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Abstract

Let A = {a1, a2, . . . } (a1 < a2 < . . . ) be an infinite sequence of nonnegative
integers, and let RA,2(n) denote the number of solutions of ax+ay = n (ax, ay ∈ A).

P. Erdős, A. Sárközy and V. T. Sós proved that if limN→∞
B(A,N)√

N
= +∞ then

|∆1(RA,2(n))| cannot be bounded, where B(A,N) denotes the number of blocks
formed by consecutive integers in A up to N and ∆l denotes the l-th difference.
Their result was extended to ∆l(RA,2(n)) for any fixed l ≥ 2. In this paper we give
further generalizations of this problem.
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1 Introduction

Let N denote the set of nonnegative integers. Let k ≥ 2 be a fixed integer and let
A = {a1, a2, . . . } (a1 < a2 < . . . ) be an infinite sequence of nonnegative integers. For
n = 0, 1, 2, . . . let RA,k(n) denote the number of solutions of ai1 + ai2 + · · · + aik = n,
ai1 ∈ A, . . . , aik ∈ A, and we put

A(n) =
∑
a∈A
a≤n

1.

We denote the cardinality of a set H by #H. Let B(A,N) denote the number of blocks
formed by consecutive integers in A up to N , i.e.,

B(A,N) =
∑
n≤N

n∈A,n−1/∈A

1.
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If s0, s1, . . . is given sequence of real numbers then let ∆lsn denote the l-th difference of
the sequence s0, s1, s2, . . . defined by ∆1sn = sn+1 − sn and ∆lsn = ∆1(∆l−1sn).
In a series of papers [2], [3], [4] P. Erdős, A. Sárközy and V.T. Sós studied the regularity
properties of the function RA,2(n). In [4] they proved the following theorem:

Theorem A If limN→∞
B(A,N)√

N
=∞, then |∆1(RA,2(n))| = |RA,2(n+1)−RA,2(n)| cannot

be bounded.

In [4] they also showed that the above result is nearly best possible:

Theorem B For all ε > 0, there exists an infinite sequence A such that

(i) B(A,N)� N1/2−ε,

(ii) RA,2(n) is bounded so that also ∆1RA,2(n) is bounded.

Recently, [9] A. Sárközy extended the above results the finite set of residue classes modulo
a fixed m.

In [6] Theorem A was extended to any k > 2 :

Theorem C If k ≥ 2 is an integer and limN→∞
B(A,N)

k√N
=∞, and l ≤ k, then |∆lRA,k(n)|

cannot be bounded.

It was shown [8] that the above result is nearly best possible.

Theorem D For all ε > 0, there exists an infinite sequence A such that

(i) B(A,N)� N1/k−ε,

(ii) RA,k(n) is bounded so that also ∆lRA,k(n) is bounded if l ≤ k.

In this paper we consider RA,2(n), thus simply write RA,2(n) = RA(n). A set of positive
integers A is called Sidon set if RA(n) ≤ 2. Let χA denote the characteristic function of
the set A, i.e.,

χA(n) =

{
1, if n ∈ A

0, if n /∈ A.

Let λ0, . . . , λd be arbitrary integers with
∣∣∣∑d

i=0 λi

∣∣∣ > 0. Let λ = (λ0, . . . , λd) and define

the function

B(A, λ, n) =

∣∣∣∣∣
{
m : m ≤ n,

d∑
i=0

λiχA(m− i) 6= 0

}∣∣∣∣∣ .
In Theorems 1 and 2 we will focus on the case

∑d
i=0 λi 6= 0.

Theorem 1. We have

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≥ lim sup
n→∞

|
∑d

i=0 λi|
2(d+ 1)2

(
B(A, λ, n)√

n

)2

.

The next theorem shows that the above result is nearly best possible:
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Theorem 2. Let
∑d

i=0 λi > 0. Then for every positive integer N there exists a set A
such that

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≤ lim sup
n→∞

4
d∑
i=0

|λi|
(
B(A, λ, n)√

n

)2

and

lim sup
n→∞

B(A, λ, n)√
n

≥ N.

Theorem 3. Let
∑d

i=0 λi = 0. Then we have

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≥ lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n
.

It is easy to see that if λ = (λ0, λ1) = (−1, 1) then B(A, λ, n) ≥ B(A, n) thus Theorem

3 implies Theorem A. It is natural to ask whether the exponent of B(A,λ,n)√
n

in the right
hand side can be improved.

