On the structure of sets which have coinciding
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Abstract

For a set of nonnegative integers A denote by R4(n) the number of unordered
representations of the integer n as the sum of two different terms from A. In
this paper we partially describe the structure of the sets, which has coinciding
representation functions.
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1 Introduction

Let N denote the set of nonnegative integers. For a given set A C N, A = {ay,as,...},
(0 < a; < ag < ...) the additive representation functions R,&L(n), Rﬁ)ﬁl(n) and Rf’j)él(n)
are defined in the following way:

1
Rl(llx(n) = {(ai,...,a;)a; +-+a, =n,a;,...,a;, €A},

R;ﬂ(n) = H(ai,...,a;) a; +-Fa, =nyay <ay, << a;,,a,,...,a0, €A},
RSA(n) = [{(ai,...;a;) aiy +- -+ a;, =n,a;, <a, <---<a,,a,,...,a, €A}.

For the simplicity we write Réﬂ(n) = R4(n). If Ais finite, let |A| denote the cardinality
of A.

The investigation of the partitions of the set of nonnegative integers with identical
representation functions was a popular topic in the last few decades [1], [3], [4], [5], [7],

9], [11], [13], [14]. It is easy to see that Rélj)él(n) is odd if and only if & € A. It follows
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that for every positive integer n, Rgl)c(n) = Rél)D(n) holds if and only if C = D, where
C={c,c...} (o <eca<...)and D = {dy,dy,...} (dy < dy < ...) are two sets
of nonnegative integers. In [8] Nathanson gave a full description of the sets C' and D,
which has identical representation functions Ré%(n) = Rélj)j(n) from a certain point on.
Namely, he proved the following theorem. Let C(z) = " 2% D(2) = > ,cp 2% be the
generating functions of the sets C' and D respectively.

Theorem 1 (Nathanson, 1978). Let C' and D be different infinite sets of nonnegative
integers. Then Ré%(n) = Ré%(n) holds from a certain point on if and only if there
exist positive integers ng, M and finite sets of nonnegative integers Fgo, Fp, T with
FeUFp C[0,Mng—1], T C [0, M — 1] such that

C=FcU{IM+t:l>ngteT}

D:FDU{ZM—I—tlZno,tET},
1 — 2M|(Fo(2) — Fp(2)T(2).
We conjecture [6] that the above theorem of Nathanson can be generalized in the following
way.

Conjecture 1 (Kiss, Rozgonyi, Sandor, 2012). For h > 2 let C' and D be different
infinite sets of nonnegative integers. Then R;Ll)c(n) = R,(Il)D(n) holds from a certain point
on if and only if there exist positive integers ng, M and finite sets Fg, Fp, T with
FeUFp C0,Mny—1], T C [0, M — 1] such that

C=FoU{IM+t:1>nteT}

D:FDU{ZM+t:12n0,tGT},
(1= =" (Fo(2) = Fp(2)T(2)" .

For h = 3 Kiss, Rozgonyi and Sandor proved [6] Conjecture 1. In the general case when
h > 3 we proved that if the conditions of Conjecture 1 are hold then R,(ll)c(n) = R;Ll}j(n)
holds from a certain point on. Later Rozgonyi and Séandor in [10] proved that the above
conjecture holds, when h = p®, where a > 1 and p is a prime.

It is easy to see that for any two different sets C', D C N we have Rf)c(n) # Ré%)j(n)
for some n € N. Let ¢ denote the smallest index for which ¢; # d;, thus we may assume
that ¢; < d;. It is clear that Ré?é(cl +¢;) > RS)D(Q + ¢;), which implies that there exists
a nonnegative integer n such that Rgmc(n) # Rgl))(n) We pose a problem about this
representation function.

Problem 1. Determine all the sets of nonnegative integers C' and D such that Rg)c(n) =

Rg)(n) holds from a certain point on.

In this paper we focus on the representation function R4(n). We partially describe the
structure of the sets, which has identical representation functions. To do this we define
the Hilbert cube which plays a crucial role in our results. Let {hy, ho,...} (h1 < he < ...)
be finite or infinite set of positive integers. The set

H(hi,ho,...) = {Zeh 5 € {0,1}}
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is called Hilbert cube. The even part of a Hilbert cube is the set
Hy(hy, ho,...) = {Zah ce; € {0,1},2] Zg}

and the odd part of a Hilbert cube is
Hl(hl,hg, .. ) = {ZE—:JL, 1g; € {0, 1},2*2@}

We say a Hilbert cube H(hq, hg,...) is half non-degenerated if the representation of any
integer in Ho(hq, ho,...) and Hy(hq, he,...) is unique, that is ). e;h; # >, £;h; whenever
S.e =& mod 2, where ¢; € {0,1}.

It was studied [12] what can be told about the cardinality of the sets with identical
representation functions. For the sake of completeness we present the result and the
proof.

Theorem 2 (Selfridge - Straus, 1958). Let C' and D be different finite sets of nonnegative
integers such that for every n positive integer, Rc(n) = Rp(n) holds. Then we have
|C| = |D| = 2! for a nonnegative integer .

If 0 € C and for D = {dy,ds,...}, 0 < dy < dy < ... we have Ro(m) = Rp(m)
(sequences C' and D are different), then d; > 0 otherwise let us suppose that ¢; = d;
for i = 1,2,...,n — 1, but ¢, < d,, which implies that Rc(c; + ¢,) > Rp(c1 + ¢,), a
contradiction.

If |C|] =|D] =1and 0 € C with Ro(n) = Rp(n), then we have C' = {0} and
D = {d,}. Therefore, C = Hy(dy) and D = H,(d,).

If |C| = |D| =2and 0 € C with Re(n) = Rp(n), then C' = {0, 2} and D = {dy, d»}.
In this case 1 = R¢(04¢5) and for n # ¢ we have Ro(n) = 0. Moreover, 1 = Re(dy +d2)
and for n # dy + dy we have Rp(n) = 0. This implies that dy + ds = ¢1 + ¢3 = ¢3, that is
C= {O,dl + dg} = Ho(dhdg) and D = {dl,dg} = Hl(dhdg).

If |C|=|D| =4 and 0 € C with Ro(n) = Rp(n), then let C' = {cy1,¢a,¢3,¢4}, 1 =0
and D = {d;,ds,ds,d,}, where d; > 0. Then we have

Cilt+Ca<cp+ce3<C+Cq,C0+C3<Co+cCqg<cC3+y

and
d1+d2<d1—|—d3<d1+d4,d2+d3<d2+d4<d3+d4

which implies that ¢; + ¢o = di 4 ds therefore, co = di + dy and ¢ + ¢3 = di + d3, thus we
have C3 = dl + d3. If Co+C3 = dg —|—d3, then (dl + dg) + (dl —f-dg) = d2 +d3, that is d1 = O,
a contradiction. Hence ¢y + ¢3 = dy + dy, that is (dy + d2) + (dy + d3) = dy + dy. This
implies that dy = dy + dy + d3. Finally ¢; + ¢4 = dy + d3, that is ¢4 = dy + d3. Thus we
have C' = {0,dy + dy, dy + d3,do+d3} = Ho(dy,da,d3) and D = {dy,ds,ds,dy +do+ d3} =
Hi(dy,ds, d3).

In the next step we prove that if the sets are even and odd part of a Hilbert cube,
then the corresponding representation functions are identical.

Theorem 3. Let H(hy, hs,...) be a half non-degenerated Hilbert cube.
If C = Hy(hi,ha,...) and D = Hy(hy, ha,...), then for every positive integer n,
Rc(n) = Rp(n) holds.



It is easy to see that Theorem 3 is equivalent to Lemma 1 of Chen and Lev in [2]. First
they proved the finite case H(hq,...,h,) by induction on n and the infinite case was a
corollary of the finite case. For the sake of completeness we give a different proof by
using generating functions. Chen and Lev asked [2] whether Theorem 3 described all
different sets C' and D of nonnegative integers such that Ro(n) = Rp(n). The following
conjecture is a simple generalization of the above question formulated by Chen and Lev
[2] but we use a different terminology.

Conjecture 2. Let C and D be different infinite sets of nonnegative integers with 0 € C'.
If for every positive integer n, Rc(n) = Rp(n) holds then there exist positive inte-
gers d;,,d;,,... € D, where d;; < d;, < ... and a half non-degenerated Hilbert cube
H(d;,,d;,,...) such that

C= Ho(dil,di2, e ),

D = Hl(diladigy ce )
We showed above that Conjecture 2 is true for the finite case [ = 0,1, 2. Unfortunately

we could not settle the cases [ > 3, which seems to be very complicated. In the next step
we prove a weaker version of the above conjecture.

