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Abstract. Motivated by some earlier Diophantine works on tri-
angular numbers by Ljunggren and Cassels, we consider similar
problems for general polygonal numbers.

1. Introduction and the main results

Ljunggren [16] and Cassels [8] proved that the only triangular num-

bers that are the squares of triangular numbers are 0, 1 and 36. In other

words, using different methods they resolved the Diophantine equation

(1)
x(x+ 1)

2
=

(
y(y + 1)

2

)2

for integers x and y (see Chapter 28 of the classical book by Mordell

[18]). As 1 + 2 + . . . + x = x(x+1)
2

and 13 + 23 + . . . + y3 =
(
y(y+1)

2

)2

we can give another interpretation of (1) related to the common values

of power sums. For a generalization of this problem we refer to [6] and

[3].

Triangular numbers are a well-known special case of polygonal num-

bers. Let

Polmx =
x ((m− 2)x+ 4−m)

2
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be the polygonal numbers with integral parameters x ≥ 1 and m ≥ 3.

These figurate numbers and their relatives including pyramidal num-

bers have an extensive literature, see the monographs of Dickson [10]

and Deza and Deza [9]. For some recent Diophantine results in this

topic we refer to [15],[7], [14], and [19].

The purpose of our note is to generalize the problem mentioned

above. Let m,n be fixed integers with m ≥ 3, n ≥ 3. Now consider

the equation

(2) Polmx =
(
Polny

)k
for the unknown integers x > 1, y > 1 and k ≥ 2.

Theorem 1.1. Suppose that m 6= 4. Then equation (2) possesses

only finitely many solutions in x > 1, y > 1, and k ≥ 2. Further,

max(x, y, k) < c1, where c1 is an effectively computable constant de-

pending on m and n.

For m = 4, we have Pol4x = x2, so our problem leads to a trivial equa-

tion. For (very) small values of m we will resolve (2). More precisely,

we prove the following

Theorem 1.2. For m = 3, 5, 6, 8 and 20, all the solutions of the equa-

tion

Polmx = zk

for positive integers x, z, k with x > 1, z > 1 and k ≥ 3 are

(m,x, z, k) = (8, 2, 2, 3), (20, 8, 2, 9), (20, 8, 8, 3).

Further, for k = 2 and 3 ≤ m,n ≤ 12,m 6= 4, the solutions (x, y) to

(2) are

(m,n, x, y) = (3, 3, 8, 3), (3, 5, 49, 5), (3, 6, 8, 2), (3, 9, 288, 8),

(3, 10, 9800, 42), (6, 5, 25, 5), (7, 4, 6, 3), (7, 9, 6, 2), (8, 3, 9, 5),

(8, 6, 9, 3), (9, 3, 2, 2), (9, 3, 49, 13), (9, 6, 49, 7), (9, 12, 18, 3),

(11, 3, 81, 18), (12, 3, 25, 10), (12, 7, 25, 5), (12, 8, 4, 2).
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It would be preferable to extend the previous theorem for larger

values of m, as in the case of pyramidal numbers, see for example [12]

and [11], however, it seems well beyond the reach of our techniques, see

the remark after the proof of Theorem 1.2.

2. Auxiliary results

In this section, we give some results from the modern theory of Di-

ophantine equations.

Lemma 2.1. Let f(X) be a polynomial with rational coefficients and

suppose that it has at least two distinct zeros in the field of complex

numbers C. Then the equation f(x) = yk for integers x, |y| > 1 and

k ≥ 2 implies k < C1, where C1 is an effectively computable constant

depending on the parameters of f .

Proof. See [20]. �

Our next lemma is a special case of a general theorem concerning

the superelliptic equations proved by Brindza [5].

Lemma 2.2. Let f(X) be a polynomial with rational coefficients and

k be a fixed integer with k ≥ 3. Assume that f(X) possesses at least

two simple zeros (over C). Then, the equation f(x) = yk for integers x

and y implies max{|x|, |y|} < C2, where C2 is an effectively computable

constant depending on the parameters of f and k.

Proof. See [5]. �

Another corollary of Brindza’s result [5] is as follows.