Problem 1. Is it true that if
∑d

i=0 λi = 0 then there exists a positive constant C(λ)
depends only on λ such that for every set of nonnegative integers A we have

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≥ lim sup
n→∞

C(λ) ·
(
B(A, λ, n)√

n

)3/2

?

In the next theorem we prove that the exponent cannot exceed 3/2.

Theorem 4. Let
∑d

i=0 λi = 0. For every positive integer N there exists a set A ⊂ N
such that

N ≤ lim sup
n→∞

(
B(A, λ, n)√

n

)
<∞

and

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≤ lim sup
n→∞

48(d+1)423d+7.5

d∑
i=0

|λi|
(
B(A, λ, n)√

n

)3/2(
log

B(A, λ, n)√
n

)1/2

.

2 Proof of Theorem 1

Since −λ = (−λ0, . . . ,−λd) and clearly

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ = lim sup
n→∞

∣∣∣∣∣
d∑
i=0

(−λi)RA(n− i)

∣∣∣∣∣ ,
B(A, λ, n) = B(A,−λ, n), therefore

lim sup
n→∞

|
∑d

i=0 λi|
2(d+ 1)2

(
B(A, λ, n)√

n

)2

= lim sup
n→∞

|
∑d

i=0(−λi)|
2(d+ 1)2

(
B(A,−λ, n)√

n

)2

,
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thus we may assume that
∑d

i=0 λi > 0. On the other hand we may suppose that

lim sup
n→∞

(
B(A, λ, n)√

n

)2

> 0.

It follows from the definition of the lim sup that there exists a sequence n1, n2, . . . such
that

lim
j→∞

B(A, λ, nj)√
nj

= lim sup
n→∞

B(A, λ, n)√
n

.

To prove Theorem 1 we give a lower and an upper estimation for

∑
3
√
nj<n≤2nj

(
d∑
i=0

λiRA(n− i)

)
. (1)

The comparison of the two bounds will give the result. First we give an upper esti-
mation. Clearly we have∣∣∣∣∣∣

∑
3
√
nj<n≤2nj

(
d∑
i=0

λiRA(n− i)

)∣∣∣∣∣∣ ≤
∑

3
√
nj<n≤2nj

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣
≤ 2nj max

3
√
nj<n≤2nj

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ .
In the next step we give a lower estimation for (1). It is clear that

∑
3
√
nj<n≤2nj

(
d∑
i=0

λiRA(n− i)

)
=

∑
3
√
nj<n≤2nj

(λ0 + . . . + λd)RA(n)

−
(

(λ1 + . . . + λd)RA(2nj) + (λ2 + . . . + λd)RA(2nj − 1) + λdRA(2nj − d+ 1)
)

+(λ1 + . . . +λd)RA(b 3
√
njc) + (λ2 + . . . +λd)RA(b 3

√
njc−1) + . . . +λdRA(b 3

√
njc−d+ 1).

Obviously,

RA(m) = #{(a, a′) : a+ a
′
= m, a, a

′ ∈ A} ≤ 2 ·#{(a, a′) : a+ a
′
= m, a ≤ a

′
, a, a

′ ∈ A}

≤ 2 ·#{(a : a ≤ m/2, a ∈ A} = 2A(m/2).

It follows that

∑
3
√
nj<n≤2nj

(
d∑
i=0

λiRA(n− i)

)
≥ (λ0 + . . . + λd)

∑
3
√
nj<n≤2nj

RA(n)−

(
d∑
i=0

|λi|

)
2A(nj)2d

≥

(
d∑
i=0

λi

)
#{(a, a′) : a+ a

′
= n, 3

√
nj < a, a

′ ≤ nj, a, a
′ ∈ A} −

(
d∑
i=0

|λi|

)
4dA(nj)
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=

(
d∑
i=0

λi

)
(A(nj)− A( 3

√
nj))

2 −O(A(nj)).

The inequaltity
∑d

i=0 λiχA(m − i) 6= 0 implies that [m − d,m] ∩ A 6= 0. Then we

have {m : m ≤ n,
∑d

i=0 λiχA(m − i) 6= 0} ⊆ ∪a≤n,a∈A[a, a + d], which implies that
B(A, λ, n) ≤ |∪a≤n,a∈A[a, a+ d]| ≤ A(n)(d + 1). By the definition of nj there exists a
constant c1 such that

B(A, λ, nj)√
nj

> c1 > 0.