Theorem 4. Let D = {d;,...,dy}, (0 <dy <dy < ... <dan) be a set of nonnegative
integers, where doryq > 4dgk, for k =0,...,n —1 and dox < dy +do +d3+ds+ ... +
dyiyy + ... +do-1yq fork=2,...,n. Let C be a finite set of nonnegative integers such
that 0 € C. If for every positive integer m, Rc(m) = Rp(m) holds, then

C = Ho(d]_,dg,dg,dg,, ‘e ,d2k+1, ‘e ,dznfl_i_l),

and
_D - H1<d17d2,d3,d5, e ,d2k+1, e ,d2n71+1).

For any sets of nonnegative integers A and B we define the sumset A + B by
A+B={a+b:a€ Abe B}.

In the special case b + A denotes the set {b+a:a € A}, where b is a fixed nonnegative
integer. Let ¢N denote the dilate of the set N by the factor ¢, that is ¢N is the set of
nonnegative integers divisible by ¢. Let 74, 5(n) denote the number of solutions of the
equation a + b = n, where a € A, b € B. In [2] Chen and Lev proved the following nice
result.

Theorem 5. (Chen and Lev, 2016) Let | be a positive integer. Then there exist sets C'
and D of nonnegative integers such that CUD =N, CN D = 2% — 1+ (221 — 1)N and
for every positive integer n, Rc(n) = Rp(n) holds.

This theorem is an easy consequence of Theorem 3 by putting
H(1,2,4,8,...,2%71 2% 1 220%1 1 9(22F1 — 1) 4(2%T —1),8(22" —1),...).

The details can be found in the first part of the proof of Theorem 6. Chen and Lev [2]
posed the following question.



Conjecture 3. (Chen and Lev, 2016) Is it true that if C' and D are different sets of
nonnegative integers such that CU D =N, C'N D =r + mN with integers r >0, m > 2

and for any positive integer n, Ro(n) = Rp(n) then there exists an integer | > 1 such
that r = 2% — 1 and m = 2%+ — 17

A stronger version of this conjecture can be formulated as follows.

Conjecture 4. Is it true that if C and D are different sets of nonnegative integers such
that CUD =N, CND =r+ mN with integers r > 0, m > 2 and for every positive
integer n, Ro(n) = Rp(n) then there exists an integer | > 1 such that

C = Hy(1,2,4,8,...,2271 220 1 22%1 1 2(22+1 — 1) 4(2%*! —1),8(2% —1),...),
and

D= H(1,2,4,8,...,2271 2% 1 2241 _ 1 2(22+1 1) 4(2%*F! —1),8(22 —1),...)?
We prove that Conjecture 2 implies Conjecture 4.

Theorem 6. Assume that Conjecture 2 holds. Then there exist C' and D different infinite
sets of nonnegative integers such that C U D =N, C N D = r +mN with integers r > 0,
m > 2 and for every positive integer n, Rco(n) = Rp(n) if and only if there exists an
integer [ > 1 such that

C = Hy(1,2,4,8,...,2271 220 1 22+ 1 2(22F1 1) 4(22F —1),8(2%™ —1),...)
and

D= H(1,2,4,8,...,2%71 2% 1 22%1 1 2(22%1 — 1), 4(2% —1),8(22 —1),...).

2 Proof of Theorem 2.

Proof. Applying the generating functions of the sets C' and D, we get that

i Rc(n)z" _ 0(2)2 B C<Z2)

i RD(n)z” — D(Z)Z — D(ZQ) )

It follows that
Rc(n) = Rp(n) & C(2)* — D(2)* = O(2%) — D(2%). (1)
Let [ 4+ 1 be the largest exponent of the factor (z — 1) in C(z) — D(z) i.e.,
C(z) = D(2) = (= = 1)"'p(2), (2)
where p(z) is a polynomial and p(1) # 0. Writing (2) in (1) we get that

(C(2) + D(2))(z = 1) 'p(2) = (2* = 1) p(=?),
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thus we have (C(z2) + D(2))p(z) = (z+1)"1p(z?). Putting z = 1, we have C'(1) + D(1) =
241 which implies that |C| + |D| = 2171, On the other hand

|C] 1D
therefore |C| = |D|, which completes the proof of Theorem 2. O

3 Proof of Theorem 3.

Proof. By (1) we have to prove that C(z)? — D(z)* = C(2?) — D(2?). Tt is easy to see
from the definition of C' and D that

[Ja-2")= > (-1t =C(z) - D(2).

i 11 <...<tt

On the other hand clearly we have C(z) + D(z) = [[,(1 + 2"). Thus we have

C(2)2 = D) = (C(2) = D(2)) (C(2) + D(2)) = [T(1 = ) - T (1 + =)

=TI - =) =) - D),

The proof is completed. O

4 Proof of Theorem 4.

We prove by induction on n. In the case n = 0, then C' = {0} and D = {d;} therefore,
for every positive integer m we have Ro(m) = Rp(m) = 0. For n = 1, then C' = {0, ¢}
and D = {dy,d>}. As for every positive integer m, Ro(m) = Rp(m) holds it follows
that Rp(dy + d3) = 1 = Re(dy + dy), thus we have C' = {0,d; + do} = Ho(dy, ds) and
D = {d,,dy} = Hy(dy,ds) . Assume that the statement of Theorem 4 holds forn = N —1
and we will prove it for n = N. Let D be a set of nonnegative integers, D = {dy, ..., dyn},
where dor 1 > 4dor, for k=0,...,N—land dox < dy +da+ds+ds+... +doiyg+... +
dor-1,q for k =2,...,N. If C'is a set of nonnegative integers such that 0 € C' and for
every positive integer m, Rc(m) = Rp(m) holds then we have to prove that

C= HO(dla do, d3, ds, . . . 7d2k'+17 S 7d2N—1+1)7
and
D — Hl(dl,d27d37d5, P ,d2k+1, e ’d2N—1+1>.

Define the sets
01:{01,...,021\/71}, 0220\01,

and

Dy ={dy,... don-1}, Dy =D\ D;.



We prove that for every positive integer m, we have
Re,(m) = Rp,(m). (3)

Since dyv-—1 < }ldQN_lﬂ it follows that for any d;, d; € D; we have d; + d; < }ldzN—1+1 +
ledgN—l+1 = %dQNflﬂ. This implies that for every %d2N71+1 < m < dyn-1,7 we have
Rp(m) = 0, which yields Ro(m) = 0. As 0 € C, thus we have a representation m = 0+m,
it follows that m ¢ C for %dngl_Fl <m < dyv-1,1. We will show that

1 1
Clz[qg@wqﬂ[mcg Dlz[qg@NAH[mD.
We distinguish two cases. In the first case we assume that cov-1,; < BN 141 Then we

have

L) ¥ orm- ¥ mm- (%)

m<d2N71+1 m<d2N,1+1

Lo _ dyn— )
which is a contradiction. In the second case we assume that con-1 > %, which
implies that cov—1 > dynv-1,71. Then we have

(QN_;_1>2 S Rem)= Y RD(m>=(2N2_1)

m<d2N,1+1 m<d2N,1+1

which is absurd. Thus we have cov-1 < %dQN_lﬂ < con-141 and don-147 < Con-1,47.
We get that
0, if m Z d2N71+1

Rc(m), if m< dQN—1+1

I

RC1 (m> - {

and
O, lf m Z d2N71+1

R —
D, (M) { Rp(m), if m < dov—1,4

It follows that for every positive integer m, Rc,(m) = Rp,(m) so the proof of (3) is
completed. By the induction hypothesis we get that

C(1 = HO(dla d?a d37 d57 s 7d2k+17 SRR dQN*2+1)

and
-Dl = Hl(d17d27d37d57 R 7d2k+17 s 77d2N_2+1)’

By Theorem 4 we have dyi-1,1; < dor < %d2’€+1 for 1 < k < N —1. Then we have
don-iyq < M%ldQN_url fori=2,....,N and d; < 4LNd2N_1+1. It follows that the maximal
element of the set H(d,dy, ds, ds, dy, ... ,don-2,1) 18 dy+da+ds+ds+do+... +dyn-2,q <
4LNd2N71+1 + M;_ldszl_i_l +... + }ldgN—l_;'_l < %dQNfl_i_l, which implies that

1 1
O = [0, Ssipy [ ne, Dy = ]o, Ssin [ nD. (4)
Then we have

2 2
Chi+C; C [O, gdgN—LH [, D+ D, C [O, §d21\1—1+1 [ (5)



On the other hand for every d € D, we have

d2N71+1 S d S d2N S d2N—1+1 + d2N72+1 + e + d2i+1 + e + dQ + dl

1 1 1 1
S d2N71+1 + ZldQN—1+1 + oo —|— mdngl_i_l + “ e + 4]\7—71d2N71+1 + 4—Nd2N71+1
4
< §d2N71+1.
Thus we have 5
Dl + D2 C |:d2N—1+17 5d2N—1+1 |:, (6)
and g
Dy + Dy C |:2d2N—1+1, §d2N71+1 [ (7)
It follows that 3
Rc(m) =0 form > gdZN—l+1. (8)
We prove that cov—1,; = dynv-1,1 + dy. Assume that
CQN—1+1 < d2N—1+1 + dl' (9)