Lemma 2.3. Let f(X) be a polynomial with rational coefficients and

suppose that it has at least three simple zeros (over C). Then the hyper-

elliptic equation f(x) = y2 for integers x and y implies max{|x|, |y|} <
C3, where C3 is an effectively computable constant depending on the

parameters of f .

To prove our second theorem we need the following lemma.
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Lemma 2.4. If m, t, α, β, y and n are nonnegative integers with n ≥ 3

and y ≥ 1, then the only solutions to the equation

m(m+ 2t) = 2α3βyn

are those with m ∈ {2t, 2t±1, 3 · 2t, 2t±3}.

Proof. The proof of this auxiliary result is based on the modular met-

hod, see [1]. For similar results on the product of two consecutive inte-

gers, we refer to [2] and [13]. �

3. Proofs

Proof of Theorem 1.1. Let m,n be fixed rational integers with m ≥
3, n ≥ 3 and m 6= 4. For y > 1, the polygonal number Polny > 1, and for

m 6= 4, Polmx is a quadratic polynomial in x with rational coefficients

and two distinct zeros. Thus Lemma 2.1 gives an effective upper bound

for the exponent k depending only on m. In the sequel, we can fix k

and first suppose that k ≥ 3. From Lemma 2.2 we have an upper bound

for max(x, Polny ) depending only on m and this yields that max(x, y)

is bounded by an effectively computable constant depending on m and

n. If k = 2, then we get

(2(m− 2)x+ 4−m)2 = 8(m− 2)

(
y ((n− 2)y + 4− n)

2

)2

+ (4−m)2,

and, by Lemma 2.3, it is enough to guarantee that the quartic polyno-

mial (in Y )

(3) 8(m− 2)

(
Y ((n− 2)Y + 4− n)

2

)2

+ (4−m)2

has only simple zeros, or equivalently, its discriminant is a nonzero

number for every value of m ≥ 3,m 6= 4 and n ≥ 3. An easy calculation

shows that the discriminant of this polynomial is

256(n− 2)4(m− 2)3(m− 4)4D(m,n),

where

D(m,n) = mn4−2n4−16mn3+8m2n2−32nm2+32m2+32mn2+32n3−64n2.
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We can check that

D(m,n) = n3(m− 2)(n− 16) + 8nm2(n− 4) + 32n2(m− 2) + 32m2.

For n ≥ 16 and m ≥ 3, D(m,n) is positive, further, if n < 16, then the

equation D(m,n) = 0 gives m = n = 4. Thus, we have proved that the

discriminant of (3) is nonzero for every m ≥ 3,m 6= 4, and n ≥ 3. �

Proof of Theorem 1.2. From the equation

Polmx = zk

we have

((m− 2)x) ((m− 2)x+ 4−m) = 2(m− 2)zk.

Now we can apply Lemma 2.4 to this equation when

2(m− 2) = 2α3β, |m− 4| = 2t,

that is m = 3, 5, 6, 8 and 20 and t = 0, 0, 1, 2 and 4, respectively. Indeed,

for m = 3, 5 we have t = 0. For m > 5, our system of equations is

m− 2 = 2α−13β and m− 4 = 24,

and it leads to the equation

2α−23β − 2t−1 = 1.

If t = 1, then α = 3, β = 0. For t > 1, we obtain α = 2 and thus we

have to solve the equation

(4) 3β − 2t−1 = 1.

Applying a cannon to kill a fly, by Mihailescu’s result [17] on the so-

lution of Catalan’s conjecture, we get that all the solutions to (4) are

(β, t) = (1, 2), (2, 4). Lemma 2.4 gives the following (essentially two)

solutions

m = 8, x = z = 2, k = 3,

m = 20, x = 8, z = 2, k = 9,

and

m = 20, x = z = 8, k = 3.
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For k = 2 and small values of m and n, we can find the integral

points on the corresponding quartic hyperelliptic curve using MAGMA

[4], with the subroutine IntegralQuarticPoints. �

Remark. For general m the equation Polmx = zk leads to several bino-

mial Thue equations of the type

Axk1 −Bxk2 = C

in the unknown integers k ≥ 3, x1, x2. As the original problem has a

solution x = z = 1 we cannot apply the local method to all of these

Thue equations. The present of this trivial solution means that the

application of the modular method is also a great challenge.
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