It follows that A(nj) >
c1
d+1

√
nj and clearly 3

√
nj ≥ A( 3

√
nj). By using these facts we get

that (
d∑
i=0

λi

)
(A(nj)− A( 3

√
nj))

2 −O(A(nj)) = (1 + o(1))

(
d∑
i=0

λi

)
A(nj)

2 ≥

(1 + o(1))

(
d∑
i=0

λi

)
B(A, λ, nj)

2

(d+ 1)2
.

Comparing lower and upper estimations we get that

2ni max
3
√
nj<n≤2nj

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≥ ∑
3
√
nj<n≤2nj

(
d∑
i=0

λiRA(n− i)

)

≥ (1 + o(1))

∑d
i=0 λi

(d+ 1)2
B2(A, λ, nj),

this implies that

max
3
√
nj<n≤2nj

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≥ (1 + o(1))

∑d
i=0 λi

2(d+ 1)2

(
B(A, λ, nj)√

nj

)2

. (2)

To complete the proof we distinguish two cases. When

lim sup
n→∞

(
B(A, λ, n)√

n

)2

<∞

then

max
3
√
nj<n≤2nj

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≥ (1 + o(1))

∑d
i=0 λi

2(d+ 1)2

(
B(A, λ, nj)√

nj

)2

= (1 + o(1))

∑d
i=0 λi

2(d+ 1)2
lim sup
n→∞

(
B(A, λ, n)√

n

)2

,

which gives the result.
When

lim sup
n→∞

(
B(A, λ, n)√

n

)2

=∞

then

lim sup
j→∞

(
B(A, λ, nj)√

nj

)2

=∞,

which implies by (2) that lim supn→∞

∣∣∣∑d
i=0 λiRA(n− i)

∣∣∣ =∞, which gives the result.
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3 Proof of Theorem 2

It is well known [5] that there exists a Sidon set S with

lim sup
n→∞

S(n)√
n
≥ 1√

2
,

where S(n) denotes the number of elements of S up to n. Define the set T by removing
the elements s and s

′
from S when s − s

′ ≤ (N + 1)(d + 1). It is clear that T (n) ≥
S(n)− 2(N + 1)(d+ 1) and define the set A by

A = T ∪ (T + (d+ 1)) ∪ (T + 2(d+ 1)) ∪ . . . ∪ (T +N(d+ 1)).

It is easy to see that A(n) ≥ (N +1)T (n)−N . We will prove that B(A, λ, n) ≥ A(n)−d.
By the definitions of the sets T and A we get that if a < a

′
, a, a

′ ∈ A then a−a′ ≥ d+ 1.
If

d∑
i=0

λiχA(m− i) 6= 0

then there is exactly one term, which is nonzero. Fix an index w such that λw 6= 0. It
follows that

∑d
i=0 λiχA(a+ w − i) 6= 0 for every a ∈ A. Hence,

|B(A, λ, n)| ≥ #{a : a+ w ≤ n, a ∈ A} = A(n− w) ≥ A(n)− w ≥ A(n)− d

≥ (N + 1)T (n)−N − d ≥ (N + 1)S(n)− 2(N + 1)2(d+ 1)−N − d.
Thus we have

B(A, λ, n)√
n

≥ (N + 1)
S(n)√
n
− 2(N + 1)2(d+ 1) +N + d√

n

and

lim sup
n→∞

(
B(A, λ, n)√

n

)2

≥ (N + 1)2

2
≥ N.

By the definition of A, we have

RA(m) =
N∑
i=0

N∑
j=0

#{(t, t′) : (t+ i(d+ 1)) + (t+ j(d+ 1)) = m, t, t
′ ∈ T}

=
N∑
i=0

N∑
j=0

RT (m− (i+ j)(d+ 1)) ≤ 2(N + 1)2.

Then we have∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≤
(

d∑
i=0

|λi|

)
max
n

RA(n) ≤ 2

(
d∑
i=0

|λi|

)
(N + 1)2 ≤

≤ lim sup
n→∞

4 ·

(
d∑
i=0

|λi|

)(
B(A, λ, n)√

n

)2

,

which gives the result.
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4 Proof of Theorem 3

Assume first that

lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n
<∞.

