

, tert-butanol
36

, 1,1,1-

3,3,3 hexfluoro-2-propanol (HFIP)
18

) aggregate in their aqueous solutions, according to the 

small angle X-ray (SAXS) and neutron (SANS) scattering data in the water rich region
19-21

. 

On the other hand, the measurable correlation length is significantly smaller in the 2-

propanol-water system than for the 1-propanol (size is the almost the same as 2-propanol) or 

https://en.wikipedia.org/wiki/Alcohol#Systematic_names
https://en.wikipedia.org/wiki/Alcohol
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tert-butanol-water case
17,22,36

. Very similar difference was observed in terms of the dynamical 

properties between mixtures of 1-propanol and 2-propanol with water, by Sato et al
28

. This is 

a serious indication that besides the size of the hydrophobic group, an additional important 

factor, the possible formation of various hydrogen bonded aggregates, is present that may 

govern the structural and dynamical change in these solutions.  

There are several works that explore the structural and dynamical properties of 

isopropanol/water liquid mixtures using molecular dynamics simulation
12,23,30

. These 

simulations showed that recently employed force fields provide acceptable agreement over a 

wide composition range between calculated and measurable physico-chemical properties. 

There has been no direct comparison reported for the structural properties (total radial 

distribution functions and/or total structure factors), not even in the most recent simulation 

study on these mixtures
30

. A possible reason for this hiatus is that most of the newly 

developed potential functions are of the ‘united atom’ type (see, e.g. Ref. 30) that do not 

consider hydrogen atoms individually. 

It is widely accepted that the perturbation of the hydrogen-bond (HB) network is one of 

the reasons behind the anomalous properties
1,6,8

. The structure of these systems at the 

molecular level may be described using a local structural parameter like average H-bonding 

number or hydrogen bond distribution. On the other hand, we can characterise these systems 

as a complex networks, which, in turn, may be described by their topological properties. 

Recently, some of the present authors have described the topology of hydrogen bonded 

aggregations in water and pure liquid formamide
37-39

. It could be demonstrated that although 

both alcohol and water molecules form hydrogen bonds readily, significant differences are 

present in terms of the H-bonded environment of the two species in water-methanol and 

water-ethanol mixtures. 

Here we consider 2-propanol-water mixtures, with 2-propanol contents of 5, 10 and 20 

mol%, at temperatures between ambient and the freezing point of the actual mixture. We 

validated our simulation procedure by comparing measured
15

 and calculated total structure 

factors. One of the aims of the present study was to obtain new insights into the hydrogen 

bonded network of 2-propanol-water mixtures. We analyse quite a few characteristics as a 

function of decreasing temperature, such as size distributions of cyclic entities or the size of 

H-bonded aggregates. The other goal of the present work was to describe and localise changes 

of the interaction energy between the constituent molecules. To this end, we provide a more 

detailed picture of the energetics of the interactions around water and 2-propanol molecules, 

in 2 and 3 dimensions. Additionally, we also study how the hydrogen bond lifetime changes 

in different hydrogen bonded environments, also as a function of temperature.  
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2. COMPUTATIONAL METHODS 

2.1 Molecular Dynamics Simulations 

Molecular Dynamics simulations were performed by the Gromacs software
40

 (version 

5.1.1). 2-propanol molecules were modelled using the all-atom optimized potentials for liquid 

simulations (OPLS-AA)
41

 force field. Bond lengths were kept fixed by the LINCS algorithm
42

 

in 2-propanol molecules. Parameters such as atom types and charges can be found in Table 

S1. Calculations with two different water models, SPC/E
43

 and TIP4P/2005
44

, have been 

conducted for every composition-temperature pair. Water molecules were held together by the 

SETTLE
45

algorithm. Additional parameters like temperatures, box lengths, numbers of 2-

propanol and water molecules in each system, number densities (and bulk densities), are 

summarized in Table S2. The Newtonian equations of motions were integrated via the 

leapfrog algorithm, using a time step of 2 fs. The particle-mesh Ewald algorithm was used for 

handling the long-range electrostatic forces and potentials.
46-47

 The cut-off radius for non-

bonded interactions was set to 1.1 nm. 