Obviously, conv-1,1 > donv-1,.1. We have conv-1,1 = con-1,1 + 0, thus 1 < Reo(cov-141) =
Rp(cov-141), which implies that con-1yy = d; + dj, @ < j, d;,d; € D. If j < 2871 then
by using the first condition in Theorem 4 we have

1
CoN-141 = d; + dj < 2dyv-1 < §d2N71+17

which contradicts the inequality cov-141 > dav-1,1. On the other hand when j > 2V =141,
we have
CoN-141 = dl -+ dj Z dl + d2N71+1,

which contradicts (9).
Assume that con-1,1 > dynv-1,1+d;. Obviously, 1 < Rp(dov-1,1+dy) = Ro(donv-141+
dy), which implies that di +donv—1,1 = ¢;+¢;, 1 < j, ¢, ¢; € C. If 7 <2V~ then we have

dy +dyv-111 =¢; + ¢; < 2conv1 < don-1,1,
which is absurd. On the other hand when j > 2V~ 4 1, we have
dy +dyn-1,1 = ¢+ ¢j > Ccon-141 > dov-141 + dj,

which is a contradiction.

It follows that for every ¢ € C with ¢ > cov-1,; we have ¢ < ngNfl_*_l. Otherwise
¢+ Conv-141 > Sdyn-14y and then Re(c+ cav-141) > 1 which contradicts (8). By (4) and
(8) we have

Cl + CQ C |:d2N—1+1, 2d2N—1+1 |:7 (10)

and
8
(Cy + C) \ {2} C [2@,1“, Sy [ (11)
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We have to prove that Cy = don-1,1 + Hi(dy,da, d3,ds, ..., don—2,1) = dyn-1,1 + Dy
and Dy = d2N—1+1 + Ho(dl, do,ds, ds, . .. ,d2N72+1) = d2N71+1 + (.
Define the sets
CQJL = {CQN—1+1, CoN—-149,... ,CQN—1+n},
and
ng = {d2N71+1, d2N71+2, . ,dzN—l+n}.

On the other hand define the sets

01+Cg7n: {pl,pg,...}, (pl < P2 < ), 027n+027n:{t1,t2,...}, (tl <ty < ...
and
D1+D27n:{ql,(h,...}, (6]1 < @ < ), D27n+D27n:{81782,...}, (81 < Sy < ... ).

Denote by H\" the first 2¥~! + n clements of the set

Ho(dy,dy, ds, ds, ... dokyq, ..., don-1,1),
and let H 1(") denote the first 2V7! + n elements of the set

Hi(dy,dy, ds,ds, ... dyiyq, ..., don—1,1).
We will prove by induction on n that

H" = C,UCy, and H™ = Dy U Dy,

for 1 <n <2N-1

For n = 1 we have already proved that Dy = {dov-1,,} and Co; = {don-1,1 + d1 }.
It follows that Ho(l) =(C1UCy; and Hfl) = D1 UDay;.

Let us suppose that Hé”) = (C1UCy, and H{") = Dy U D,,, and we are going to prove
that H\""V = €y U Cypyy and H"™ = Dy U Dy sy

In order to prove Hén+1) = C; U Cypqq and anﬂ) = D; U Dg,11 we need three
lemmas.

Let i be the smallest index u such that r¢ 4, (Pu) > D140, (Pu). If there does
not exist such ¢, then p; = +-00. Let j be the smallest index v such that 7¢, ¢, (¢) <
TDy+Ds. (@) If there does not exist such j, then ¢; = +00. Let k be the smallest index
w such that Re,, (tw) > Rp,,(tw). If there does not exist such k, then ¢, = 4o00. Let
be the smallest index = such that Re,,(s:) < Rp,,(s:). If there does not exist such ,
then s; = +o00. The following observations play a crucial role in the proof.

Lemma 1. Let us suppose that H(()n) = Cy UCy, and Hl(n) = Dy U Dy,,. Then we have
(1) min{p;, con—1 41} = min{q;, dy + dov-11 1},

(i) min{ty, con-141 + Con—14 1} = min{s;, don—1,1 + donv—14 41}



Proof. In the first step we prove (i). We will prove that p; = 400 is equivalent to ¢; = +00
and for p; = ¢; = 400 we have r¢,4¢,,(m) = rp4p,,(m). If p; = +o0, then by the
definition we have r¢,yc,,, (Pf) < 14D, (Py) for every positive integer f, thus we have

TCi1+Can (m) < TD14+Ds2 (m)

for every positive integer m. On the other hand we have

2Vt n = Z T'C1+Can (m) < ZTD1+D2,n (m) = 2Nt n,
m

m

thus for every positive integer m we have r¢, ¢, (m) = rp,+p,.,(m), which implies that
q; = +oo. If ¢; = +o0, the by the definition 7p, 1 p,, (¢5) < rei+cs,.(qg) for every positive
integer g, thus we have

TCy+Cs p (m) > 'Di+Ds,p, (m)

for every positive integer m. On the other hand we have

2Vt = Z TCi14Capn (m) > ZTD1+D2,n (m) = 2Nt n,
m

m

thus for every positive integer m we have r¢, ¢, (m) = rp,1p,,,(m), which implies that
p; = +00.

We distinguish two cases.
Case 1. p; = +00, q; = +00, that is for every positive integer m we have ¢, ¢, (m) =
TDy+Ds., (M). We have to prove that cov—14,,11 = di+dan—1,,41. Assume that cov-14,11 <
dy + don—14pyq. Since con—14 1 = 0+ con—14 41, where 0 € Cy but con—1,,41 € Co\ Capy
it follows from (5), (6), (7) and (10) that Rp(cov-14541) = TDy4+Dy,(Con-14,11) and

Re(conv-14pq1) > 1Cy10y, (Con-14011).-
Thus we have

Rp(cav-14ny41) = 7"D1+D2,n(02N*1+n+1) = T01+Cz,n(C2N*1+n+1) < Re(eonv-14n11);

which is absurd. Similarly, if conv-14,41 > di + donv—14,,11, then Rp(dy + dov-14,41) >
TDy4Dy (A1 + don-14,11) because di € Dy, don-1441 € Dy \ Dy It follows from (5),
(6), (10) and (11) that Ro(dy + dav—14p41) = 7y 40, (di + don—144,41). Thus we have

Rc(dl + d2N*1+n+1) =TC1+Con (dl + d2N*1+n+1) = TD1+Dsn (dl + d2N*1+n+1)

< Rp(dy + don—14p41),

which is a contradiction.
Case 2. p; < +oo and ¢; < +oo. We have two subcases.

Case 2a. min{p;, con—14 11} < min{q;,dy + don-1,,, 1}
If p; < eon—14p,41, then obviously p; < dy + dyv-14,,1, which implies by (5), (6), (7) and
(10) that Rp(pi) = 7D+, (pi). By using the above facts and the definition of p; we
obtain that

Ro(pi) 2 10y+04.,(Pi) > TDy4 Dy, (Pi) = Rp(pi),

which contradicts the fact that for every positive integer m, Rc(m) = Rp(m) holds.
On the other hand if p; > cov—1,,,41, then by the definition of p;, ro 40y, (Con-14041) <
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TDy4Dsn (C2N—14511) and since con—1 4,41 = 0+con—145,41, 0 € Cy and conv-14,,41 € Co\Cyy,
therefore we have
Re(eanv-14n11) > Tor40y,0 (Con-14011) (12)

and the assumption min{p;, con-1,,,1} < min{q;,dy + don-1,, 1} implies that ¢; >
Con—14p41. 1t follows from the definition of ¢; that 7p, 4 p, , (Con-14n41) < Toy40, (CoN-14011)-
We get that

IO+ (C2N-14p41) = TD14Dy . (CoV-14041)- (13)
It follows from 0 + con-14p41 < dy + donv-1,11, 0 € Cy, (5), (6), (7) and (10) that

TDy4Dyn (C28-14n11) = Rp(cav-14,,41). On the other hand we obtain from (12) and (13)
that

Rp(con-11p41) = TD14 D2 (Cov-14n41) = TC1 4o (Cov-14041) < RolCon-11041),

which contradicts the fact that for every positive integer m, Rc(m) = Rp(m) holds.
Case 2b. min{p;, con-1, 1} > min{q;, dy + donv—1,,, 41 }.
If ¢; < dy + dyn-14,41, then obviously ¢; < cov-14,, 1, which implies from (5), (6), (10)
and (11) that Ro(q;) = rey+c0,.,(¢;)- By using the above facts and the definition of ¢; we
obtain that
Ro(q;) = rov,,(45) < 7Dy40, . (¢5) < Bp(g)),

which contradicts the fact that for every positive integer m, Ro(m) = Rp(m) holds.

