
Runway Relative Positioning of Aircraft
with IMU-Camera Data Fusion ?

Tamas Grof ∗ Peter Bauer ∗ Antal Hiba ∗∗ Attila Gati ∗∗

Akos Zarandy ∗∗ Balint Vanek ∗

∗ Systems and Control Laboratory, Institute for Computer Science and
Control, Hungarian Academy of Sciences, Budapest, Hungary (e-mail:

bauer.peter@sztaki.mta.hu).
∗∗ Computational Optical Sensing and Processing Laboratory, Institute
for Computer Science and Control, Hungarian Academy of Sciences,

Budapest, Hungary (e-mail: hiba.antal@sztaki.mta.hu)

Abstract: In this article the challenge of providing precise runway relative position and
orientation reference to a landing aircraft based-on monocular camera and inertial sensor
data is targeted in frame of the VISION EU H2020 research project. The sensors provide
image positions of the corners of the runway and the so-called vanishing point and measured
angular rate and acceleration of the aircraft. Measured data is fused with an Extended Kalman
Filter considering measurement noise and possible biases. The developed method was tested
with computer simulated data considering Matlab/Simulink simulation of the aircraft and the
processing of artificial images from Flightgear. This way the image generated noise and the
uncertainties in image processing are considered realistically. Inertial sensor noises and biases
are generated in the Matlab simulation. A large set of simulation cases was tested guiding the
landing aircraft based-on ILS. The results are promising so completing ILS or SBAS information
with the estimates can be a next step of development.
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1. INTRODUCTION

In recent years several projects aimed to provide analytical
redundancy and additional information sources to onboard
aircraft systems. As camera sensors become more and more
popular not only on unmanned aerial vehicles (UAVs) but
also on passenger airplanes (Gibert et al. (2018)) they can
be considered as an additional source of information. A
research project targeting to explore the possibilities to use
camera systems as additional information sources during
aircraft landing is a Europe-Japan collaborative project
called VISION (Validation of Integrated Safety-enhanced
Intelligent flight cONtrol) (see VISION (2016)). VISION
focuses on critical flight scenarios especially on near-earth
maneuvers and aims to improve the overall precision level
of the navigational systems currently used by aircraft. To
meet these expectations methods with combined GPS-
ILS-Camera data are being developed and tested with the
goal to preserve the acceptable level of safety even if one
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of the three sensory systems has degraded performance
see Watanabe et al. (2019). In this article an additional
method is presented which can augment the GPS-ILS-
Camera fusion by integrating inertial measurement unit
(IMU) and camera data. Vision integrated navigation is an
extensively researched topic so only few relevant references
are cited. Strydom et al. (2014) applies stereo vision and
optic flow to position a quadcopter along a trajectory.
The introduced method requires several hundred (400 in
the example) points to be tracked, considers estimated
orientation from an IMU and is limited to 0-15m altitude
range because of the stereo vision. The method introduced
in Conte and Doherty (2009) considers monocular vision
with geo-referenced aerial images database. Visual odom-
etry with Kalman filter and acceleration bias state is used
and at least 4 identified points in the image are required.
Ground relative position, velocity and orientation are esti-
mated without gyroscope bias and there can be an observ-
ability issue of the heading in hovering mode. Real flight
test results are presented applying three onboard comput-
ers on the Yamaha Rmax helicopter. Weiss et al. (2013)
introduces a method which uses IMU-Camera fusion in
GPS denied environment to estimate aircraft position,
velocity and orientation in a loosely coupled system. It
develops the image processing part to provide 6D position
information and couples it with an Error State Kalman Fil-
ter (ESKF) which considers image scale and possible drifts
of the vision system. It also estimates acceleration and
angular rate sensor biases. Nonlinear observability analysis
is performed and real flight test results underline the ap-



