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Abstract 

 Among membrane separation processes [Crespo, 1994; Li, 2008; Field, 2017] osmotic driven 

techniques are considered as innovative potential industrial methods, although the principle of these 

procedures has been known for long. Their wide industrial application is, however, hindered by mainly 

technical difficulties (e.g. the lack of proper membrane materials). In this chapter two promising osmotic 

membrane processes are presented, where forward osmosis and membrane osmotic distillation were 

applied for up-concentration of a coconut milk solution and juices obtained from various colourful wild 

fruits, respectively.  
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12.1 Introduction 

 

The phenomenon called “osmosis” is the selective transport of a solvent – mostly water – through a 

semipermeable membrane from a solution containing solute of lower concentration into a solution 

containing solute of higher concentration (draw solution) [Haynie, 2001]. The layer separating the two 

solutions is the membrane. Fundamentally there are two distinct ways of water transport through a 

membrane driven by osmosis: either (i) in liquid state or (ii) in vapour phase. In case of (i) selective 

membranes should be used which are able to retain the salts, while water can be passed. In case of water 

vapour transport (ii) hydrophobic porous (micro- or ultrafiltration) membranes are applied. 

Regarding (i) case the driving force of the transport can be defined by the relation of the hydrostatic 

pressure difference and the osmotic pressure difference between the two sides of the membrane. 

 

𝐽𝑤 = 𝐴(𝜎Δ𝜋 − Δ𝑝ℎ𝑦𝑑𝑟) (12.1) 

where Jw is the water flux (kgm-2s-1), A is the membrane permeability constant (s m-1), σ is the reflective 

constant (-), Δπ is the osmotic pressure difference (Pa) and Δphydr is the hydrostatic pressure difference 

(Pa) between the two sides of the membrane. Δπ osmotic pressure is caused by the difference between the 

feed and draw (osmotic agent) solutions. While Δphydr is the difference of the pressures applied in the feed 

side (P1) and the draw regime (P2).  

Based on the equation four distinct processes can be defined [Cath, 2006]. In Table 1 these techniques 

are summarized. The methods are characterised by the relations of the pressures (P1, P2 and Δπ) which 

determine the flow direction, as well. 



In the first case, forward osmosis (FO) the hydrostatic pressure is the same in both sides, 

“conventional” osmosis takes place, water molecules leave from the solution of lower concentration into 

the draw solution. In case of pressure assisted osmosis (PAO) a mild pressure is applied on the solution of 

lower concentration (P1), enhancing the rate of osmosis. Applying pressure on the other side (the solution 

of higher concentration, i.e. draw solution – P2), as well, pressure retarded osmosis (PRO) and reverse 

osmosis (RO) processes can be set up. If the pressure used is lower than the osmotic pressure (P2-P1 < Δπ) 

water will flow into the draw solution (diluting it), and the volume of this flow can be so high that it may 

be exploited for power generation. This is the principle of osmotic power [https://www.power-

technology.com/projects/statkraft-osmotic/]. 

Firstly Pattle described the interesting phenomena: when a river mixes with the sea, a source of power 

is formed in terms of the lost osmotic pressure [Pattle, 1954]. However a practical method of exploiting it 

by using selectively permeable membranes was developed much later, only in the mid ‘70s. The 

generation of electric energy through PRO was developed by Sidney Loeb [Loeb, 1975]. The next step 

was done by a Norwegian company, Statkcraft that filed the first patent for osmotic power membranes in 

2003. Then the world’s first osmotic power or salinity gradient power generation plant (a prototype) was 

built in Tofte (Norway) by the same company, which was opened in 2009. The prototype plant has a 

designed capacity to generate 10kW of electricity. The plant generates renewable and emissions-free 

energy and thus contributes to eco-friendly power, sometimes called blue energy, as well, since no CO2 

emission occurs. 