On the other hand if ¢; > di + dyv-11,,41, then by the definition of ¢;, 7¢ 4y, (di +
don-11p+1) > TDi4Dy, (A1 +dov-14,11) and since dy € Dy, dov-14,11 € D3\ Dy, we have

and from min{p;, con-14,,4 1} > min{q;, di+dov-1,, 11} we get that p; > di+donv-1,,,,1. It
follows from the definition of p; that r¢, +c, , (di +don-14041) < D14 p,, (dy +dov-14511)-
We obtain that

TCi1+Co,p (di + don-14p11) = I'Di+Ds. (di + don—14p11)- (15)

It follows from min{p;, con-1, 11} > min{q;,di + don-14,,1} that con-1y 1 > di +
dyn-14,41 therefore, it follows from (5), (6), (10) and (11) that

TCy+Co (dl + d2N—1+n+1> = Rc(dl + d2N71+n+1). (16)

On the other hand we obtain from (14),(15) and (16) that
Rp(dy + dyn—14n41) > D40y, (di + dov-1pp11)

=TCi4+Con (di + dav-14n11) = Re(di + dav-14011),

which contradicts the fact that for every positive integer m, Rc(m) = Rp(m) holds. The
proof of (i) in Lemma 1 is completed.

The proof of (ii) in Lemma 1 is similar to the proof of (i). For the sake of completeness
we present it.

We prove that s; = +00 is equivalent to ¢, = 400 and in this case R¢,, (m) = Rp,,,(m)
for every m.
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If t;, = +o00, then by the definition we have R, , (ty) < Rp, , (ty) for every positive integer
f, thus for every positive integer m we have

RCQ,n (m) S RDQ,n (m) °

On the other hand we have

(5) = S renm £ X oo = ().

thus we get that for every positive integer m, Re,, (m) = Rp,,(m) holds. This implies
that s; = +o00.

If 5; = +00, the by the definition Re,, (s) > Rp,,(s,) for every positive integer g, thus
for every positive integer m we have

RC2,n (m) Z RDZ,n (m) °

On the other hand we have
n n
(2> - ; RCQ,n (m) Z ; RDQ,TL (m) - (2) ?

thus we get that R¢, ,(m) = Rp,,,(m) for every m, which implies that ¢;, = +o0.

We distinguish two cases.

Case 1. 1, = +oo, 5y = +00, that is Re,,(m) = Rp,,(m) for every positive integer
m. We have to prove that don-1,,,7 = di + con-1,,11. Assume that don-1,,,1 >
di + CoN-14py1- As dy + don-141 + CoN-14py4] = CoN-141 + CoN-14p 41, where CoN-14] € Cgﬂ
and cov-14,11 € Oy \ Oy, it follows that Re(cov-111 + cov-14541) > Ry, (cov-14q +
CoNn—14p41). On the other hand we will show that it follows from don-1,1 + donv—1,,11 >
di + d2N—1+1 4+ CoN-14p+1 = CoN-147 + CoN-144 and (5), (6), (7), (11) that RD(CQN—1+1 +
Con—14n41) = Rp, , (Cov-141 + Con—11p,41). Tt is clear from (11) that con—141 4 cov—14,41 €
(Ca + Co) \ {2e3x} C [2dav-r41, §dov—ry1 |- Tt follows from (5) and (6) that cov-1.y +
Con—14ni1 & (D1 + Dy) U (Dy + Ds), which implies that Rp(con-141 + con-14p41) =
Rp,(con-141 4+ cov—14,,41). On the other hand Dy = Dy, U (Ds \ Ds,,), thus for any
positive integer m we have Rp,(m) = Rp,,(m) + 27 p,4(Ds\Ds.) (M) + Rpy\p,., (m). It
follows that if m is a positive integer with 2dov-1,7 < m < dyn-141 + dyv-1,,,,1 then we
have 7p,4(p,\Ds.,,) (M) = 0 and Rp,\p,,,(m) = 0, which implies that Rp,(m) = Rp,, (m).
Hence Rp(con-141 + cov-14441) = Rp,, (con-141 + con-14,11). Therefore,

RD<62N71+1 + C2N—1+n+1) = RD2,n (CQN71+1 -+ CQN71+n+1)

= R(jzn (02N71+1 + 02N71+n+1) < RC(CQNA_H + 02N71+n+1),
which is absurd.

Similarly, if d14con-14,,41 > don-14,41, then it follows that Rp(donv—1 1 +donv-14p,11) >
Rp,, (dyv-141 + don—14,,41) because dyv-141 € Dy and dynv-14,,11 € Dy \ Dayp. It follows
from (5), (7), (10) and (11) and dov-141 + dov-14p 1 < di + donv-141 + Conv-14pyq =
CoN-147 F CoN-14p11 that RCZn (d2N—1+1 + d2N71+n+1) = RC(dQNfl_i_l + d2N71+n+1).
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Thus we have
RC(dQNfl_i_l + d2N71+n+1) — RCQ,n (d2N71+1 + d2N—1+n+1>

— RD2,n(d2N71+1 + d2N—1+n+1> < RD(dQN—1+1 + d2N—1+n+1>,

which is a contradiction.
Case 2. t;, < +oo and s; < +00. We have two subcases.

Case 2a. min{ty,con—111 + cov—14p1} < min{s;, dov-1,1 + donv—1 1} If g <
CoN—141 F Con—14,41, then obviously ty < donv-1,1 + dynv-14,41, by using (5), (6), (7) and
(11) this implies that Rp(tx) = Rp,,, (tx). Applying the definition of ¢; we obtain that

Rc(te) > Re,, (tk) > Rp,,, (tk) = Rp(tr),

which contradicts the fact that Ro(tx) = Rp(t).

On the other hand if ¢, > cov-1,1 + conv-1,,1, then by the definition of ¢, we have
Re,, (con—141 + con—14p11) < Rp, , (Con-141 + Con—145,41), moTEOVer since cov-141 € Cyypy
and con-14,41 € Oy \ Oy, we obtain that Re(cov—14q + cov-14,11) > Ry, (Con-141 +
CoN—14pp1). 1t follows from min{tg, con—141 + con-14p41} < min{s;, don—141 + donv—1,p 1}
that cov-1.1 + cov-14,41 < 5 and we get from the definition of s; that Rp, , (cov-111 +
Con-141n41) < Rey, (cov-14q + cov-14,11). Then we have R, (cov-111 + Cov-14511) =
Rp,, (con-141 + con—14py1). It follows from con-14y + conv-14,01 = min{ty, cov-144 +
CoN—14pp1} < min{s;, don-1,1 + don-14p 1} < don-141 + donv-1,,,1 and from (5), (6), (7)
and (11) that Rp, , (cov-141 + cov—11p41) = Rp(cav-141 + con—11,,41). Hence

RD(CQN—1+1 + CQN—1+n+1> = RD2,n (62N71+1 + 02N71+n+1)

= RCz,n (CQN—1+1 + C2N—1+n+1) < RC(CQN—1+1 + CQN—1+n+1)’
which contradicts the fact that Ro(conv-141 + cov—1111) = Rp(Canv-141 + Con—14p11)-
Case 2b. min{tg, con—111 + Con—14pi1} > main{s;, don-141 + donv-14,11}
If s; <dgn-1,1 + dyn-1,,.1, then obviously s; < con-1,1 + con-1,,41. It follows from the
definition of s;, (5), (7), (10) and (11) that Re,, (s;) = Re(si)-
By using the definition of s; we obtain that

Rc(s)) = Re,, (1) < Rp,,,(s1) < Rp(sy),

which contradicts the fact that Reo(s;) = Rp(s;).
On the other hand if 5; > don-141 +don-14,,41, then by the definition of s;, R¢, , (don—1,1+
d2N—1+n+1> > RD2,n (dQN—1+1 + dQN—1+n+1) and since d2N—1+1 € Do, dQN—1+n+1 € Dy \ ngn,
we have Rp(dan-141 +dov-14,11) > Rp,, (dov-141 +don—11,,41). From min{ty, con-11 +
02N71+n+1} > min{sl, don-141 +d2N—l+n+1} we get t, > don—1,1 +dyn-1,,,1 and it follows
from the definition of ¢ that Re, ,(dov-111 + dov-14,11) < Rp,, (dov-111 + dov-14,11).
We get that Rg, , (don—111 + don-14pq1) = Rp,, (don—111 + don—14pp1)-