The following simulation sequence was applied: first NPT systems (at each 

concentration) was heated up to 340 K, using a Nose-Hoover
48,49

 thermostat with a time 

constant of T=1.0 and a Parrinello-Rahman
50

 barostat with a time constant of  p=4.0, over 5 

ns to avoid the aggregation of 2-propanol molecules. After that, a 5 ns NVT equilibration run 

with a Berendsen
51

 thermostat (T=0.5) was applied. This was the starting point for further 

simulations. By this sequence, it is possible to exploit that the Berendsen method is a fast, 

first-order approach to equilibrium, whereas the Nose-Hoover thermostat with Parinello-

Rahman barostat provides canonical ensembles with correct fluctuation properties. 

Furthermore, in NVT simulations it is a good practice to perform the equilibration using the 

Berendsen thermostat with a small value of T, that should be increased later to obtain a stable 

trajectory in equilibrium.
52

  

Accordingly, for every composition the following four steps were performed to reach 

the next, lower, temperature: 1. NPT_short run (2ns, Berendsen thermostat with T=0.1, 

Berendsen barostat with p=0.1), 2. NPT_long run (10ns, Nose-Hoover thermostat with 

T=1.0, Parrinello-Rahman barostat with p=4.0), 3. NVT_short run (1ns, Berendsen 

thermostat with T=0.1), 4. NVT_long run (5ns, Berendsen thermostat with T=0.5). All 

results were calculated from the NVT_long runs.  

 

2.2 Analysis tools 

For calculating partial radial distribution functions the g_rdf software was used, which 

can be found in the GROMACS software package. Total scattering structure factors were 

calculated from partial radial distribution functions by an in-house code. 

Mean square deviations (MSD) were determined by the help of the g_msd software that 

is also included in GROMACS simulation package. 
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Analyses concerning hydrogen bonding, including energetic aspects, were performed 

using our in-house computer code, described in detail in Ref 37. 

 

3. RESULTS  

3.1 Structure 

3.1.1 Validation of molecular dynamics results: comparison with experimental total 

scattering structure factors 

Measured X-ray diffraction data
15

 are compared to molecular dynamics model total 

scattering structure factors (TSSF-s) in Fig. 1. Agreement with experiment is rather good for 

both water potential models applied: for the TIP4P/2005 model
44

, the match is nearly 

quantitative. Contrary to what was found for ethanol-water mixtures in our earlier work
26

, 

here this water potential works significantly better and therefore, in what follows, all results 

are shown for these calculations only. 

Fig.1 shows TSSF-s only for one composition, xip=0.2 (i.e., 20 mol % isopropanol); 

graphs for the other compositions, as well as corresponding numerical data describing 

deviations between experiment and simulation, are provided in the Supporting Information. 
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Figure 1 Temperature dependent experimental (red symbols, from Ref. 15) and computed 

(black solid line, present work; left panel: SPC/E, right panel: TIP4P/2005 water models) total 

scattering structure factors. Note that very nearly quantitative agreement between 

measurement and model when using the TIP4P/2005 water model (right panel).  

Partial radial distribution functions can be found in the Supporting Information, so that 

the applicability of the criteria used for defining hydrogen bonds (see below) may be checked 

there. 
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3.1.2 Hydrogen bond statistics 

The analysis of hydrogen bond statistics can give us information about the average local 

structure of a liquid in terms of a distribution of the number of molecules in positions forming 

hydrogen bonds with the central one. In the present study, the energetic definition
53

 of the H-

bond was applied as follows: two molecules were considered hydrogen bonded to each other 

if they were found at a distance r(O···H) < 2.5 Å, and the interaction energy is smaller than -3 

kcal/mol (ca. -12 kJ/mol). This definition has less arbitrariness than the pure geometrical 

definition, as we showed in an earlier publication
53

, where all analysis using both the 

energetic and the geometric definition (r(O···H) < 2.5 Å, and H-O…O angle between 30°) 

were carried out. It was found that the results arising from the two different definitions were 

in good agreement with each other, thus the main conclusions did not depend on the applied 

definitions. 

First, we calculated the average number of H-bonds between all the molecules, and also 

separately for the contributions from water-water, water-2-propanol and 2-propanol-2-

propanol pairs. Results are shown in Fig. 2 for all the three concentrations (xip=0.05, 0.1 and 

0.2) and at all studied temperatures. In the molecule-molecule, water-water and water-2 

propanol cases the average number of H-bonds increases as temperature decreases. Pairs of 

water molecules form the most H-bonds between each other. The average number of H-bonds 

is not shown in the figure for 2-propanol-2-propanol molecules, because less than one H-bond 

for such pairs are found and their number does not change significantly with temperature. 
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Figure 2 Average number of H-bonds. 