We prove by contradiction. Assume that contrary to the conclusion of Theorem 3 we
have

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ < lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n
. (3)

Throughout the remaining part of the proof of Theorem 3 we use the following no-
tations: N denotes a positive integer. We write e2iπα = e(α) and we put r = e−1/N ,
z = re(α) where α is a real variable (so that a function of form p(z) is a function of
the real variable α : p(z) = p(re(α)) = P (α)). We write f(z) =

∑
a∈A z

a. (By r < 1,
this infinite series and all the other infinite series in the remaining part of the proof are
absolutely convergent).

We start out from the integral I(N) =
1∫
0

|f(z)(
∑d

i=0 λiz
i)|2dα. We will give lower and

upper bound for I(N). The comparison of these bounds will give a contradiction.
First we will give a lower bound for I(N). We write

f(z)

(
d∑
i=0

λiz
i

)
=

(
∞∑
n=0

χA(n)zn

)(
d∑
i=0

λiz
i

)

=
∞∑
n=0

(λ0χA(n) + λ1χA(n− 1) + . . . + λdχA(n− d))zn.

It is clear that if λ0χA(n)+λ1χA(n−1)+. . . +λdχA(n−d) 6= 0, then (λ0χA(n)+λ1χA(n−
1) + . . . + λdχA(n− d))2 ≥ 1. Thus, by the Parseval formula, we have

I(N) =

∫ 1

0

∣∣∣∣∣f(z)

(
d∑
i=0

λiz
i

)∣∣∣∣∣
2

dα

=

∫ 1

0

∣∣∣∣∣
∞∑
n=0

(λ0χA(n) + λ1χA(n− 1) + . . . + λdχA(n− d))zn

∣∣∣∣∣
2

dα

=
∞∑
n=0

(λ0χA(n) + λ1χA(n− 1) + . . . + λdχA(n− d))2 r2n ≥ e−2
∑
n≤N

λ0χA(n)+λ1χA(n−1)+...+λdχA(n−d)6=0

1

= e−2B(A, λ,N).

Now we will give an upper bound for I(N). Since the sums
∑d

i=0 |λiRA(n − i)| are
nonnegative integers it follows from (3) that there exists an n0 and an ε > 0 such that

d∑
i=0

|λiRA(n− i)| ≤ lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n
(1− ε). (4)
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for every n > n0. On the other hand there exists an infinite sequence of real numbers
n0 < n1 < n2 < . . . < nj < . . . such that

lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n

√
1− ε <

√
2

e2
∑d

i=0 |λi|
B(A, λ, nj)√

nj
.

We get that

lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n
(1− ε) <

√
2

e2
∑d

i=0 |λi|
B(A, λ, nj)√

nj

√
1− ε. (5)

Obviously, f 2(z) =
∑∞

n=0RA(n)zn. By our indirect assumption, the Cauchy inequality
and the Parseval formula we have

I(N) =

1∫
0

∣∣∣∣∣f(z)

(
d∑
i=0

λiz
i

)∣∣∣∣∣
2

dα ≤

(
d∑
i=0

|λi|

) 1∫
0

∣∣∣∣∣f 2(z)

(
d∑
i=0

λiz
i

)∣∣∣∣∣ dα

=

(
d∑
i=0

|λi|

) 1∫
0

∣∣∣∣∣
(
∞∑
n=0

RA(n)zn

)(
d∑
i=0

λiz
i

)∣∣∣∣∣ dα =

(
d∑
i=0

|λi|

) 1∫
0

∣∣∣∣∣
∞∑
n=0

(
d∑
i=0

λiRA(n− i)

)
zn

∣∣∣∣∣ dα
≤

(
d∑
i=0

|λi|

) 1∫
0

∣∣∣∣∣
∞∑
n=0

(
d∑
i=0

λiRA(n− i)

)
zn

∣∣∣∣∣
2

dα

1/2

=

(
d∑
i=0

|λi|

)(
∞∑
n=0

(
d∑
i=0

λiRA(n− i))2r2n
)1/2

.