It follows from don-1,1 + donv—1 4,11 < Con-141 + Con—1,,1 and (5), (7), (10), (11) that
RC’z,n (dQN—1+1 + dzN—1+n+1> = RC(dQN—1+1 + d2N—1+n+1). Thus we have

RC(dQN—1+1 + d2N—1+n+1) = RCZ,n (d2N—1+1 + d2N—1+n+1)

= RDz,n(d2N—1+1 + dzN—1+n+1) < RD(d2N—1+1 + d2N_1+n+l)7

which contradicts the fact that Ro(dov-141+don-11,11) = Rp(donv-1,1+don-1,,,11). The
proof of (ii) in Lemma 1. is completed. O
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Let
H= H(d1,d2,d3,d5, ce ,d2k+1, B ,,dQN—1+1)

and
HO = HO(d17d27d37d57 s 7d2k+1a s 77d2N*1+1)
Hl - H1<d17d27d3yd57 s ad2k+1a s 77d2N*1+1)

If Ry,(m) > 0 or Ry, (m) > 0 then

N
m = 50d1 + Z 5id2i71+1,
i=1

where dg, 0; € {0,1,2}. It follows from dy > 4dy, doryq > 4dpr-144, (k=1,...,N —1)
that when
N
m/ = (Sé)dl —+ Z 5;d2171+1’
i=1
where &y, 0; € {0,1,2} and (8o, ...,0n) # (0, ---,0y) then m # m’. On the other hand
if N
m = 50d1 + Z 5¢d21—1+1,
i=1
where &y, 6; € {0,1,2} then m = k + k' with

N
k= €0d1 + Zgid2i_1+l7

i=1
where ¢, ¢; € {0,1} and
N
K o=eody+ ) eidyimig,
i=1

where ¢, €; € {0,1} if only if § = g¢ + &, and §; = ¢; +¢;, 1 <i < N.
Let Hy,, and H; ,, denote the 2V=1 4 nth elements of Hy and H; respectively. It follows
from dQ Z 4d1, d2k+1 Z 4d2k71+1, (k = 1, e N — 1) that when

N
Hyn = gody + E gidi-141,

i=1
where gg, g; € {0,1}, then

N
Hl,n = (1 - 80)d1 -+ Zgid?*l—f—l-

i=1
In the next step we prove the following lemma.

Lemma 2. Let us suppose that Hén) = (1, UCy,, and Hf") = Dy U Dy, holds for some
1<n<2N"'. Let Hypypr = cody + S0 eidyi1yy. If €0 = 0 and Hopyy = dois141 +
dyis—1.1 + ... +dyis—11 +donv-1,1, where 1 <1y <ig < ... <1y < N then we have
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(i) q; = Hops1,

(it) pi > g;j.
Ift > 1 then

(m) S = 2d2i1—1+1 + d2i2—1+1 + ... Fdyi-1yq + 2don-1 44,

(Z’U) tr > S,
ift =1 then

(v) ty = s, = 400.
Proof. We prove (i) and (ii) simultaneuosly. It is enough to show that if m < Hy 41 then
T'Ci+Copn (m) = TDi+Dzp (m) and TD1+D2,7L<H0JL+1) > 7,C1JrCz,n(I—IO,nJrl)' Itm < d2N—1+1 then
it follows from (6) and (10) that rc, ¢y, (M) = 7D, 4+D,,. (M) = 0. dov—17 <m < Hy iy
then by using (5), (7), (11) and H; 41 = Hoy41+dy it follows that Ry, (m) = ro,+cy,, (M)
and Ry, (m) = 7p,4p,,(m). It follows from Rpg,(m) = Ry, (m) that r¢,1c,,(m) =
TD1+Dsn (m)

By using (5), (7), (11) and Hy 41 < Hypy1 we get that Ry, (Hopt1) = 7Dy40s., (Hong1)-
Since Hony1 = 04+ Ho i1, where 0, Hy 41 € Ho and Hy 11 ¢ Ca,, we have Ry, (Ho i) >
T01+C27n(H0,n+1)' It follows from RHO(HO,n—I—l) = RHl (HO,n—i-l) that TD1+D2,n(HU,n+1) >
Rey1¢y,, (Hopg1). This proves (i) and (ii).

We prove (iii) and (iv) simultaneuosly. Let M = 2dyi, -1y 4+ doi-141 +. .. +doi—141 +
2dyv-144. It is enough to show that if m < M then Re,, (m) = Rp, ,(m) and R¢, (M) <
Rp,, (M).

When m < 2dyv-14; then by using (7) and (11) Re,,(m) = Rp,,(m) = 0. Let
2don-111 < m < dgin-141 + dyis-11 + ... + dyii—1,1 + 2dynv-1,4 and write m = h + h/,
with h,h" € Hy. By using (5) and (10) we get that h,h" € Hy\ Cy. Since h > dyv-14
we have h' < doir-1,1 + dois—1,1 + ... + doi—111 + don-1,17 = Hy i, thus h, h e Com,
which yields Ry, (m) = Re,, (m). On the other hand write m = h + k', with h, k' € H;.
By using (5) and (6) we get that h,h' € Hy \ D;. Since h > don-1,; we have b’ <
d2i1—1+1 + d2i2—1+1 + ... +dyi-1y Fdonv-1 = Hyppyr < Hi i1, thus h, = Dy, which
yields Ry, (m) = Rp,,,(m). It follows from R, (m) = Ry, (m) that Re, ,(m) = Rp,,, (m).

Assume that d2i171+1+d2i271+1 —+... +d2it71+1 +2d2N—1+1 <m< 2d2i171+1 +d2i271+1 +
... Fdyip—141 + 2dyn-11. We can assume that

m = dpdy + Z 612%-71+1 + Z 2d2yj71+1 + d2¢171+1 + d2i271+1 + ...+ inrl_,_l + 2dyn-1q,
=1 i=1

where 6y € {0,1,2} and 1 < 21y < 29 < ... <y < fpand 1 <y < yp < ... <
Yy < i1, Where x, # yg are integers, otherwise Rc,, (m) = Rp, ,(m) = 0. Since Hy 41 =
dyiy—1 1 +dyis—11+. .. +doi—1,1+dov-1,1 then t is odd, thus we can assume that dp+u+1
is even otherwise R¢, ,(m) = Rp,,(m) = 0.

We distinguish three cases.
Case 1. 6y = 0. Then wis odd. If m = h+h', with h < " and h, b € Hy then it follows
from (5) and (10) that h,h" € Hy \ Cy. It is clear that h" ¢ Cy,, if and only if

h = Z d2zj—1+1 + Z dej—1+1 + d2i1—1+1 + d2i2—1+1 + ...+ dyi—1yq Hdov-1,q,
Jj=1 J=1
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where {z1,...,2,} C {z1,...,2,} # 0 and w + v+ ¢ + 1 is even. To choose the set
{z1,..., 20} we have 2“~! possibilities, thus we have Re, , (m) = Rp,(m) — 2",

On the other hand if m = h + A, with h < h" and h,h" € H; then it follows from (5)
and (6) that h,h" € Hy \ Dy. It is clear that k" ¢ Ds,, if and only if

h = Z d22j—1+1 + Z dej_l+1 + d2i1—1+1 —+ d2i2—1+1 4+ ... + dzitfl_;'_l + d2N—1+1,
j=1 Jj=1

where {z1,...,2,} C {x1,..., 2.} # 0 and w+ v+t + 1 is odd. To choose the set
{z1,..., 20} we have 2“7! possibilities, thus we have R, (m) = Ry, (m) — 2. As
Ry, (m) = Ry, (m) it follows that Re, ,(m) = Rp,,,(m).

Case 2. 6y = 1. Then w is even. If m = h+ h', with h < k" and h,h" € H, then it
follows from (5) and (10) that h,h" € Hy \ Cy. It is clear that i’ ¢ Cy,, if and only if

B = gody + Z szj—1+1 + Z dej—1+1 + dyiv—141 + dyis—141 + ... F+doip-147 + don-14q,
J=1 J=1

where g9 € {0,1} and {z1,...,2,} C{21,...,2,} and g + w + v+ ¢+ 1 is even. When
u = 0 then by a suitable gy there is only one possibility for A" thus we have Re,, (m) =
Ry, (m) — 1. When u > 0 to choose the pairs (g, {21,...,2s}) we have 2 - 2u71 = 2v
possibilities, thus we have R, ,(m) = Ry,(m) — 2"

On the other hand if m = h 4+ h', with h < b and h,h’ € H; then it follows from (5)
and (6) that h,h" € Hy \ D;. It is clear that ' ¢ D,,, if and only if

h’ — Sodl + Z d2z]-—1+1 + Z d2yj71+1 + d2i1—1+1 + d2i2—1+1 + ... + int—1+1 + d2N71+17

J=1 J=1

where g9 € {0,1} and {z1,..., 20} C {®1,...,2,} and g9 + w + v+t + 1 is odd. When
u = 0 then by a suitable g, there is only one possibility for A" thus we have Rp,,(m) =
Rpg,(m) — 1. When u > 0 to choose the pairs (g, {21,...,2,}) we have 2 - 271 = 2v
possibilities, thus we have Rp,,(m) = Ry, (m) — 2. As Rg,(m) = Ry, (m) it follows
that Re,,(m) = Rp,,(m).