Molecules can be classified based on the number of hydrogen-bonds they take part in as 

H-acceptors (nA=0, 1, 2 for 2-propanol and nA=0, 1, 2, 3 for water molecules) and H-donors 

(nD=0, 1 for 2-propanol and nD=0, 1 or 2 for water). Molecules may thus be tagged as (nA,nD), 

e.g. (0,0) – no bond, up to (3,2) – fully bonded. Calculated data are presented in Table 1. For 

all concentrations the fraction of 4 H-bonded water molecules (2,2) increases and the 2 H-

bonded water molecules (1,1) decreases as temperature decreases. There is a well-defined 

asymmetry between (1,2) and (2,1) type water molecules in terms of their populations, and 
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this difference is the same for every temperature in all concentrations. Concerning 2-propanol, 

the fraction of (1,2) increases while (0,1) decreases with decreasing temperature. In this 

regard our conclusion coincides what was found for ethanol-water systems: both 2-propanol 

and water molecules tend to form the maximum number of H-bonds allowed for them as a 

result of cooling.  

  water 2-propanol 

xip T(K) 1D:1A 1D:2A 2D:1A 2D:2A 0D:1A 0D:2A 1D:1A 1D:2A 

0.2 

298 0.182 0.149 0.278 0.249 0.317 0.121 0.334 0.126 

268 0.14 0.147 0.29 0.325 0.292 0.138 0.331 0.16 

263 0.133 0.145 0.29 0.339 0.28 0.138 0.34 0.168 

258 0.125 0.144 0.288 0.355 0.283 0.136 0.34 0.169 

0.1 

298 0.174 0.167 0.256 0.267 0.329 0.165 0.266 0.147 

268 0.13 0.166 0.258 0.353 0.288 0.191 0.267 0.185 

263 0.123 0.163 0.257 0.37 0.281 0.199 0.261 0.192 

0.05 
298 0.171 0.175 0.241 0.271 0.325 0.199 0.235 0.151 

268 0.129 0.176 0.24 0.357 0.285 0.288 0.222 0.195 

Table 1 Fractions of water and 2-propanol Molecules as H-Acceptors and as H-Donors in the 

H-Bonds Identified as a Function of Temperature and Concentration. 

 

3.1.3 Ring size distributions 

Molecules participate in a given cyclic entity if there is a minimum length path 

consisting of a series of hydrogen bonds (nr) through which one can get back to the original 

molecules. To estimate the ratio the cycle and the open chain in the system ring search 

algorithms developed by Chihaia et al.
55

 were used. Here, the primitive rings of oxygen atom 

nodes and hydrogen bond edges were sought. This method has been already used for 

investigating the topology of H-bonded clusters in pure water, and in water-methanol, water-

ethanol and water-formamide mixtures
25,26,38

. Ring size distributions (not normalized) for the 

three mixtures (left panel: xip = 0.05; middle panel: xip = 0.1; right panel: xip = 0.2) are 

presented in Fig. 3, as a function of temperature.  

In the case of pure water, the ring-size distribution has a well-defined maximum around 

6 and the number of cyclic entities is significantly increasing as the temperature is 

decreasing
37

. A similar tendency was found in water-methanol mixtures as a function of 

temperature
15

, and for ethanol water-mixtures below the alcohol concentration of xe=0.1
26

. 

Here, in isopropanol-water mixtures, a clear dominance (but only by a narrow margin) of 6-

membered rings is observed only at low temperature, and only when the alcohol molar ratio is 

below 0.1 (cf. Fig. 3).  
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Figure 3 Non-normalized ring size (nr) distributions with mean-square deviations (MSDs) for 

the three mixtures (left panel: xip = 0.05; middle panel: xip = 0.1; right panel: xip = 0.2) as a 

function of temperature. H-bonds have been identified on the basis of the energetic criterion 

(y axes: “N”: number of rings/configuration). 

On the other hand, we already observed for ethanol-water mixtures that above a certain 

concentration (xe=0.1), the most probable cyclic entities contain 5 molecules
26

. Also, in the 

present case the visible maximum of the ring size distributions shifts from 6- to 5-membered 

cycles as concentration increases. At the highest 2-propanol concentration (xip=0.2), 5-fold 

rings take the dominance already at room temperature, and their ratio systematically increases 

with lowering the temperature. A possible reason for this variation may be, as noted already 

for ethanol-water mixtures
26

, that as the ratio of isopropanol molecules grows, the number of 

alcohol molecules in the ring structures, that need larger volumes if included, also grows. 