Finally, when high pressure is applied in the secondary side (P2), this is reverse osmosis (RO), one of 

the most widely used membrane techniques [Fritzmann, 2007]. Reverse osmosis belongs to the “pressure 

driven membrane processes”, where the mechanism of the separation is a type of filtration. In reverse 

osmosis the membrane retains (almost) all the dissolved solutes, even the monovalent ions, small 

molecules, and the pure solvent pass through the membrane. Thus it is a suitable method for water 



purification. Desalination of seawater can be accomplished by RO and it is used commonly to produce 

potable water. 

To picture about the volume of desalination by RO nowadays a couple of figures are presented 

[http://idadesal.org/] here:  

 the total number of desalination plants worldwide (2015) is 18,426;  

 the global capacity of commissioned desalination plants (2015) is more than 86.8 million cubic 

meters per day;  

 the number of countries where desalination is practiced is 150;  

 more than 300 million people around the world who rely on desalinated water for some or all 

their daily needs.  

  



 

Table 12.1: Osmotic processes – water transport in liquid phase 

Osmotic process Abbr. Pressures Flow direction Source 

Forward osmosis 

(direct osmosis) FO (DO) 

Δπ 

P1 = 0 

P2 = 0 

 

direct 

Hough, 1973; 

Kravath, 1975 

Pressure assisted 

osmosis, pressure 

enhanced osmosis 

PAO 

PEO 

 

P1 > P2 

 

direct 

Blandin, 2015 

Pressure retarded 

osmosis 

PRO P2-P1 < Δπ direct 

Loeb, 1975 

Reverse osmosis RO P2-P1 > Δπ reverse 

Sourirajan, 1970; 

Fritzmann, 2007 

 

Beyond the osmotic membrane processes mentioned earlier, there are some more similar techniques, 

which exploits osmotic power. Osmotic evaporation (OE) or osmotic distillation (OD) [Hogan, 1998; 

Alves, 2002] is a membrane process where water transport occurs, as well, but in gaseous phase (ii). 

Water vapour passes through the pores of the membrane. The driving force is again the osmotic power, 

since a draw solution (osmotic agent) is applied in the secondary side of the membrane. 

The effectiveness of osmotic distillation can be enhanced when it is combined with membrane 

distillation (MD) [Belafi-Bako, 2006; Nagaraj, 2006; Koroknai, 2006; Wang, 20001]. The coupled 

process called membrane osmotic distillation (MOD) exploits the thermal effects, i.e. the two solutions 

are thermostated separately at different temperatures: the draw solution is the cold side (chilled), while 



the feed solution is the warm side (heated). Thus the driving forces are added and the water flux can 

increase. 

Both FO, (PAO) and MOD (OD) are considered as effective membrane processes for water removal, 

which can be applied for the concentration of various aqueous solutions [Cuperus, 1998; E.-Abassy, 

2013, Jiao, 2004]. Moreover the methods are operated under mild conditions, additives are not needed 

and hazardous materials are not produced, thus the techniques are regarded environmental-safe, attractive 

solutions for numerous kinds of separations. 

 

12.2 Forward osmosis for up-concentrating food compounds  

The use of FO in the form of concentrating freshly squeezed fruit juices using semipermeable 

cloths bag containing the juice immersed in a concentrated brine solution probably has a long agricultural 

history [Cussler, 1984]. One of the first scientific investigations on the application of FO for food 

concentration was conducted by Leonard Wickenden, an American chemist and organic gardening 

advocate. On January 11, 1934 Wickenden filed a patent application (which was granted in 1938) in 

which he discloses the use of a semipermeable membrane made of parchment or cellophane for up-

concentration of fruit juices described using both batch- and continuous mode embodiments of the 

process [Wickenden 1934]. He specifically described the osmotic concentration of orange juice with 13° 

Brix as feed solution using a cellophane membrane and  80° Brix syrup as draw solution. He also 

describes an up-concentration of coffee from 15% solids to 75% solids producing a concentrate with an 

excellent flavor, and a 7:1 volume ratio up-concentration of milk. The formed milk concentrate had no 

cooked flavor and its color was note altered, except from the natural color that became darker by the 

concentration. The citations not only point to the potential of FO in liquid food up-concentration, but also 

to two major technological challenges: 1): how to minimize undesired flux of solutes from the feed to the 

draw solution; and 2): how to minimize undesired reverse solute flux from the draw to the feed solution. 