Case 3. 0y = 2. Then wis odd. If m = h+h', with h < h" and h,h" € Hy then it follows
from (5) and (10) that h,h’ € Hy\ C. It is clear that h' ¢ Cy,, if and only if

h’ =d; + Z d2z]-—1+1 + Z d2y]-—1+1 + d2i171+1 —+ d2i271+1 4+ ... + inFl_H + dQN—1+1,
Jj=1 J=1

where {z1,..., 20} C {x1,...,2,} # D and 1 + w+ v+t +1is even. To choose the set
{z1,..., 20} we have 2“~! possibilities, thus we have Re, , (m) = Rp,(m) —2*~".

On the other hand if m = h + A, with h < k" and h,h" € H; then it follows from (5)
and (6) that h,h" € Hy \ Dy. It is clear that k" ¢ Dy, if and only if

h’ =d; + Z d22j—1+1 + Z d2y1_1+1 + d2i171+1 —+ d2i271+1 4+ ... + int71+1 + d2N—1+1,
Jj=1 J=1
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where {21,...,24} C {z1,...,2,} # 0 and 1 + w+ v+t + 1 is odd. To choose the
set {z1,..., 2y} we have 27! possibilities, thus we have Re,,,(m) = Ry, (m) — 27" As
Ry, (m) = Ry, (m) it follows that R¢, ,(m) = Rp,,,(m).

Let M = 2dgi;—1q + dgis—1,.1 + ... + doi,—1,1 + 2dyn-1,,. Now we prove RDg,n (M) =
Ry, (M) Assume that M = 2d2i1—1+1 + d2i2—1+1 + ...+ dgi—1yq + 2d2N71+1 =h+ hl,
where h,h’ € H, with h < h'. Then it follows from (5) and (6) that h,h' € H, \ D;. It
follows that

B o= d2i171+1 +dos-11 + ...+ dyzw-141 + don-1,
where {z1,..., 24} C {ia,...,i;}. Thus we have h' < doiy 141 +doin1:1 + ... +dois14 +
don-11y = Hoypiy < Hypqr, which implies that Rp,, (M) = Ry, (M). On the other hand

M = (d2¢1—1+1 + d2N71+1) + (d2i1—1+1 + d2¢2—1+1 + ...+ dzit—1+1 + d2N71+1),

where dgi; 1,1 +dov-1,1 € Cgm and dgi; -1, +dgis—1 1 4. .. Fdoi—1 Fdon-144 §é Cg,n, and
dyiv—1 1 +don-14y < dgyii-111+dgis-1,1+ ... +dgiy-1,1 +dyn-1,1 because t > 2. This gives
Ry, (M) > Re,,, (M). It follows from Rpy,(M) = Ry, (M) that Rp, ,(M) > Re,, (M).

Assume that ¢ = 1, that is Hy,11 = dyi-1.; + dov-1,7. The previous argument
shows that for m < 2dgi -1,y + 2dyv-141 we have Rg,, (m) = Rp,,(m). Moreover, if
m > 2dgi; -1 + 2dyn-141 = 2H pq1 and R, ,(m) # 0 or Rp, ,(m) # 0 then

m = Gody + Y Sutlpiu-1y1 + 2dan-11,

u=1
where 8 € {0,1,2}, 6, € {1,2}, 1< j1 <jo<... <j,<Nand j, >4 fm=h+h,
where h,h' € Hy or h,h' € Hy, h < h' then
h/ = godl + Z d2hl_1—‘,—1 + dQNfl_l’_l,
=1

where 1 < hy < jo < ... < h, and h, = j; > i;. Hence we have n > Hy pq1. It follows
that h' ¢ Cy,, and h' ¢ D, ,, which implies that Re,, (m) = Rp,,(m) = 0. This proves
that s; = t, = +00. ]

Lemma 3. For 1 <n <2V~ let H" = Cy U Cy,, and H™ = D, U D,,,. Let Hy iy =
gody + Zfil gidyi-1,1. If eg =1 and Hypi1 = dy +doin-101 +dois—141 + ... +dai—1,1 +
don-1,1, where 1 <4y <iy < ... <4y < N then we have

(i) pi = 2dyin-144 +dyin1g + .o A dyi-14y + don-14y,
(i) ;> pi,
(1) ty = doin—141 + dois—11 + ...+ doi—14 1 + 2don-144,
(iv) s; > ty.

Proof. We prove (i) and (ii) simultaneuosly. It is enough to show that for ¢y = 1 and
HO,n—i—l =d; + d2i1—1+1 + d2i271+1 + ...+ dgitflJrl + d2N71+1 if m< 2d2i1—1+1 + d2i2—1+1 +
oo Fdyii-14q + donv—14y then 7oy, (M) = 1D 4D, (M) and rp 4 p, , (K) < 1oyt (K),
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where K = 2d2i1—1+1 + d2i2—1+1 + ... +doi-1.1 +dov-1. If m < dov-1,; then it
follows from (6) and (10) that r¢,4c,, (M) = 7p,4p,,, (M) = 0. Assume that dov-14; <
M < dyy-1q + dyig-1q + ... A+ doip1q +dov1yq. Ifm = h+h', with h < h" and
h,h' € Hy then it follows from (5) and (11) that h € C, and h' € Hy \ C;. Since
B < dyin 14y 4 dyip14q + ...+ dyiy14q + dov-14y < Hopyt, thus B € Cy,,, which yields
RHO (m) =TC1+C2pn (m)

On the other hand write m = h + h', with h < h" and h,h' € H; then it follows
from (5) and (7) that h € Dy and h' € H; \ D;. Since h' < dyi,-141 + doi—1,4 +
oo dyi1q Fdovo1y = Hy,y, thus h' € Dy, As Ry, (m) = Rp,(m), which yields
TDi+Dan (m) = T'Ci+Can (m).

Suppose that dyi, -1, +dyis—1,1 +. .. Fdai—141 +dov—111 <M < 2dgiy—1, 1 +doin—1,1+
... +dgi,-141 + don-1,4. Then we may assume that m can be written in the form

m = (S(]dl + Z d2xj71+1 + Z 2d2yj71+1 + d21171+1 + d2i2—1+1 + e + d2it71+1 —|— d2N71+1,
=1 =1

where dp € {0, 1,2} and 1 <z <o < ... <y < and 1 <y <yo < ... <y, < iy,
where x, # yg are integers, otherwise ¢, ¢, (M) = 7p,+p,., (M) = 0.

Since Hypi1 = di + dgis-141 + dois—141 + ... + dyi,—1,1 + donv—1,; then ¢ is even, thus
0o +u + 2v +t + 1 is even, which implies that dy + u is odd.

We distinguish three cases.
Case 1. 6y = 0. Then wis odd. If m = h+h', with h < h" and h,h" € Hy then it follows
from (5) and (10) that h € Cy and b’ € Hy \ Cy. It is clear that h' ¢ C,,, if and only if

h' can be written in the form

w v
h’ — Z d22j—1+1 + Z d2yj_1+l + d2i1—1+1 —+ d2i2—1+1 4+ ... + dzitfl_‘_l + d2N—1+1,
j=1 Jj=1

where {z1,...,2,} C {z1,...,2,} # 0 and w + v+ ¢ + 1 is even. To choose the set
{z1,..., 20} we have 2“~! possibilities, thus we have r¢,1¢,, (m) = Rg,(m) — 2"~

On the other hand if m = h + A, with h < k" and h,h" € H; then it follows from (5)
and (7) that h € Dy and b’ € H, \ D;. Tt is clear that k" ¢ D,,, if and only if A’ can be
written in the form

h = Z dzzjf1Jrl + Z dZyj—1+1 + d2i1—1+1 + d2i2—1+1 + ...+ d2¢t71+1 + don-1,41,
J=1 J=1

where {z1,...,24} C {z1,...,2,} # 0 and w+ v+t + 1 is odd. To choose the set
{z1,..., 2w} we have 2“7! possibilities, thus we have rp,;p,, (m) = Ry, (m) — 271, As
Ry, (m) = Ry, (m) it follows that ¢, ¢, (M) = Tp,+p,,, (M).
Case 2. 6p = 1. Then 1 +u + 2v 4+t + 1 is even, which implies that u is even.