plicability of the method. Gibert et al. (2018) considers the
fusion of monocular camera with IMU to determine run-
way relative position assuming that IMU provides ground
relative velocity and orientation with sufficient precision
and the runway sizes are unknown. Finally, Watanabe
et al. (2019) considers position and orientation estimation
relative to a runway with known sizes during landing
(in frame of the VISION project) and applies an ESKF
for GNSS-Camera loose/tight data fusion considering the
delay in image processing. The estimated parameters are
relative position, velocity, orientation and sensor biases.
The results of extensive simulation are presented together
with the steps toward real flight validation. In Martinelli
(2011) a closed-form solution was proposed for orientation
and speed determination by fusing monocular vision and
inertial measurements. In the article an algorithm is pre-
sented where the position of the features and the vehicle
speed in the local frame and also the absolute roll and pitch
angles can be calculated. In order to calculate these values
the camera needs to observe a feature four times during
a very short time interval. The strengh of this method is
that it is capable to calculate the said states of the aircraft
without any initialization and perform the estimation in
a very short time, but the observability analysis which
was done in the paper showed that the aicraft’s absolute
yaw angle can’t be estimated using this particular method.
Huang et al. (2017) focuses on estimating the absolute
position, velocity and orientation values for a UAV. That
article proposes an absolute navigation system based on
landmarks which positions are known in advance. With
the help of these landmarks the paper considers a naviga-
tion filter design by fusing a monocular camera and IMU
without considering the possible measurement biases of the
latter. They restrict the number of landmarks to three and
execute observability analysis. After this an Extended and
an Unscented Kalman Filter (UKF) design are proposed
to address the problem. Between these two filter designs a
comparison is presented in regards of precision levels which
showed that the UKF is superior.

The method that is presented in this paper focuses on
calculating an aircraft’s runway relative position, velocity
and orientation applying the fusion of IMU measurements
and monocular images. Possibly stereo images can be
more effective but resonances can cause more problems
(synchronization of the images) and stereo vision has
range limitation also (Strydom et al. (2014)). Our method
considers only 3 reference points related to the runway:
the corners and the vanishing point in the direction of
the runway. This is much less than the several tens or
hundreds points in Strydom et al. (2014) and Weiss et al.
(2013) and does not require geo-referenced images as
Conte and Doherty (2009). The only required information
to be known is the width of the runway as in Watanabe
et al. (2019) there is no need for absolute position of
any point. Though the method published in Gibert et al.
(2018) does not require any information about the runway
they assume that the IMU provides precise velocity and
orientation information which is not true for a UAV with
low grade IMU. Compared to Martinelli (2011) our method
targets to estimate also the yaw angle (by considering the
vanishig point). Compared to Huang et al. (2017) we also
target to estimate the angular rate and acceleration biases
and consider EKF because we assume that the filter can

be initialized with close to the real data from GPS and/or
ILS.

The structure of the article is as follows. Section 2 sum-
marizes the system equations and examines the observ-
ability of the system, Section 3 introduces the simulation
setup while Section 4 summarizes the performance of the
algorithm based-on simulation data. Finally Section 5 con-
cludes the paper.

2. SYSTEM EQUATIONS

Firstly, we have to define the coordinate systems. These
are the fixed runway inertial frame (XE , Y E , ZE) which
centerpoint (OE) was defined as the center of the runway’s
threshold line, the body frame (XB , Y B , ZB) which is
rotated and translated compared to the inertial frame, and
lastly the camera frame (XC , Y C , ZC) which is assumed
to have a shared centerpoint with the body frame but its
axes are swapped according to Fig. 1.
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Fig. 1. Coordinate systems

In this paper the mathematical model is formulated by
the aircraft kinematic equations including the following
variables:

x =
[
vTB pT qT

]T
(1)

u =
[
aTB ωT

B

]T
(2)

b =
[
bTa bTω

]T
(3)

η =
[
ηTa ηTω ηTba η

T
bω

]T
(4)

ν =
[
νTzL νTzR νTzvp

]T
(5)

y =
[
zTL zTR zTvp

]T
(6)