Both effects can have detrimental impact on the up-concentrated product such as the loss of essential 

flavors/fragrances and/or contamination by draw solution agents (e.g. salts).  

     With the advent of cellulose acetate membranes, the concept gained momentum [Popper et al. 1966]. 

However, the problem of reverse solute flux remained a serious issue thus impairing the sensorial quality 

of the final up-concentrated product. In the 1990s, membranes with improved selectivity combined with 

lower internal concentration polarization (which will diminish the effective osmotic driving force) in the 

membrane material became available. This has spurred a new interest in FO for achieving high levels of 

concentration for a variety of liquid foods and food ingredients, and the research area has been described 

in several reviews [Petrotos & Lazarides, 2001; Rastogi, 2016; Terefe et al. 2016]. 

      An attractive liquid food to up-concentrate is coconut milk. Coconut milk and cream is found in many 

traditional Indian and Southeast Asian cuisines, in sweet and savory dishes. Today Indonesia and 

Thailand are some of the world’s largest exporters and consumers of coconut milk. Coconut milk 

beverages, containing less than 1-2% fat, are increasingly being recognized as competitors to soya and 

almond milk products in the United States and Europe [Tetra Pak, 2016]. Also, coconut milk is gaining 

interest as a dietary substitute for lactose intolerant consumers, and many brands are already diversifying 

their beverage offerings to include coconut milk. Recent studies have also pointed the beneficial effects of 

coconut milk oil medium chain triglycerides for treating diseases such as dementia (Alzheimer’s disease) 

[Henderson, 2004] 

      However, coconut milk is a challenging feed solution. It is a thixotropic fluid (similar to yoghurt), a 

type of non-Newtonian fluid with time-dependent viscosity where viscosity diminishes with time when 

the fluid is subjected to a constant speed gradient. As dewatering will lead to an increase in viscosity the 

FO membrane module must be designed to accommodate this increase.  

 



 

 

Figure 12.1: FO up-concentration of coconut milk with batch feed and continuous draw in a co-current 

flow arrangement. Feed solution: 10 kg coconut milk (24% fat content). Draw solution: 1M NaCl 

solution. Membrane: Two Aquaporin Inside™ D50 Tubular FO modules in parallel (0.7m2 total 

membrane area). Feed flow: 0.7 LPM (peristaltic pump) per D50 (lumen flow). Draw flow: 0.5LPM 

(gearing pump) per D50 (shell flow). Feed and Draw inlet pressures maintained at <1 and <0.1 bar 

respectively. Experiments were conducted at an ambient temperature of 17 °C. 

   In a recent feasibility study, up-concentration of a coconut milk solution using Aquaporin Inside™ 

Tubular FO membrane module was attempted  (Fig. 12.1). The (feed) was operated in a batch mode to 

attain a higher recovery. The draw solution was operated in a continuous mode to maintain a sufficient 

driving force. The experiment was performed in FO mode where active layer of the membrane is facing 

the feed side. Experimental details are summarized in Fig. 12.1. 

     With batch concentration operations and 1M NaCl draw solution, it was possible to up-concentrate the 

10 kg coconut milk 2x corresponding to approximately 50% recovery. Water is recovered from the 

coconut milk to the draw solution with time (Fig. 12.2a). The initially measured viscosity increased from 

700 to 5000 cP whereas the equilibrium viscosity increased from 500 to 800 cP reflecting the thixotropic 

nature of the coconut milk (Fig. 12.2b). For sanitary reasons it is crucial that the membrane modules (and 

any food contact material) can be cleaned. This was tested using a standard cleaning protocol, see Fig. 

12.2c, and the results are shown in Fig. 12.2d. As can be seen, both the water flux Js and reverse salt flux 



Js were similar before and after cleaning demonstrating the feasibility to use tubular FO modules for 

coconut milk up-concentration.    