Simply the size of the hydrophobic isopropyl group seems to be sufficient to force the H-

bonded ring to close sooner (i.e., with fewer molecules in the ring), by excluding molecules 

from the ring being formed.  

A possibility of an interesting comparison shows up here: it is instructive to compare 

the ‘relative importance’ of cyclic structures in water, and ethanol-water and isopropanol-

water liquid mixtures. For this purpose, we have normalized the number of rings by the 

number of molecules in the given system for each molar ratio in the three kinds of systems. 

Clearly, the largest ratio of ring structures is found for pure (TIP4P/2005) water at each 

temperature. The ratio is the smallest in isopropanol-water mixtures. This way, the influence 

of the size of the alkyl-group in the alcohol molecules on the ability of forming cyclic entities 

in alcohol-water mixtures could be demonstrated straightforwardly. The data are presented in 

Table 2. 

 

water ethanol-water isopropanol-water 

x 

 

0.1 0.2 0.1 0.2 

298 K 1.015 1.007 0.744 0.411 0.320 

268 K 1.177 1.152 0.899 0.570 0.430 

263 K 1.214 

  

0.590 0.450 

258 K 1.282 1.255 0.939 

 

0.475 

253 K 1.392 1.353 0.966 

  Table 2 Ratio of the number of rings and the total number of molecules in pure water, and in 

ethanol-water and isopropanol-water mixtures. 
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In water-methanol and water-ethanol mixtures we previously detected that more alcohol 

molecules appear in non-cyclic associations, while more water molecules are connected to 

rings, than it would follow from the composition. In order to provide a clear distinction 

between the behavior isopropanol and water in these mixtures, we calculated the average 

number of 2-propanol (nip) molecules incorporated in cyclic structures of certain sizes. If the 

H-bonding character of water and 2-propanol molecules was identical at this level then this 

number should be approximately equal to nr
.
xe, where nr is the size of the ring. Results 

obtained are presented in Fig 4. The calculated values at every concentration and temperature 

are significantly smaller than nr
.
xe. (Fig 4a and 4b) The deviation from the ideal behavior is 

less pronounced in the case of smaller rings. The deviation from ideal behavior, as measured 

by the ratio of the calculated and the ideal value (Fig 4c and 4d), has a well-defined minimum 

at all concentration and temperature around nr=7. At low temperature the deviation from 

ideality is more pronounced at room temperature for larger (nr> 7) rings. 

To sum up, as far as cyclic structures are concerned, 2-propanol/water mixtures are in a 

closer relation with ethanol/water, than with methanol/water systems. This observation may 

be explained by the smaller size ratio of isopropyl vs. ethyl (ca. 3/2), than ethyl vs. methyl 

(ca. 2/1) alkyl groups.  
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Figure 4 Average number of isopropanol molecules incorporated in cyclic structures of 

certain sizes, as a function of temperature and composition for xip=0.1 (a) and for xip=0.2 (b). 

(Black dots denote values that would follow directly from the given alcohol concentration). 
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The ratios of the calculated and the ideal values are also provided for xip=0.1 (c) and for 

xip=0.2 (d). 

 

3.1.4 On the formation of H-bonded clusters 

In order to reveal the possible existence of large clusters formed by water and 2-

propanol molecules through H-bonds, we calculated the cluster size distributions for the water 

and 2-propanol subsystems, along with the case when both components were counted as 

cluster formers. In these analyses two molecules are regarded as belonging to the same cluster 

if they are connected by a chain of hydrogen bonds between molecules of the type of interest. 

Percolation can be assigned by comparing the calculated cluster size distribution functions of 

the present systems with those obtained for random percolation on a 3D cubic lattice (see 

Refs. 56-58), P(nc)= nc
-2.2

. In percolating systems, the cluster size distribution (P(nc)) exceeds 

this predicted function at large cluster size (nc) values.  

Figure 5 presents the hydrogen-bonded cluster size distributions in 2-propanol-water 

mixtures at various concentrations for ‘molecule-molecule’, water-water and 2-propanol-2-

propanol subsystems. It is clear that the ‘molecule-molecule’ (entire system), as well as the 

water subsystems percolate through the simulation box. On the other hand, we can find only 

short chain-like structures (consisting of less than 10 molecules) for pure 2-propanol 

assemblies. 
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Figure 5 Cluster size distributions as calculated for the entire system (‘molecule-molecule’, 

top panel), as well as for the water-water (mid panel) and 2-propanol-2-propanol (bottom 

panel) subsystems. 