If m=h+h', with h < h' and h,h' € Hy then h € C; and b’ € Hy \ C,. It is clear
that h’ ¢ Cyp if and only if h' can be written in the form

w v
h’ — €0d1 + Z d221_1+1 —+ Z dej—1+1 + d2i171+1 + d21‘271+1 4+ ...+ d2¢t71+1 + dzN—lJrl,
=1 =1
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where g9 € {0,1} and {z1,...,2,} C{z1,..., 2.} and g + w + v+ ¢ + 1 is even. When
u =0 then {z,...,2,} = 0 and by a suitable ¢y there is only one possibility for h' that
is rcy 40y, (M) = Rpy(m) — 1. When u > 0 even to choose the pairs (go, {z1,...,2u}) we
have 2 - 2471 = 2% possibilities, thus we have r¢, , (m) = Ry, (m) — 2"

On the other hand if m = h + A’, with h < A" and h,h € Hy then h € D; and
h' € H,\ D;. It is clear that h’ ¢ D, ,, if and only if h' can be written in the form

h’ = eody + Z dej—1+1 + Z dej—1+1 + d2i1—1+1 + d212—1+1 +... + d2¢t71+1 + d2N—1+1’
=1 =1

where g9 € {0,1} and {z1,..., 24} C {z1,...,2,} and g9 + w + v + ¢ + 1 is odd. When
u =0 then {21,...,2,} = 0 and by a suitable ¢, there is only one possibility for i that
is 7,40y, (M) = Ry, (m) —1. When u > 0 even to choose the set of pairs {z1, ..., z,} we
have 2 - 2471 = 2% possibilities, thus we have rp, 4 p,,(m) = Ry, (m) —2“. As Ry,(m) =
Ry, (m) it follows that 7¢, ¢y, (M) = rp,1+p,., (M).

Case 3. 0y = 2. Then 2 +u + 2v 4+t + 1 is even, thus u is odd. If m = h + k', with
h<h' and h,h' € Hythen h € Cy and ' € Hy\ Cy. It is clear that " ¢ Cs,, if and only
if b’ can be written in the form

h’ — d1 —+ Z d2zj~—1+1 + Z dej—l_H —+ d2i1—1+1 + d2i2—1+1 + ... + d2it—1+1 —+ d2N—1+1,

j=1 =1
where {z1,..., 2} C {x1,...,2,} # 0 and 1 +w+ v+t + 1 is even. To choose the set
{z1,..., 2w} we have 2“~! possibilities, thus we have r¢, 1, , (m) = Rg,(m) — 2“1,

On the other hand if m = h+h', with h < k' and h,h' € H, then h € Dy, h' € H\D;.
It is clear that A’ ¢ Dy, if and only if h' can be written in the form

B = di + Z d2z]-—1+1 + Z d2y]-—1Jrl + dyir-141 + dgis—11 + ... Fdgip—11 + don-14q,
J=1 J=1

where {z1,...,24} C{z1,...,2,} ZDand 1 + w+ v+ ¢+ 1is odd. To choose the set
{z1,..., 20} we have 2“7! possibilities, thus we have Rp,,p,,(m) = Ry, (m) —2"7'. As
Ry, (m) = Ry, (m) it follows that ¢, ¢, (M) = Tp, 4D, (M).

If K = 2dyis14y +dyis1q + ... +dyiv1,4 +dyv1y = h+ k', with b < A’ and
h,h' € H, then it follows from (5) and (10) that h € Cy, K € Hy \ Cy and h' can be

written in the form y
hl — d21',1—1+1 + Z d2z]'71+1 + CiQNfl_;’_l7
j=1

where {z1,..., 2.} C {i2,... i} # 0. Thus we have
B < dgiy—141 +dyig-141 + ... Fdyi—1,1 +dov-14

< d1 + d2¢171+1 + d2¢271+1 4+ ... + intfl_H + d2N—1+1 = HO,n+17

thus we have h' € Cy,, and Ry, (K) = rey 1o, (K).
In the last step we prove r¢,4+cy, (K) > rp,4+p,, (K). It is clear that K = dgi; -1, +
(d2i171+1 +d2i271+1 +.. Fdoi—1y +d2N—1+1) = d2i171+1 +H1,n+17 where d2i1—1+1, H17n+1 S

19



H,. Since Hy 11 ¢ Dy, then we have Ry, (K) > 7p,4p,, (K) It follows from Ry, (K) =
RH1(K) that TDi+Ds (K) < TC1+Ca,p (K)

We will prove (iii) and (iv) simultaneuosly. Let L = dyiy -1, +dgis—141+. .. +doi—141+
2dyv-141. We have to prove that if m < L then Rp,, (m) = Re,,(m) and Rp, (L) <
Re,, (L). If m < 2dyn-144 the by using (7) and (11) we get that Rp, ,(m) = Re,,. (m) = 0.
Assume that 2donv-14; <m < L = d2i1—1+1+d2i2—1+1+. .. +d2it—1+1 +2d2N—1+1. Ifm=h+
K, with h < k" and h,h’ € Hy then it follows from (5) and (10) that h, k" € Hy\ Cy. This
implies that i > dynv-1,7 and n < dyir-141 +dgis—1, 1+ ... +doi-1,1 +dov-111 < Hypiq.
It follows that h,h' € Cs,, which yields Ry,(m) = Rc,,(m). If m = h+ k', with
h < h' and h,h' € H; then it follows from (5) and (6) that h,h" € H, \ D;. Since
h > dyviq and b < dyiy14q +doip14q + ... +doiy14q +dov-1q = Hypyr. It follows
that h, k" € Dy, which yields Ry, (m) = Rp,, (m). As Rg,(m) = Ry, (m) it follows that
RC’z,n (m> = RDz,n (m)

If L = doiy 141 +doin14q+. .. +dois141+2don-14,, = h+h', with h < b and h,h' € Hy
then it follows from (5) and (10) that h,h" € Hy \ Cy. It follows that h > dyv-1,; and

h/ < d2i171+1 + d2zl_1+1 + “ e + dQZw—1+1 + d2N—1 < Ho’n+1,
thus we have h, h" € Cy,, which implies that Ry, (L) = Re,, (L). On the other hand
L - d2i171+1 + d2i271+1 + PPN + int*1+1 + 2d2N—1+1

= don-141 + <d2i1—1+1 + d2i2—1+1 +... + d2¢t71+1 + d2N—1+1)
- dQN—1+1 + Hl,n-{—l'

Note that Hi,41,dov-14y € Hy and Hy ;. & Dy, which gives Ry, (L) > R, (L). It
follows from Ry, (L) = Ry, (L) that Rp, (L) > Re,,(L). O

Now we are ready to prove that Hén) = (C1UCy,, and H 1(n) = DU D, holds for every
1 <n < 2% We prove by induction on n that C; U Cy,, = Hé") and Dy U D,,, = Hl(").
We have already proved C1 UCy; = H((]l) and Dy U Dy, = Hl(l).

Assume that C;UCy, = Ho(n) and D;UD,,, = Hl(n) holds for some 1 < n < 2V-1. We
will prove that C; U Cypyr = H"™ and Dy U Doyt = H™ holds, ie., con—14ni1 =
Hopn1 and donv-1y,07 = Hypqq. Let Hyppq = eody + 22:1 dyij—1, 4 + dyn-14y, where
g0 €40,1}, (1 <ip <... <ig <N).

Case 1. ¢y = 0, t = 1. We know from Lemma 1 that min{tg, con—1,1 + con—1 11} =
min{s;, don-1,1 + dyn-14,.1} and from Lemma 2 that ¢, = s, = +oo. These facts
imply that con-1,1 + conv-1,,, 41 = don-1,7 + dyn-1,, 1. On the other hand we know that
Con-141 = don-141 + dy, thus we have conv-1,,, 11 + di = donv-1,,, 41, and then dov-1,,, 7 >
CoN-14 4 1. 1t follows from Lemma 1 that min{p;, con-1,,,1} = min{q;,don-1,,41} and
from Lemma 2 that p; > ¢; = Hopt+1. Then we have cov-1,,11 = ¢ = Hppy1 and
doN—14pi1 = Con—1ypy1 +di = Hopyr +di = Hypya.