  



 

a)                                                        b) 

 

 

 

 

 

 

 

c)                                                          d)  

 

 

 

 

 

 

 

Figure 12.2(a): FO up-concentration of coconut milk. Recovery as a function of time. (b): Viscosity 

measurements before after and FO up-concentration. (c): Cleaning protocol used. (d): Membrane integrity 

tests performed with DI water as Feed and 1 M NaCl as Draw. 



Besides coconut milk also coconut water is of interest as feed in FO up-concentration. Coconut 

water can be used directly as a nutritional drink and its sodium and potassium content makes it an ideal 

drink for rehydration. However, it is not commercially viable to transport large amounts of single strength 

coconut water (92-95% water content) in bulk to markets where coconuts are not readily available [Tetra 

Pak, 2016]. Thus, it is desirable to be able to concentrate coconut water to higher soluble solid levels of 

60-65 °Brix (or 35-40% water content), saving transportation costs.  

Current state of the art for producing coconut water concentrate, fresh coconut water is first passed 

through a pre-concentration stage of RO to increase the total solids. Then, it goes into a multiple effect 

evaporation stage to achieve 60-65 °Brix at which concentration, the coconut water is to some degree 

self- preserving [Tetra Pak 2016]. A proof-of-concept experiments was conducted where a concentration 

>60 °Brix achieved using Aquaporin Inside™ FO membranes (Fig. 12.3). Both results obtained with 

coconut milk and water demonstrated the promising application of FO in liquid food up-concentrations. 

 

 

 

 

 

 

 

Figure 12.3: FO up-concentration of coconut water. Batch test for Feed and single pass for Draw. (Draw 

solution: 2.5M MgCl2) 

 



 

12.3 Membrane osmotic distillation 

MOD – as mentioned earlier – could be applied for concentration of various aqueous solutions 

containing heat-sensitive compounds, which can be easily found in agro-food processes. One of the 

typical applications is the concentration of fresh juices from various fruits and vegetables [Kujawa, 2015], 

e.g. juices from camu-camu [Rodrigues, 2004; Souza, 2013], acerola [Pagani, 2011], sour cherry [Racz, 

2014], passion fruit [Vaillant, 2001], cranberry [Zambra, 2015], tomato [Petrotos, 1999]….etc. (Table 

12.2) 

  



 

Table 12.2: MOD for concentration of various juices of fruits and vegetables 

 

 fruit/vegetable source 

1.  camu-camu Rodrigues, 2004 

Souza, 2013 

2.  acerola Pagani, 2011 

3.  cranberry Zambra, 2015 

4.  tomato Petrotos, 1999 

5.  sour cherry Racz, 2014 

6.  passion fruit Vaillant, 2001 

7.  grape Kujawa, 2015 

8.  red currant Koroknai, 2008 

9.  raspberry Koroknai, 2008 

10.  black currant Bánvölgyi, 2009 

 

In our laboratory concentration of juices from colourful fruits by MOD were studied earlier [Koroknai, 

2008]. These fruits – belonging to berry types: black- and redcurrant, raspberry, blackberry – have 

considerable antioxidant capacity due to their polyphenolic, anthocyanin, flavonoid content and other 

special, valuable oxidant compounds [Koroknai, 2008]. The antioxidant capacity (scavenging free 

radicals) can be measured by ferric reducing ability of plasma (FRAP) [Benzie, 1996], while total phenol 

and anthocyanin content (having antioxidant capacity) can be determined by Folin-Ciocalteu reagent 

[Singleton, 1999] and an UV spectrometric method [Giusti, 2000], respectively. Our experiments have 



proven that the mild membrane technique, MOD is able to preserve almost all of these valuable 

compounds during the concentration process. 

The range of these colourful berry fruits has been recently extended with similar, but wild-grown 

species [Belafi-Bako, 2011; Boor, 2016], like elderberry (Sambucus nigra), cornelian cherry (Cornus 

mas), common whitebeam (Sorbus aria) and blackthorn (Prunus spinosa). These fruits are rich in 

colouring compounds and have antioxidant capacities, as well [Dawidowith, 2006; Serpil, 2008; Sidor, 

2014]. The fruit plants are native in Hungary and grown here for long. They have been used traditionally 

for home-made manufacturing of jam, stewed fruit, marmalade, syrup, cookies, pastries and soft drinks. 