Where x is the state vector with vB runway relative
velocity in the body system p runway relative position and
q the quaternion representation of orientation. u is the
input including the measurements gathered by the IMU
sensor with aB being the measured acceleration and ωB

the angular rate vector in body frame, while b contains
the bias parameters influencing the accelerometers and
gyroscopes. The η vector consists of the process noise
variables that are affecting the IMU measurements and the
IMU bias values. This case ηa and ηω refer to the noise
that affect the inertial measurements, while ηba and ηbω
influence the bias values (modeled as first order Markov
processes). The measurement noise parameters for the
pixel coordinates of the reference points are in the ν vector,
where νzL , νzR , νzvp are the measurement noise values
that distort the measured pixel coordinates of the left,
right corner and the vanishing point respectively. Finally,
y includes the camera measurement data, where zL, zR, are
the image plane coordinates of the left and right corners



of the runway and zvp is the projection of the vanishing
point (see (14) to (16)).

The kinematic equations that describe the aircraft motion
can be written as follows

v̇B = VBωB − VB(bω + ηω) + aB − ba + eGBg − ηa (7)

ṗ = TEBvB (8)

q̇ = −Q(q)ωB +Q(q)(bω + ηω) (9)

ḃ = [I2 0] η (10)

Where VB is the matrix representation of the vB× cross
product operator, TEB is the body to runway transforma-
tion matrix and Q(q) is the matrix with quaternion terms
in the quaternion dynamics similarly as in Weiss et al.
(2013). eGBg is the gravitational acceleration in body frame
and I2 is the two dimensional unit matrix and 0 is a zero
matrix with appropriate dimension.

The output equations were formulated by using a per-
spective camera projection model. The first two reference
points are the corners of the runway while the third refer-
ence point is the so called vanishing point aligned with the
runway’s heading direction (it coincides with the runway
system x axis). The camera frame coordinates of these
points can be obtained as:

rL = TCBTBE(fL − p) (11)

rR = TCBTBE(fR − p) (12)

rvp = TCBTBE

[
1
0
0

]
(13)

Where TCB is the rotation matrix from body to camera
frame. fL and fR are the left and right coordinates of

threshold’s corners in the runway’s frame while [1 0 0]
T

is
the direction of the vanishing point in the runway frame.

Finally, the relation between the image plane and the cam-
era frame coordinates can be defined as follows considering
subscripts x, y, z as the coordinates of the vectors and the
measurement noises also:

zL =
f

rL,z

[
rL,x

rL,y

]
+ νzL (14)

zR =
f

rR,z

[
rR,x

rR,y

]
+ νzR (15)

zvp =
f

rvp,z

[
rvp,x
rvp,y

]
+ νzvp

(16)

2.1 Observability

Considering the whole system of equations (7) to (10) its a
nonlinear system (17) in input affine form so observability

should be checked accordingly based-on Vidyasagar (1993)
for example.

ẋ = f(x, η) +

m∑
i=1

gi(x)ui

y = h(x, ν)

(17)

Local observability of such a system can be checked by
calculating the observability co-distribution (for details
see Vidyasagar (1993)). This calculation can be done by
applying the Matlab Symbolic Toolbox. Checking the rank
of the symbolic result usually gives full rank as symbolic
variables are considered by the toolbox as nonzero. On
the contrary there can be several zero parameters in
the co-distribution in a special case that’s why special
configurations with zero parameters should be carefully
checked.

For our system the acceleration (a), angular rate (ω) and
their biases (ba, bω) can be zero in special cases and the
orientation (q) can be parallel with the runway (considered
as ’zero quaternion’). The runway relative position and
velocity can not be zero if we are on approach. The non-
zero orientation is considered to be aligned with a given
nonzero glide slope γ. The rank of the co-distribution
was tested for several combinations of zero and nonzero
parameters and it resulted to be full rank in all cases. So
the system should be locally observable in every possible
case. The examined combinations of special cases are
summarized in Fig. 2. The horizontal axis shows the
possibly zero parameters, the vertical axis shows the
examined 17 cases (one case / row) where ×-s show the
zero value of a parameter in the given case. Though the
examined cases do not cover all the possibilities we think
that it covers enough cases to detect any uncertainty in
observability.