Case 2. ¢y = 0, t > 1. Applying Lemma 2 we get that p, > ¢;, thus from Lemma
1 we have min{q;,dy + don-1yp 1} = min{p;,con-1, 11} = Con-14,41. On the other
hand, it follows from Lemma 2 that s; < t; thus by Lemma 1 we have min{s;, donv-1,; +
dzN—1+n+1} = min{tk, CoN-141 + CgN—l+n+1} = CoN-141 + CoN-14p41-
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Assume that conv-1,,,1 = di + dov-1,,,41. Then we have cov-—1,1 + con-1,,,41 =

dy +don-1yy +dy Fdov-1y g = 2dy Fdov-1yq Fdov-1 1 > dov-1 g Fdov-1y, 0 >
min{s;, don-141 + dynv-1,,,1} which is a contradiction. It follows from Lemma 2 that
CoN-14py1 = @5 = H07n+1 and CoN-141FCoN-14pny] = d1+d2N—1+1+d2i1—1+1+d2i2—1+1+. ot
doir—141 +don-1,7 = Hypp1 + don-1,1 = min{sl, don-1,1+ d2N71+n+1} = min{2d2¢171+1 +
d2i2—1+1 +...+ dzit—1+1 + 2d2N—1+1, dgN—l+1 + d2N71+n+1}. Since dy + don-1,1 + d211—1+1 +
oo Fdyi-1y Fdonv-1yg < 2d2i1—1+1 + ... +dyii—141 + 2dyn-1, 4, it follows that donv-1,7 +
don-14p1 = Hipyq + donv—144, thus we have dov-11,11 = Hy 1.
Case 3. ¢y = 1. Applying Lemma 3 we get that ¢; > p;, thus from Lemma 1 we
have min{p;, con—1,,,11} = min{q;,di + dov-1, 11} = di + dov-14,41. On the other
hand, it follows from Lemma 3 that s; > t; thus by Lemma 1 we have min{ty, con—1,; +
02N71+n+1} = min{sl, d2N71+1 + d2N—1+n+1} =don-141 + d2N71+n+1.

Assume that cov-1,7 + conv-14,41 = donv-1,1 + dov-1,,,,1. Then we have dov-1,7 +
don-14p 1 = dy+don-1,1+Con-14,, 1, thus we have donv-1,, 1 = dy +con-1,,, 1. It follows
that di+dov—1,1 = 2d1+con-14, 11 = min{p;, con-14,,41}, which is a contradiction because
dy > 0. Then we have dov-1,1 + don-1,,,41 =t = d2i1—1+1 + d2i2—1+1 + ...+ int—1+1 +
2dyn-144. It follows that donv—1,,,11 = doir—1 1 +dgis-1 1 +. .. Fdoi—1 1 +dov-141 = Hypy.
Applying Lemma 1 and Lemma 3 we get that dy + dov-1,,,11 = Hopp1 = di + dyin-1,1 +
d2i2—1+1 +... +d2it71+1+d2N—1+1 = mz’n{pi, C2N—1+n+1} = mz’n{2d2i171+1 +d2i271+1 +...+
dyir—141 + don—141,Con—1 4 1} = Con-1,,41 thus we have cov—1,,, 11 = Honq1. The proof
of Theorem 4 is completed.

5 Proof of Theorem 6.

First we prove that for H = H(1,2,4,8,...,2%71 220 1 2241 1 9(221+1 1) 4(22+! —
1),8(2%t —1),...),C = Hyand D = H; we have CUD =N, CND =2 -1+
(22+1 — 1)N and Ro(m) = Rp(m). It is easy to see that for H' = H(hy, ha, ..., hy) =
H(1,2,4,8,...,2%71 22 1), C" = Hyand D' = H, we have C' UD' = [0,2%*! — 2] and
C'ND" = {22 -1} because 2% —1 = hgjyy = hi+ha+- - +hy = 14+24+4+---4+22-1 On
the other hand for H" = H (221 —1,2(22%+1 — 1), 4(2%+1 —1),8(2%* —1),...), C" = H,
and D" = H; we have C" U D" = (2%*' — 1)N and C" N D" = (), which implies that
CUD =Nand CND = 2% —1+ (221 —1)N, moreover by Theorem 3 for every positive
integer m we have Rc(m) = Rp(m).

On the other hand let us suppose that for some sets C' and D we have C U D = N
and C N D = r+ mN. By Conjecture 2 we may assume that for some Hilbert cube
H(hy, hs,...) we have C = Hy and D = H;. We have to prove the existence of integer
[ such that h; = 271 for 1 < i < 21, hgyy1 = 2% — 1 and hgy oy = 27(22%1 — 1) for
7 =0,1,.... We may suppose that h; = 1 and hy = 2. Consider the Hilbert cube
H(1,2,4,...,2% hyyo,...), where h, o # 2“1 Denote by v = hyo. We will prove
that v = 2“7! — 1. Assume that v > 2“t1. Then it is clear that 2™ ¢ H, because
14+2+... +2v=2v" 1 <2+ Thus we have v < 2¥* ie., v < 2%t — 1. Assume
that v < 24T — 2. Considering v as a one term sum it follows that v € D. On the other
hand if v = "1 A;2°, \; € {0,1} then Y | \; must be even otherwise v would have two
different representations from D. It follows that v € C' and that v+ 1 = hy + hyuo € C.
On the other hand if we have a representation v+1 = >"" 2, §; € {0,1} then >}, d;
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must be odd otherwise v would have two different representations from C. This implies
that v 4+ 1 € D thus we have v, v +1 € CN D. It follows that CN D = {v,v+1,...} is
an arithmetic progression with difference 1. This implies that the generating function of
the sets C' and D are of the form

Z?}

1—2’

C(z) =p(2) +

where p(z) is a polynomial and

where ¢(z) is a polynomial and

11—z
11—z

p(2) +q(z)=1+z2422+... 42" =

Since Ro(n) = Rp(n) then we have C?(2) — D*(z) = C(z?) — D(2?). Tt follows that

2v 2v

z
—q(2*) - 1_ .2

Z’U v

(o) + =) = (a2 + 1) =)+

z
1 — 22

which implies that

P(E) = () + T (plz) — a(2)) = () — ()
Thus we have 14 a0
(h(z) = 4(2) - T = p(=") = 4(=?).

We get that
(p(2) = q(2)) - (1 +2") = (p(z*) — q(z)) - (1 = 2).

The leading coefficient in one side is —1 and the other side is 1 which is a con-
tradiction. Thus we get that v = 29T — 1. It follows that the Hilbert cube is the form
H(1,2,4,8,...,242v M —1 ). Ashyyo = 29T —1 = 142+, .. +2% = hy+ho+- - +hy
and 2%t —1 as a one term sum contained in D, thus v+ 1 must be even i.e., u+1 = 2l. It
follows that there exists an integer [ such that h; = 20! for 1 < i < 2l and hg;; = 2% —1.
It follows that 22 —1 € CND and r = 2% — 1.

We will prove by induction on j that hgoy; = 29(2%F1 — 1) for j = 0,1,.... For
j = 0 take the Hilbert cube of the form H(1,2,4,8,...,2%71, 220 — 1 hy,...). Denote
by w = hgys. We prove that w = 2%+! — 1. Assume that w > 2%*! — 1. Since
1424 ... 422714220 1 < 221 _ 1 it follows that 221 — 1 ¢ H = C'U D, which
is impossible, therefore w < 22+! — 1. Assume that w < 22+! — 3. We will show that
w € C'ND. Obviously w is a one-term sum contained in D. Since w has a representation
from H(hy,...,hyy1), w must be an element of C' otherwise w would have two different
representations from D which is absurd. In the next step we will prove that w—+1 € CND.
Obviously w + 1 = hy + hgio as a two terms sum contained in C'. Since w + 1 has a
representation from the Hilbert cube H(hy,. .., hyy1) and w + 1 < 2%+ — 2 we have
w+ 1€ D. It follows that w, w+ 1 € C'N D, which is impossible. It follows that the
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only possible values of w are w = 22+ — 2, or w = 22+ — 1. Assume that w = 22+ —2,
Then it is clear that w € D. On the other hand 2% — 2 =1+42+... +22-1 4220 1 =
hi+ ho + - - -+ hojp1, where in the right hand side there is 21 + 1 terms, which is absurd.
+1 g )

Thus we have w = 221 — 1. In this case 2 — 1, (2% — 1) + (2?1 — 1) € C N D,
(CND)N{1,2,...,22% —1} = {22 —1}. Tt follows that m | 221 — 1. If m < 2011
then (CND)N{1,2,...,221 —1} £ {221 — 1}, a contradiction. Then we have r = 2% —1
and m = 2241 — 1,

In the induction step we assume that for some k we know hgor; = 27(2%! —
1) holds for j = 0,1,...,k and we prove hgoipsr = 28712241 —1). Let H® =

(

1)), ¢® = HP and D® = H® . Then C® N DK = {22 — 1 4 (221 — 1) : § =
0,1,...,28 — 1. If C = Hy(1,2,4,8,... 2271 920 _ 1 9241 _ 1 9(2%+1 _ 1) 4(22+1 _
1),8(22F —1),..., 2522 — 1), horyoqpst, .. ), then C N D = {e},ey,...}, where ¢; =
228 1+ (i —1)(22F —1) fori = 1,2,... and egrr1,q = 22 — 14 2841(2241 — 1) On the
other hand egri141 = 22 — 1 + Aoy 1511, which yields hoyy g1 = 28122+ — 1), which
completes the proof.
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