The fresh juices were collected in the ripening season in the Transdanubian region (nearby) and – after 

removing the seeds – were pressed in a laboratory scale mechanical squeeze to get the fresh juices. Then 

the juices were stored in the deep-freezer until the measurements.  

The juices were concentrated by MOD in laboratory scale experiments and the preservation of 

antioxidant capacity was measured.  

The measurements were carried out [Belafi-Bako, 2011] in a hollow fibre membrane module 

(Microdyn), using hydrophobic polypropylene membrane, with a membrane surface area of 70 cm2. The 6 

M CaCl2 draw solution was circulated in the secondary side of the module (shell side) at 18 oC, while the 

fruit juices to be concentrated were circulated in the primary side (in the tubes) at 35 oC temperature. Both 

solutions were circulated by peristaltic pumps on a counter current mode of operation with a flow rate of 

10 l/h. To follow the water transport the weight of the fruit juice was in-line measured and the total solid 

substance (TSS) of the samples was determined. 

In Fig 12.4 the changes of volume and TSS of the elderberry juice are presented as a function of time 

as an example. As can be seen elderberry juice was managed to concentrate considerable up to 54 % TTS. 

The time courses of the concentration processes of the other juices were similar. 



 

Figure 12.4: Changes of volume and TSS of elderberry juice during the concentration process 

 

The results of the concentration measurements of all the four fruit juices are summarised in Table 12.3 

including the initial and final TSS of the juices, the process time and the average flux values calculated. 

As can be seen from the table the flux values obtained varied between 400 and 570 ml/m2h. 

 

Table 12.3: Experimental results of the concentration processes by MOD 

Fruit juices 

Cornelian 

cherry 

Whitebeam Blackthorn Elderberry 

Initial conc. TSS (%) 7.0 22.5 22.0 8.0 

Final conc. TSS (%) 57 64 53 54 

Process time (h) 140 280 200 120 



Average flux values 

(ml/m2h) 

570 400 500 550 

 

 

Preservation of valuable compounds 

The antioxidant capacity, total phenol and anthocyanin contents of the fresh and re-diluted samples 

were determined and compared. (The concentrated syrups were re-diluted by water exactly to the initial 

TSS level.) The results of the measurements are presented in Figs 12.5-7. 

 

 

Figure 12.5: Antioxidant capacity of the fresh and re-diluted juices 

 The antioxidant capacity of elderberry, whitebeam and blackthorn juices were preserved almost 

entirely. In case of cornelian cherry a bit more loss was observed during the process. 

 



 

Figure 12.6: Anthocyanin content of the fresh and re-diluted juices 

 The anthocyanin contents of whitebeam, cornelian cherry and blackthorn juices were well 

preserved, the differences between the initial and the re-diluted juices were less than 10 %. While in 

elderberry juice only 80 % of the initial anthocyanin content was preserved. 

 

 

Figure 12.7: Total polyphenol content of the fresh and re-diluted juices 



 The loss of polyphenol contents of elderberry, cornelian cherry and blackthorn juices was within 5 

%, while whitebeam juice it was somewhat higher (appr. 10 %). Thus preservation of the polyphenol 

content can be regarded quite well during the up-concentration process. 

As a summary the results in Figs 12.5-7 confirmed that both the antioxidant capacity, the 

anthocyanin and total polyphenol content of the juices were managed to preserve almost entirely. Hence it 

was shown that the MOD process is a mild membrane technique, suitable for concentration of fruit juices. 

 

Sensory evaluation 

 To assess a successful technology in the food industry entirely, it is not enough to check the 

conditions of the up-concentration process and preservation of valuable contents. Evaluation of other 

features of the juices (e.g. taste, flavour, odour, colour, consistency.) is needed as those characteristics are 

important for the consumers. These characters can be judged by organoleptic (sensory) evaluations, where 

the products – after careful preparations – are investigated and compared by numerous assessors 

regarding given aspects.  