 

3.2 Hydrogen bond energetics 

It is well established that for a more complete understanding of the properties of 

aqueous mixtures at the molecular level, it is beneficial to make use of various statistical tools 

concerning not only the structural, but also the dynamical and the energetic aspects. 

Following this idea, here we first analyze the strength of intermolecular connections between 

water and 2-propanol molecules via the pair energy distributions (Fig. 6) in their mixtures, as 

a function of composition and temperature.  
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Figure 6 Pair energy distributions in 2-propanol-water mixtures at xip=0.05 (a) and 0.2 (b) at 

different temperatures. 

Pair energy distributions in H-bonded liquids usually have a characteristic shape (see, 

e.g., Refs. 26 and 38), with (1) a spike near 0.0 kcal/mol that represents the interaction 

between distant molecules in the bulk, and (2) a low energy band for hydrogen bonded 

neighbors (following the first, well-defined minimum). The distributions of pair energies for 

water-water (‘wa-wa’) and 2-propanol-2-propanol (‘ip-ip’) interactions all exhibit a peak at 
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negative E values, at around –5.5 kcal/mol for water-water and –5.75 kcal/mol for 2-

propanol-2-propanol connections, respectively. The positions of these maxima are shifted to 

more negative values with decreasing temperature. This statement is also valid for the well-

defined minima in the cases of the two compositions shown (xip=0.05 and xip=0.2) that can be 

found at -3.0 kcal/mol for water-water and at -3.5 kcal/mol for 2-propanol-2-propanol pairs. 

The 2-propanol-water pair energy distributions show two small maxima around -5.2 

kcal/mol and -6.5 kcal/mol. These two peaks can be assigned to H-bond donor and acceptor 

interactions, which differ in their strengths, between 2-propanol and water molecules. It is 

worth pointing out that this double peak was not found in ethanol-water mixtures (cf. Ref. 

26): this is a striking difference between ethanol-water and 2-propanol-water mixtures. At all 

temperatures and for all concentrations the minimum after these maxima can be found at -3.0 

kcal/mol. 

In order to establish how the changes in terms of the H-bond interactions described 

above relate to the distances between molecules, we have calculated the pair interaction 

energy as a function of the O-O distances for all of the three molecular pair combinations: 

water-water, 2-propanol-2-propanol and 2-propanol-water. Although we calculated these 

functions for all concentrations and at each simulated temperature value (c.f Table 1), in 

Figures 7 and 8 we only present result for mixtures with the alcohol molar fraction of 0.2. 

Also note that O-O distance-energy distributions are compared only for the two extremes of 

the temperature. 

With decreasing temperature, two regions (at around 2.8 Å and -5.0 kcal/mol; and 

between 4.0 and 5.0 Å and +1.0 kcal/mol) became more populated when considering water-

water pairs (Figs. 7a and 7b). A similar behavior was found in pure liquid water, and also in 

ethanol-water mixtures
26

. For water-2-propanol pairs (Fig. 7c and 7d.) less pronounced, but 

still noticeable effects occur at the same oxygen-oxygen distances. 

The pair interaction energy between two 2-propanol molecules (Figs. 7e and 7f) does 

not show such sensitivity to the changing temperature as water-water pairs. The only notable 

difference is that the pair interaction energy among water and 2-propanol molecules becomes 

more negative on decreasing temperature, as it can be seen in Figure 7f at around -6.0 

kcal/mol. 

Finally, energy minima can be seen at about -3.0 kcal/mol in Figs. 7 that may be set for 

H-bond definition. In pure liquid water, this is also an accepted value for H-bond definition
25

. 
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Figure 7. Distance-pair energy distributions for water-water, 2-propanol-water and 2-

propanol-2-propanol pairs in the mixture with 20 mol % of 2-propanol at 298 K (left panel) 

and 258 K (right panel). The positions where significant changes may be detected are denoted 

by red arrows. 
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In order to explore more clearly the connections and relative configurations of 

molecules to each other, we calculated spatial distributions (local densities) of the neighboring 

water and 2-propanol molecules in the first (roo < 3.5 Å) and in the second hydration shells 

(3.5 Å < roo < 6 Å) around central water and 2-propanol molecules. (O atoms are in the origin, 

x axes defined by the bisectors of the HOH or COH angles, and the xy plane is defined by 

HOH or COH plane such a way that the z axis is in the positive direction.) As seen in Fig. 8a 

the local order of water molecules in the first shell is clearly a tetrahedral one (density 

cutoff=1.15). If we plot the energy distribution function on this surface (first shell), an 

attractive interaction between -3.0 and -6.0 kcal/mol is found.  