In view of (4), (5) and the lower bound for I(nj) we

e−2B(A, λ, nj) < I(nj) <

(
d∑
i=0

|λi|

) ∞∑
n=0

(
d∑
i=0

λiRA(n− i)

)2

r2n

1/2

≤

(
d∑
i=0

|λi|

) n0∑
n=0

(
d∑
i=0

λiRA(n− i)

)2

r2n +
∞∑

n=n0+1

( √
2

e2
∑d

i=0 |λi|
B(A, λ, nj)√

nj

√
1− ε

)2

r2n

1/2

<

(
d∑
i=0

|λi|

)(
c2 +

∞∑
n=0

(
2

e4(
∑d

i=0 |λi|)2
B2(A, λ, nj)

nj
(1− ε)

)
r2n

)1/2

,

where c2 is a constant. Taking the square of both sides we get that

e−4B2(A, λ, nj) <

(
d∑
i=0

|λi|

)2(
c2 +

2

e4(
∑d

i=0 |λi|)2
B2(A, λ, nj)

nj
(1− ε)

∞∑
n=0

r2n

)
. (6)

It is easy to see that

1− e−x = x− x2

2!
+
x3

3!
− · · · > x− x2

2!
= x(1− x

2
) >

x

x+ 1

8



for 0 < x < 1. Applying this observation, where r = e−1/nj we have

∞∑
n=0

r2n =
1

1− r2
=

1

1− e−
2
nj

<
nj
2

+ 1.

In view of (6) we obtain that

e−4B2(A, λ, nj) <

(
d∑
i=0

|λi|

)2(
c2 +

2

e4(
∑d

i=0 |λi|)2
B2(A, λ, nj)

nj
(1− ε)

(nj
2

+ 1
))

< c3 + e−4B2(A, λ, nj)(1− ε),

where c3 is an absolute constant and it follows that

B2(A, λ, nj) < c3e
4 +B2(A, λ, nj)(1− ε),

or in other words

B2(A, λ, nj) <
c3e

4

ε
,

which is a contradiction if nj is large enough because limj→∞B(A, λ, nj) = ∞. This
proves the result in the first case.
Assume now that

lim sup
n→∞

√
2

e2
∑d

i=0 |λi|
B(A, λ, n)√

n
=∞.

Then there exists a sequence n1 < n2 < . . . such that

lim sup
j→∞

B(A, λ, nj)√
nj

=∞.

We prove by contradiction. Suppose that

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ <∞.
Then there exists a positive constant c4 such that |

∑d
i=0 λiRA(n − i)| < c4 for every n.

It follows that

e−2B(A, λ, nj) < I(nj) <

(
d∑
i=0

|λi|

) ∞∑
n=0

(
d∑
i=0

λiRA(n− i)

)2

r2n

1/2

<

(
c4

∞∑
n=0

r2n

)1/2

< c5
√
nj,

thus we have
B(A, λ, nj)√

nj
< c5e

2,

where c5 is a positive constant, which contradicts our assumption.

9



5 Proof of Theorem 4

We argue as Sárközy in [9]. In the first step we will prove the following lemma:

Lemma 1. There exists a set CM ⊂ [0,M(d+1)−1] for which |RCM
(n)−RCM

(n−1)| ≤
12
√
M(d+ 1) logM(d+ 1) for every nonnegative integer n and B(CM , λ,M(d+1)−1) ≥

M
2d+2 if M is large enough.

Proof of Lemma 1 To prove the lemma we use the probabilistic method due to Erdős
and Rényi. There is an excellent summary about this method in books [1] and [5]. Let
P(E) denote the probability of an event E in a probability space and let E(X) denote the
expectation of a random variable X. Let us define a random set C with P(n ∈ C) = 1

2

for every 0 ≤ n ≤M(d+ 1)− 1. In the first step we show that

P
(

max
n
|RC(n)−RC(n− 1)| > 12

√
M(d+ 1) logM(d+ 1)

)
<

1

2
.

Define the indicator random variable

%C(n) =

{
1, if n ∈ C
0, if n /∈ C.

It is clear that
RC(n) = 2

∑
k<n/2

%C(k)%C(n− k) + %C(n/2)

is the sum of independent indicator random variables. Define the random variable ζi by
ζi = %C(i)%C(n− i). Then we have

RC(n) = 2Xn + Yn,

where Xn = ζ0 + . . . + ζbn−1
2
c and Yn = %C(n/2).