 To compare the sensory features of the initial, fresh and the re-diluted juices, a special 

organoleptic method was used, called “paired-comparison test”, (UNI EN ISO 5495) 

[http://www.gustosalutequalita.it], where the differences of two samples were studied. The assessors 

evaluated comparatively the two juices of each fruits, studying the consistency, odour, colour and flavour 

and scored the difference from 1 up 5. The smaller the difference between the samples, the higher score 

(5) can be given. Finally all the grades were averaged and summarized for the four properties (Table 

12.4.).  

 

 



Table 12.4: Grades of the sensory evaluation 

Grades          Qualification 

 

Quality class         Total scores 

 

5 Excellent  Excellent 17.6 – 20.0 

4 Good  Good 15.2 – 17.5 

3 Satisfactory  Satisfactory 13.2 – 15.1 

2 Sufficient  Sufficient 11.2 – 13.1 

1 Insufficient  Insufficient < 11.2 

 

To perform the sensory evaluation test in the organoleptic laboratory two differently coded 

samples were presented to each panellist simultaneously and the panellist’s task was to score the 

difference. The two samples, A and B, were presented randomized serving sequences (AB and BA). 

 In the organoleptic evaluation 10 panellists participated. The consistency, odour, colour and 

flavour of the fresh and re-diluted juices from cornelian cherry, blackthorn, white beam and elderberry 

were evaluated according to the” paired-comparison test”. The assessors scored the differences between 

the sample pairs from 1 to 5. The results of the sensory evaluation for cornelian cherry – as an example – 

are summarized in Table 12.5. 

 

 

 

 

 



Table 12.5: Grades of the sensory evaluation for the juices of cornelian cherry 

 

Assessor 

Difference between the sample pair 

Consistency Odour Colour Flavour Total 

1 

 

5 4 4 5 18 

2 

 

5 5 5 5 20 

3 

 

5 4 4 5 18 

4 

 

5 3 4 5 17 

5 

 

5 4 4 5 18 

6 

 

4 5 5 4 18 

7 

 

4 4 4 4 16 

8 

 

5 5 4 5 19 

9 

 

5 4 4 4 17 

10 

 

4 5 4 4 17 

Average 

 

4.7 4.3 4.2 4.6 17.8 

 

 The average results of the organoleptic evaluations for all the fruit juices are presented in Table 

12.6. As can be seen the highest average score was achieved for the consistency, but the differences for 

other properties were really small, as well, which means that the quality of the concentrated and re-diluted 

juices were similar to the initial, fresh juices. 



 

 

 

 

 

 

Table 12.6: Average results of the organoleptic tests 

Fruit Consistency Odour Colour Flavour Total 

Cornelian 

cherry 

4.7 4.3 4.2 4.6 17.8 

Blackthorn 4.5 4.3 4.6 4.2 17.6 

Whitebeam 4.3 4.5 4.1 4.5 17.4 

Elderberry 4.8 4.2 4.5 4.2 17.7 

 

 It has turned out during the sensory evaluations that no heat damage occurred during the 

concentration process, no burnt sugar taste (caramel) could be recognised in the juices. The average total 

values for the evaluation of the juice-pairs fall into the “excellent” quality class (range 17.6-20), i.e. there 

was only a minimal difference found between the fresh and re-diluted juices. Hence these tests confirmed 

that the membrane osmotic distillation technique for the concentration of fruit juices is really a mild 

method and able to preserve the valuable compounds. 