On the other hand, the first shell around O atoms of 2-propanol molecules appears in the 

H-bond donor and acceptor directions, but the structure of second shell is not much ordered 

(Fig. 8b).  

Concerning Figs. 8c and 8d, the typical tetrahedral spatial distribution of neighbors (in 

the 1
st
 and 2

nd
 shells) around water molecules is clearly preserved also at lower temperature 

(at 258 K). In Figs 7a and 7b it is demonstrated that the most significant change in this region 

can be found around 4.0-5.0 Å and +1.0 kcal/mol on the distance-energy map. Using Fig. 8, 

we can determine that such interactions belong to molecules situated around the bisector 

direction of the HOH angle in the second shell: in that direction, molecules with a weak 

repulsive interaction with the central one are positioned more orderly at 258 K (designated by 

blue color). 

 

a. 

  

b. 

 
c. 

 

d. 

 
Figure 8 a. First and second shells of the space density distribution for water around water at 

298 K. (Water-water energy distribution function is represented by color scale only in the case 
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of first shell). b. First and second shells of the space density distribution for 2-propanol 

around 2-propanol at 298 K. (2-propanol-2-propanol energy distribution function is 

represented by color scale only in the case of first shell) c. Second shell of the space density 

distribution (density cutoff=0.95) for water around water at 298 K (water-water energy 

distribution function is represented by color coding) d. Second shell of the space density 

distribution (density cutoff=0.95) for water around water at 258 K (water-water energy 

distribution function is represented by color coding). All results are shown for xip=0.2.  

 

3.3 Dynamic aspects  

3.3.1 Diffusion coefficients  

Mean squared displacements (MSD) of centers of mass as a function of time are used 

here to calculate the self-diffusion coefficient by Einstein’s method. Calculated self-diffusion 

coefficients as a function of temperature are presented in Table 3.  

 xip= 0.05 xip=0.1 xip=0.2 

T(K) isopropanol water isopropanol water isopropanol water 

320 1.0978 2.3348 0.852 1.8616 0.7879 1.2783 

298 0.6292 1.3676 0.4624 0.9588 0.3874 0.688 

268 0.1655 0.4037 0.1051 0.2535 0.072 0.1375 

263 0.1263 0.3094 0.08 0.1774 0.056 0.1032 

258 0.092 0.234 0.0549 0.1258 0.0333 0.0785 

253 0.0641 0.1725 0.0304 0.0804 0.0257 0.0535 

248 0.0475 0.1233 0.0197 0.0562 0.0145 0.0309 

243 0.0296 0.0843 0.0141 0.0358 0.0089 0.0196 

T0(K) 197 202 177 198 190 208 

Table 3 Calculated self-diffusion coefficients of the components as a function of temperature. 

(Temperatures where measured structure factors are available are shaded by grey.) 

 

The temperature dependence of Dw and Dip over the temperature range 298 K to 258 K 

can be described by Arrhenius plots, as shown in Figure 9, although a notable deviation from 

the ‘regular’ behavior is also apparent. 



16 
 

3.0 3.2 3.4 3.6 3.8 4.0 4.2

-5

-4

-3

-2

-1

0

1

ln
(D

)

1000/T

 x
ip
= 0.05; 2-propanol

 x
ip
= 0.05; water

 x
ip
= 0.10; 2-propanol

 x
ip
= 0.10; water

 x
ip
= 0.20; 2-propanol

 x
ip
= 0.20; water

 

Figure 9 Arrhenius plots related to the self-diffusion coefficients in 2-propanol-water 

mixtures. 

 

Additionally, we fitted the temperature dependence of the diffusion coefficients of water 

and 2-propanol molecules by the following functional form, introduced by Rozmanov and 

Kusalik
59

: 

𝐷(𝑇) = A exp (
𝐵

𝑇−𝑇0
) + C 

where A, B, C, and T0 are optimized parameters. The fitting procedure, due to the quite wide 

range of D(T), was performed using a modified temperature dependence
59

, namely 

50D(T)+log(D(T)). The weighting factor (W=50) ensures that the magnitudes of D(T) at 

higher temperatures and the log(D(T)) values at lower temperatures are numerically 

comparable. 

This D(T) functional form describes the diffusion of a glass forming liquid, with 

temperature of dynamical arrest T0. Our calculated values for T0 are presented in Table 3. It is 

valid for every system that T0 is significantly lower than the lowest temperature investigated 

in this work. 