Fig. 2. Examined special combinations in observability
check

3. MATLAB AND FLIGHTGEAR SIMULATION

The implemented EKF algorithm was tuned and tested
in a Matlab/Simulink environment. This consists of the
Matlab simulation of K-50 aircraft synchronized with the
Flightgear based generation and processing of runway im-
age giving finally zL, zR, zvp. The camera modeled in



FlightGear has a resolution of 1280 × 960 pixels with
30◦ horizontal field of view. The real data, which will
be compared to the filter’s results to get an estimate
of the filter’s precision includes aircraft runway relative
position, velocity and orientation and was generated inside
the K-50 aircraft simulation. The considered acceleration
and angular rate measurments are also generated by the
simulation including biases and noises also. The simulation
uses an ILS (Instrumental Landing System) model to guide
the aircraft towards the runway. It is important to note
that the IMU and the image processing work with different
measurement frequency, so when implementing the EKF
algorithm the correction step is only applied when the
camera has observed the required pixel coordinates other-
wise only the prediction steps are propagated. During the
simulation the IMU unit’s frequency was 100Hz while the
camera’s frequency was set to 10Hz as in the real hardware
system. The delays of image processing (see Watanabe
et al. (2019)) are neglected here as the simulation can run
slower than real time.

After the implementation and tuning (through the covari-
ance matrices by trial and error) of the EKF several test
scenarios were defined in order to check if the algorithm
works in different cases. The considered initial positions
are summarized in Table 1.

Table 1. Simulated initial positions

Case Description

1 Aircraft starts on the glide slope

2 Vertical or horizontal offset from the glide slope

3 Both vertical and horizontal offset

Furthermore, for every initial position the following sensor
configurations were considered:

Table 2. Simulated sensor setups

Setup Description

1 Simulation without any bias or noise

2
Simulation with process and measurement noise, but

no inertial sensor bias

3
Simulation with either acceleration or angular rate

bias, but without noise

4
Simulation with all of the inertial sensor biases and

process and measurement noises

Fig. 3. FlightGear with image processing from Hiba et al.
(2018)

Table 3. Minimum, Maximum and Mean values
of the simulations 1/1 and 3/4

Variable Minimum Mean Maximum

Vx
m
s

−1.15/
− 3.58

−0.07/
− 0.59

1.01/1.01

Vy
m
s

−0.49/
− 0.89

−0.01/0.12 1.01/1.88

Vz
m
s

−0.33/
− 0.97

0.01/− 0.04 1.00/1.38

Along[m] 0.87/1.11 2.79/3.97 7.27/6.44

Cross[m] 1.19/1.25 1.70/1.89 5.11/5.10

Alt[m]
−2.29/
− 2.05

−1.03/
− 0.87

5.05/5.13

Roll[deg]
−1.08/
− 3.55

−0.14/
− 0.10

0.64/1.37

Pitch[deg]
−0.25/
− 1.56

0.13/0.13 1.10/0.74

Y aw[deg]
−0.25/
− 0.52

−0.08/
− 0.09

0.46/0.60

4. RESULTS

All possible scenarios described in Section 3 Tables 1 and 2
were run in Matlab. All of the simulations were initialized
with estimation errors which were set as 5m for position,
1m

s for velocity and 1◦ for Euler angles (see the figures). In
this chapter two scenarios – the best and the worst – are
presented in detail as the estimation results of the other
scenarios are very similar. The given figures (Fig. 4 to 9)
show the estimation errors with dashed lines, while the
approximated steady state errors as continuous lines.