Case 1. Assume that 0 ≤ n ≤M(d+1)−1. Obviously, P(ζi = 0) = 3
4

and P(ζi = 1) = 1
4

and

E(Xn) =
bn+1

2
c

4
.
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As Yn ≤ 1, it is easy to see that the following events satisfy the following relations{
max

0≤n≤M(d+1)−1
|RC(n)−RC(n− 1)| > 12

√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

0≤n≤M(d+1)−1

∣∣∣∣RC(n)− n

4
+RC(n− 1)− n− 1

4

∣∣∣∣ > 10
√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

0≤n≤M(d+1)−1

(∣∣∣RC(n)− n

4

∣∣∣+

∣∣∣∣RC(n− 1)− n− 1

4

∣∣∣∣) > 10
√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

0≤n≤M(d+1)−1

∣∣∣RC(n)− n

4

∣∣∣ > 5
√
M(d+ 1) logM(d+ 1)

}
=

{
max

0≤n≤M(d+1)−1

∣∣∣2Xn + Yn −
n

4

∣∣∣ > 5
√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

0≤n≤M(d+1)−1

∣∣∣2Xn −
n

4

∣∣∣ > 4
√
M(d+ 1) logM(d+ 1)

}
=

{
max

0≤n≤M(d+1)−1

∣∣∣Xn −
n

8

∣∣∣ > 2
√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

0≤n≤M(d+1)−1

∣∣∣∣Xn −
bn+1

2
c

4

∣∣∣∣ >√M(d+ 1) logM(d+ 1)

}
.

It follows that

P
(

max
0≤n≤M(d+1)−1

|RC(n)−RC(n− 1)| > 12
√
M(d+ 1) logM(d+ 1)

)

≤ P
(

max
0≤n≤M(d+1)−1

∣∣∣∣Xn −
bn+1

2
c

4

∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)

≤
M(d+1)−1∑

n=0

P
(∣∣∣∣Xn −

bn+1
2
c

4

∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)
.

It follows from the Chernoff type bound [1], Corollary A 1.7. that if the random variable
X is of binomial distribution with parameters m and p then for a > 0 we have

P(|X −mp| > a) ≤ 2e−2a
2/m. (7)

Applying (7) to bn+1
2
c and p = 1

4
we have

P
(∣∣∣∣Xn −

bn+1
2
c

4

∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)
< 2 · exp

(
−2M(d+ 1) logM(d+ 1)

bn+1
2
c

)
(8)

≤ 2e−4
M(d+1) logM(d+1)

M(d+1) = 2e−4 logM(d+1) =
2

(M(d+ 1))4
<

1

4M(d+ 1)
.

It follows that

P({ max
0≤n≤M(d+1)−1

|RC(n)−RC(n− 1)| > 12
√
M(d+ 1) logM(d+ 1)}) (9)

11



<
M(d+ 1)

4M(d+ 1)
=

1

4
.

Case 2. Assume that M(d+ 1) ≤ n ≤ 2M(d+ 1)− 2.
Obviously, P(ζi = 0) = 3

4
and P(ζi = 1) = 1

4
when n −M(d + 1) < i < n

2
, and if

0 ≤ i ≤ n−M(d+ 1) then ζi = 0. Clearly we have

E(Xn) =
b2M(d+1)−1−n

2
c

4
.

As Yn ≤ 1, it is easy to see that the following relations holds among the events{
max

M(d+1)≤n≤2M(d+1)−2
|RC(n)−RC(n− 1)| > 12

√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

M(d+1)≤n≤2M(d+1)−2

∣∣∣∣RC(n)−
M(d+ 1)− n

2

4
+RC(n− 1)−

M(d+ 1)− n−1
2

4

∣∣∣∣
>10

√
M(d+ 1) logM(d+ 1)

}

⊆

{
max

M(d+1)≤n≤2M(d+1)−2

(∣∣∣∣RC(n)−
M(d+ 1)− n

2

4

∣∣∣∣+

∣∣∣∣RC(n− 1)−
M(d+ 1)− n−1

2

4

∣∣∣∣)

>10
√
M(d+ 1) logM(d+ 1)

}

⊆
{

max
M(d+1)−1≤n≤2M(d+1)−2

∣∣∣∣RC(n)−
M(d+ 1)− n

2

4

∣∣∣∣ > 5
√
M(d+ 1) logM(d+ 1)

}
=

{
max

M(d+1)−1≤n≤2M(d+1)−2

∣∣∣∣2Xn + Yn −
2M(d+ 1)− n

4

∣∣∣∣ > 5
√
M(d+ 1) logM(d+ 1)

}
⊆
{

max
M(d+1)−1≤n≤2M(d+1)−2

∣∣∣∣2Xn −
2M(d+ 1)− n

4

∣∣∣∣ > 4
√
M(d+ 1) logM(d+ 1)

}
=

{
max

M(d+1)−1≤n≤2M(d+1)−2

∣∣∣∣Xn −
2M(d+ 1)− n

8

∣∣∣∣ > 2
√
M(d+ 1) logM(d+ 1)

}
⊆

{
max

M(d+1)−1≤n≤2M(d+1)−2

∣∣∣∣∣Xn −
b2M(d+1)−1−n

2
c

4

∣∣∣∣∣ >√M(d+ 1) logM(d+ 1)

}
.