 



12.4 Draw solutions 

 For both forward osmosis and membrane osmotic distillation usage of a draw solution is essential 

and crucial. Ideally a draw solution has the following features [Ge, 2013, Linares, 2017; Shon, 2015] 

- it is able to generate high osmotic pressure (driving force) 

- the reverse flux of the draw solute is minimal (concentration polarization) 

- easy to regenerate 

- the draw solute has a small molecular weight and low viscosity in water 

- solid state at ambient temperature (easier to handle) 

- compatibility with the membrane 

- low toxicity 

- low cost 

 

The types of draw solutes can be classified by various aspects. Table 12.7 presents a classification 

system, where “ordinary“ (inorganic and organic salts, nutrients, volatile compounds) and 

“unconventional” solutes (nanoparticles, ionic liquids, gases, polymers…) are listed 

[www.forwardosmosistech.com; Liu, 2015; Hoover, 2011; Long, 2015]. Among these “unconventional” 

solutes numerous literature available on ionic liquids [Gale, 1982; Inman, 1981; Kirchner, 2009; Marcus, 

2016] 

Recently the range of “un-conventional” draw solutes were extended [Li, 2013; Knoerzer, 2016] 

with the so called “smart draw agents” possessing “responsive properties”. These interesting smart draw 

agents (“advanced materials”) include e.g. functionalized magnetic nanoparticles, thermo-responsive 

polyelectrolytes, and stimuli-responsive polymer hydrogels.  

 



Table 12.7: Classification of draw solutes 

Types of draw solute Examples Features 

 

 

 

“Ordinary” 

inorganic salt NaCl, Na2SO4, MgCl2, K acetate, 

Al2(SO4)3, CaCl2 

high osmotic 

pressure, low 

cost 

organic salt zwitterions, glycine, urea low reverse 

diffusion 

nutrient sucrose, fructose, glucose suitable for 

food 

applications 

thermolytic salt 

(volatile) 

NH4HCO3 high osmotic 

pressure 

 

 

 

“Un-

conventional” 

ionic liquid betaine 

bis(trifluoromethylsulfonyl)imide 

([Hbet][Tf2N]); 

sodium tetraethylenepentamine 

heptaacetate (STPH) 

 

high cost,  

synthetic 

surfactant Triton-X 114  

nanoparticle hydrophilic magnetic 

nanoparticles 

easy 

regeneration 

gas SO2 (with KNO3), NH3, CO2 easy 

regeneration 

polymer polymer hydrogels poor water flux 

polyelectrolyte carboxylate polyelectrolyte high viscosity 

 



During the operation of both methods (FO and MDO) the draw solution is being continuously 

diluted, thus the driving force is gradually decreasing, the process is slower and slower, and finally the 

process should be stopped. In order to apply the draw solution again, regeneration is extremely important. 

Various methods are known for regeneration of the draw solutions [www.forwardosmosistech.com; 

Singh, 2016], they are categorized and presented in Table 12.8. 

One has to note, however, that in certain cases (direct use) it is possible to avoid regeneration: 

when the diluted draw solution can be used itself, e.g. in case of the hydration pack, where a sugar-and-

nutrient draw solution is applied to provide energy drink from any kinds of (polluted) water.  

 

Table 12.8: Classification of regeneration methods for draw solution 

 

Regeneration methods For draw solution  

 

Thermal processes 

multi-vapour 

compression 

salts 

multistage flash 

distillation 

salts 

(simple) heating gas (SO2) 

 

Membrane based 

processes 

nanofiltration multivalent salts 

pervaporation volatile compounds 

reverse osmosis monovalent salts 

membrane distillation salts 

Other processes precipitation e.g. Al2(SO4)3 with Ca(OH)2 

 



 As can be seen from the table, the most suitable regeneration process should be chosen by 

considering the features of the draw solution. For regeneration of the most widely used salts, however, 

majority of the processes available is quite energy-intensive. If we want to elaborate a sustainable and 

economical FO process for industrial use, a balance should be found between water recovery by FO and 

the cost of the draw recovery process. 

 

12.5 Conclusions 

 

Both forward osmosis and membrane osmotic distillation can be considered as effective, 

environmental-safe, modern concentration processes, which are operation under mild conditions, thus the 

valuable heat-sensitive compounds can be preserved during the procedures. A case study was  reported in 

this chapter. Forward osmosis was applied for up-concentration of coconut milk, while membrane 

osmotic distillation was used for production of syrups from juices made of various colourful wild-grown 

fruits (cornelian cherry, blackthorn, white beam and elderberry). The advantageous features of both 

osmotic driven membrane processes were proven experimentally. 
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