In the first case the aircraft starts the landing from a posi-
tion located on the glide slope and there are no additional
noises or sensor biases added to the system (simulated case
1/1). This is considered as a best case scenario (every-
thing known perfectly) and the errors relative to the real
(simulated in Matlab) values remain small as expected.
Figures 4 and 6 show that the difference between the
real values and the aircraft’s estimated velocity and ori-
entation converges around zero, while Fig. 5 presents the
runway relative position errors of the vehicle converging to
nonzero values. The K-50 Simulink simulation uses runway
relative values in meters, while the Flightgear is fed by
the Latitude-Longitude-Altitude (LLA) coordinates. The
conversion between relative terms to global values causes
that the simulated camera measurements aren’t perfect,
which can results in errors in the position estimation.

The second case (simulated case 3/4) includes the results
for the worst scenario with initial horizontal and vertical
offsets and all sensor biases and noises. The results of
this case (Fig. 7 to 9) show larger deviations from the
real values before the convergence occurs but these are
also acceptable. The noise causes the estimation errors to
continuously alternate around the steady state values with
an acceptable amplitude.

The rate of convergence is a bit smaller in the worst
case then in the best. It is greatly affected by the filter’s
covariance matrices, which were set the same for all the
simulations. Possibly by further tuning the covariances
better convergence can be obtained. The introduction of
the sensor biases increased the transient errors but then
the steady state error levels are similar. After running all
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Fig. 4. Estimated velocity deviation from real data in
simulated case 1/1
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Fig. 5. Estimated position deviation from real data in
simulated case 1/1
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Fig. 6. Estimated orientation deviation from real data in
simulated case 1/1
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Fig. 7. Estimated velocity deviation from real data in
simulated case 3/4
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Fig. 8. Estimated postition deviation from real data in
simulated case 3/4
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Fig. 9. Estimated orientation deviation from real data in
simulated case 3/4
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Fig. 10. Estimated accelometer bias in simulated case 3/4

the simulation cases (from 1/1 to 3/4) it can be concluded
that bias parameters have a bigger relevance in the early
stages of the estimation as they cause greater transient
errors while the noises cause some random differences later
after the convergence. The results show that the velocity
and orientation of the aircraft can be estimated with close
to zero errors after 10-15s convergence. The steady state
error of the along and cross positions can be as large as
3-5m and 1m respectively but these are acceptable even in
precision landing. However, the −2m altitude error could
pose problems during the landing as it estimates UAV
position 2m higher than the rel value. If this error comes
from the position conversion error between simulation and
Flightgear than it is acceptable if not then it should be
considered in the overall system.

Furthermore, not only the position, velocity and ori-
entation values can be estimated using the proposed
method but also the bias values that are affecting the
accelerometers and gyroscopes as it can be seen in
Fig. 10. During the simulations the sensor bias values

were set as [−0.5 0.4 0.8]
T

[ms2 ] for the accelometer and

[−0.3 −0.2 0.1]
T

[ rads ] for the gyroscope and estimated
well by the EKF in all cases.

5. CONCLUSION

In this paper an estimation method is presented for fusing
inertial and camera sensors to help aircraft navigation
during the landing phase. It applies an Extended Kalman
Filter. The proposed algorithm is capable to estimate
aircraft position, velocity and orientation relative to the
runway and the biases of the acceleration and angular rate
sensors requiring only the knowledge of the runway width.
After showing that the formulated mathematical model
is locally state observable, the implemented method was
tested for different landing scenarios in Matlab/Simulink
and Flightgear to ensure the filter operates under differ-
ent circumstances. Flightgear implements artificial runway
image generation and processing to consider realistic un-
certainties of this process. The filter showed promising
results in regards of estimating the desired states and
sensor biases with acceptable precision levels and also

with reasonable estimation convergence times. The only
questionable result is the -2m offset in the estimated
altitude which could result from the uncertainty of con-
version between Matlab simulation (relative position in
meters) and Flightgear (LLA coordinates). This should be
checked before further applying the method. Future work
will include reformulation as Error State Kalman Filter
and consideration of image processing delays similar to
Watanabe et al. (2019), application considering real flight
test data and finally the fusion with ILS and/or SBAS
systems at least in simulation.
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