It follows that

P
(

max
M(d+1)−1≤n≤2M(d+1)−2

|RC(n)−RC(n− 1)| > 12
√
M(d+ 1) logM(d+ 1)

)

≤ P

(
max

M(d+1)−1≤n≤2M(d+1)−1

∣∣∣∣∣Xn −
b2M(d+1)−1−n

2
c

4

∣∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)

≤
2M(d+1)−2∑
n=M(d+1)−1

P

(∣∣∣∣∣Xn −
b2M(d+1)−1−n

2
c

4

∣∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)
.
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Applying (7) for m =
b 2M(d+1)−1−n

2
c

4
and p = 1

4
we have for M(d+1) ≤ n ≤ 2M(d+1)−2

P

(∣∣∣∣∣Xn −
b2M(d+1)−1−n

2
c

4

∣∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)
< 2·exp

(
−2M(d+ 1) logM(d+ 1)

b2M(d+1)−1−n
2

c

)

< 2e−4
M(d+1) logM(d+1)

M(d+1) = 2e−4 logM(d+1) =
2

(M(d+ 1))4
<

1

4M(d+ 1)

and by (8) we have

P
(∣∣∣∣XM(d+1)−1 −

bn+1
2
c

4

∣∣∣∣ >√M(d+ 1) logM(d+ 1)

)
<

1

4M(d+ 1)
.

It follows that

P
(

max
M(d+1)≤n≤2M(d+1)−2

|RC(n)−RC(n− 1)| > 12
√
M(d+ 1) logM(d+ 1)

)
(10)

<
M(d+ 1)

4M(d+ 1)
=

1

4
.

By (9) and (10) we get that

P
(

max
0≤n≤2M(d+1)−2

|RC(n)−RC(n− 1)| > 12
√
M(d+ 1) logM(d+ 1)

)
<

1

2
. (11)

In the next step we show that

P
(
B(C, λ,M(d+ 1)− 1) <

M

2d+2

)
<

1

2
.

It is clear that the following events E1, . . . , EM are independent:

E1 =

{
d∑
i=0

λi%C(d− i) 6= 0

}
,

E2 =

{
d∑
i=0

λi%C(d+ 1 + d− i) 6= 0

}
,

...

EM =

{
d∑
i=0

λi%C((m− 1)(d+ 1) + d− i) 6= 0

}
.

Obviously, P(Ei) = P(Ej), where 1 ≤ i, j ≤ M . Let p = P(E1). It is clear that there
exists an index u such that λu 6= 0. Thus we have

p ≥ P(%C(0) = 0, %C(1) = 0, . . . , %C(u− 1) = 0, %C(u) = 1, %C(u+ 1) = 0, . . . , %C(d) = 0)

=
1

2d+1
.
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Define the random variable Z as the number of occurrence of the events Ej. It is easy to
see that Z is of binomial distribution with parameters M and p. Applying the Chernoff
bound (7) we get that

P
(
|Z −Mp| > Mp

2

)
< 2e

−2(Mp/2)2

M < 2e−
M
2
·2−2d−2

<
1

2

if M is large enough. On the other hand, we have

1

2
> P

(
|Z −Mp| > Mp

2

)
≥ P

(
Z <

Mp

2

)
≥ P

(
Z <

M

2d+2

)
.

Hence,

P
(
B(C, λ, 2M(d+ 1)− 2) <

M

2d+2

)
<

1

2
. (12)

Let E and F be the events

E =

{
max

0≤n≤2M(d+1)−2
|RC(n)−RC(n− 1)| > 12

√
M(d+ 1) logM(d+ 1)

}
,

F =

{
B(C, λ,M(d+ 1)− 1) <

M

2d+2

}
.

It follows from (11) and (12) that

P (E ∪ F) < 1,

then
P
(
E ∩ F

)
> 0,

therefore there exists a suitable set CM if M is large enough, which completes the proof
of Lemma 1.