There may be a possibility that water and/or 2-propanol molecules aggregate in 

hydrogen bonded clusters, which clusters might have different diffusion coefficient 

themselves. To reveal if such dynamical heterogeneities can be found in terms of the motion 

of water or 2-propanol molecules, we calculated the P(r
2
) probability distribution

27
 for 

different times and temperatures. The highest isopropanol content case (xip=0.2) at the lowest 

investigated temperature (at 258 K) was chosen to demonstrate our findings (Fig. 10). The 

shape of these distributions for 2-propanol and water molecules is very similar to each other: 

all the curves possess a well-defined maximum, a long tail and an expected value of r
2
 at a 

certain time. This behavior (r
2
*exp(-ar

2
) is the direct consequence of the diffusion law. It 

means that, at least in terms of this type of motion, no dynamical heterogeneities can be 

detected in our liquid mixtures. It is worth noting that a very similar behavior was found also 

in water-ethanol mixtures
26

. 
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Figure 10 P(r
2
) probability distribution 

 

 

3.3.2 H-bond dynamics and surviving probability  

We have studied the surviving probability (lifetime of H-bond) as calculated according 

to the following function
54, 60-62

: 

𝑐𝑛 =
〈𝛿ℎ𝑛

𝐼 (𝑡)𝛿ℎ𝑛
𝐼 (0)〉

〈𝛿ℎ𝑛
𝐼 (0)𝛿ℎ𝑛

𝐼 (0)〉
 

where 

𝛿ℎ𝑛
𝐼 (𝑡) = ℎ𝑛

𝐼 (𝑡) − 〈ℎ𝑛
𝐼 (𝑡)〉 

The function ℎ𝑛
𝐼 (𝑡) has been defined in the following way: 

ℎ𝑛
𝐼 (𝑡) = 1 

if a 2-propanol or water molecule that was in the HB state n at time t=0 is in the same HB 

state at time t, irrespective of whether or not its HB state has changed in the meantime, and 0 

otherwise. 

An estimate for the lifetime from this correlation function can be obtained by the 

following formula
61,62

: 

𝜏𝑛
𝐼 = ∫ 𝑐𝑛

𝐼 𝑑𝑡 

Results for liquid water at 298 and 238 K, using the TIP4P/2005 model, are shown as 

reference, in Fig 11 (panel ‘a’). 
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Figure 11 Surviving times (H-bond lifetimes) of the different H-bonding states (according to 

the number of H-bonded neighbors which is coded by different colors) in pure water, as a 

function of temperature (panel ‘a’); and in the mixture with isopropanol molar ratio of 0.2 at 

room temperature (panel ‘b’). 

The calculated lifetimes (‘survival times’) for different H-bonding states in liquid water 

are presented in Table 4. We can conclude that the n=4 state has significantly longer lifetime 

than the other states at each investigated temperature.  

T (K) n=1 n=2 n=3 n=4 n=5 

298 0.08 0.14 0.05 0.27 0.10 

268 0.11 0.37 0.32 0.54 0.33 

253 0.14 0.44 0.41 0.86 0.44 

243 0.17 0.74 0.92 1.53 0.75 

233 0.23 1.12 1.59 2.86 1.62 

Table 4 Calculated lifetimes (ps), as a function of temperature, of water molecules with given 

numbers of H-bonds in TIP4P/2005 pure water. 

The correlation functions cn
i
 (t) obtained for water and 2-propanol at room temperature 

are also shown in Fig. 11 (panel ‘b’), and calculated lifetimes are given for the mixture with 

xip=0.2 in Table 5. It appears that the relaxation process occurs over multiple time scales, as it 

can be seen in the inset of Fig. 11. All the correlation functions have an initial fast decay over 

a timescale of about 0.2 ps, followed by a long time exponential decay. Kumar et al.
54

 

obtained very similar conclusions for liquid water using different H-bond definitions. For 

each concentration and at each temperature the n=3 and n=4 H-bonded states have the longest 

lifetimes for 2-propanol and water molecules, respectively. 
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 2-propanol water 

T(K) n=0 n=1 n=2 n=3 n=1 n=2 n=3 n=4 n=5 

298 1.10 1.45 1.51 4.05 0.31 0.50 0.83 1.49 0.31 

268 2.55 5.50 10.84 19.92 0.74 3.03 4.04 7.60 1.07 

263 2.65 6.88 12.73 23.09 0.86 3.37 4.97 10.11 1.27 

258 2.86 8.69 16.71 29.65 0.94 4.27 7.41 13.32 1.96 

Table 5 Calculated lifetimes (ps), as a function of temperature, of 2-propanol (left hand part) 

and water (right hand part) molecules with given numbers of H-bonds in the mixture with 

xip=0.2. Note how much longer lived are H-bonds in the mixture than they are in pure water 

(cf. Table 4). 