We are ready to prove Theorem 4. It is well known [5] that there exists a Sidon set S
with

lim sup
n→∞

S(n)√
n
≥ 1√

2
,

where S(n) is the number of elements of S up to n. Let s, s
′ ∈ S and assume that s > s

′
.

Define SM = S \ {s, s′ ∈ S : s− s′ ≤ 2M(d+ 1)} and let A = CM +SM , where CM is the
set from the lemma.∣∣∣∣∣

d∑
i=0

λiRA(n− i)

∣∣∣∣∣ =

∣∣∣∣∣
d∑
i=0

λi#{(a, a
′
) : a+ a

′
= n− i, a, a′ ∈ A}

∣∣∣∣∣
=

∣∣∣∣∣
d∑
i=0

λi#{(s, c, s
′
, c
′
) : s+ c+ s

′
+ c

′
= n− i, s, s′ ∈ SM , c, c

′ ∈ CM}

∣∣∣∣∣
=

∣∣∣∣∣∣
d∑
i=0

2M(d+1)∑
j=0

λi#{(s, c, s
′
, c
′
) : c+ c

′
= j, s+ s

′
= n− i− j, s, s′ ∈ SM , c, c

′ ∈ CM}

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
d∑
i=0

2M(d+1)∑
j=0

λiRCM
(j)RSM

(n− i− j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2M(d+1)∑
j=0

d∑
i=0

λiRCM
(j)RSM

(n− i− j)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2M(d+1)+d∑

k=0

d∑
i=0

λiRCM
(k − i)RSM

(n− k)

∣∣∣∣∣∣∣∣∣∣∣∣
2M(d+1)+d∑

k=0

RSM
(n− k)

d∑
i=0

λiRCM
(k − i)

∣∣∣∣∣∣ ≤
2M(d+1)+d∑

k=0

RSM
(n− k)

∣∣∣∣∣
d∑
i=0

λiRCM
(k − i)

∣∣∣∣∣
≤ 2(M + 1)(d+ 1)2 ·max

k

∣∣∣∣∣
d∑
i=0

λiRCM
(k − i)

∣∣∣∣∣ .
In the next step we give an upper estimation to |

∑d
i=0 λiRCM

(k − i)|. We have

|λ0RCM
(k) + . . . + λdRCM

(k − d)|
= |λ0(RCM

(k)−RCM
(k − 1)) + (λ0 + λ1)(RCM

(k − 1)−RCM
(k − 2)) + . . .

+ (λ0 + λ1 + . . . + λd−1)(RCM
(k − d+ 1)−RCM

(k − d)) + (λ0 + λ1 + . . . + λd)RCM
(k − d)|.

Since
∑d

i=0 λi = 0, the last term in the previous sum is zero. Then we have

|λ0RCM
(k) + . . . + λdRCM

(k − d)| ≤ d

(
d∑
i=0

|λi|

)
max
t
|RCM

(t)−RCM
(t− 1)| ≤

12d
d∑
i=0

|λi|
√
M(d+ 1) logM(d+ 1).

Then we have∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≤ 48d
d∑
i=0

|λi|(M(d+ 1))3/2(logM(d+ 1))1/2.

We give a lower estimation for

lim sup
n→∞

B(A, λ, n)√
n

.

If 0 ≤ v ≤ M(d + 1) − 1 and
∑d

i=0 λiχCM
(v − i) 6= 0 then

∑d
i=0 λiχA(s + v − i) 6= 0 for

every s ∈ SM . Then we have

B(A, λ, n) ≥ (SM(N)− 1)B(CM , λ, (M + 1)− 1).

Thus we have

lim sup
n→∞

B(A, λ, n)√
n

≥ M

2d+2.5
.
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It follows that

lim sup
n→∞

∣∣∣∣∣
d∑
i=0

λiRA(n− i)

∣∣∣∣∣ ≤ 48d
d∑
i=0

|λi|
(
(M(d+ 1))3 logM(d+ 1)

)1/2

≤ lim sup
n→∞

48(d+ 1)423d+7.5

d∑
i=0

|λi|

((
B(A, λ, n)√

n

)3

log
B(A, λ, n)√

n

)1/2

,

if M is large enough. The proof of Theorem 4 is completed.
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Supported by the ÚNKP-18-4 New National Excellence Program of the Ministry
of Human Capacities.

References

[1] N. Alon, J. Spencer. The Probabilistic Method, 4th Ed., Wiley, 2016.
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