The temperature dependence of calculated lifetimes for different H-bonded states of 

water and 2-propanol molecules are presented in Fig. 12, again, for the mixture with xip=0.2. 

The temperature dependence of these quantities can be reasonably well described by an 

Arrhenius activation process over the temperature range between 298 and 258 K. Values of 

the activation energy for all investigated systems are presented in Table 6. The largest 

activation barrier was found for the n=3 H-bonding state for water, and for the n=2 state for 2-

propanol, except for the case of xip=0.05 for 2-propanol.  
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Figure 12. Temperature dependence of the lifetimes of various H-bonding configurations in 

the mixture with 20 mol% isopropanol (shown as an Arrhenius-plot). (Data for lifetimes can 

be found in Table 5.) 

 

 2-propanol water 

xip n=0 n=1 n=2 n=3 n=1 n=2 n=3 n=4 n=5 

0     8.98 17.88 29.10 20.62 23.03 

0.05 1.21 40.24 19.62 31.18 6.82 13.30 22.95 17.46 19.29 

0.1 3.82 27.27 31.93 28.27 16.21 25.69 39.57 32.26 25.77 

0.2 15.88 28.85 39.24 32.26 18.21 35.09 34.50 35.17 28.02 

Table 6 Calculated activation barriers (in kJ/mol) in different H-bonded states of isopropanol 

and water molecules in the investigated systems.  
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4. CONCLUSIONS 

Molecular dynamics simulations for 2-propanol-water mixtures, as a function of temperature 

(between freezing and room temperature) and composition (xip= 0, 0.5, 0.1 and 0.2) have been 

conducted for temperatures reported in the only available experimental structure study
15

. We 

have found that: 

(1) Comparison with the measured X-ray structure factors revealed that out of the water 

potentials tested, the TIP4/2005 one
44

 provided nearly quantitative agreement with 

experiment. Therefore for more detailed analyses, particle configurations for this 

water model have been collected. 

(2) Similarly to methanol-water
25

 and ethanol-water
26

 mixtures, the number of cyclic H-

bonded clusters increases on lowering the temperature. The outstanding importance of 

6-membered rings observed in methanol-water mixtures is shared here by 5-membered 

cycles, similarly to ethanol-water mixtures.  

(3) Concerning the size of hydrogen-bonded assemblies, not only the mixture as a whole, 

but also, the water-subsystem is percolating at each temperature and composition 

studied. On the other hand, only short, isolated chain-like assemblies (consisting of 

less than 10 molecules) can be found for 2-propanol. 

(4) 2-propanol–water H-bond energy distributions (Fig. 6) show a double maximum 

between -7 and -4 kcal/mol. This feature could not be observed in ethanol-water 

mixtures.   

(5) H-bonding lifetimes in the mixtures tend to be significantly longer than they in pure 

water.  

(6) ‘Perfect’ H-bonding configurations, i.e. 3 and 4 hydrogen bonds per isopropanol and 

water molecules, respectively, tend to be the longest lived in the mixtures (and in pure 

water, too), at each temperature considered here. 

 

Supporting Information 

Lennard-Jones parameters and partial charges for the atom types of 2-propanol used in the 

MD simulations (Table S1); applied temperatures, box lengths, together with the 

corresponding number densities and bulk densities (Table S2); comparison of the measured 

(from X-ray diffraction) and calculated (from MD simulations) total scattering structure 

factors as a function of temperature for the mixture with 5 and 10 mol % isopropanol (Figure 

S1-S2); heavy-atom related partial radial distribution functions as a function of temperature 

for the mixture with 5, 10, 20 mol % 2-propanol (Figure S3-S5); H-bond related partial radial 

distribution functions as a function of temperature for the mixture with 5, 10, 20 mol % 2-

propanol (Figure S6-S8); distance-pair energy distributions for water-water, 2-propanol-2-

propanol and 2-propanol-water pairs in the mixture with 5 mol % of 2-propanol at 298 K (left 

panel) and 268 K (right panel) (Figure S9). 
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