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Abstract

The vertex set of the Kneser graph K(n,k) is V = ([Z]) and two vertices are adjacent
if the corresponding sets are disjoint. For any graph F', the largest size of a vertex set
U C V such that K (n, k)[U] is F-free, was recently determined by Alishahi and Taherkhani,
whenever n is large enough compared to k£ and F'. In this paper, we determine the second
largest size of a vertex set W C V such that K(n,k)[W] is F-free, in the case when F is
an even cycle or a complete multi-partite graph. In the latter case, we actually give a more
general theorem depending on the chromatic number of F'.

Mathematics Subject Classification: 05C35, 05D05
Keywords: vertex Turan problems, set systems, intersection theorems
1 Introduction

Turdn-type problems are fundamental in extremal (hyper)graph theory. For a pair H and F' of
graphs, they ask for the maximum number of edges that a subgraph G of the host graph H can
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have without containing the forbidden graph F. A variant of this problem is the so-called vertex
Turan problem where given a host graph H and a forbidden graph F', one is interested in the
maximum size of a vertex set U C V(H) such that the induced subgraph H[U] is F-free.

This problem has been studied in the context of several host graphs. In this paper we
follow the recent work of Alishahi and Taherkhani [I], who determined the exact answer to the
vertex Turdn problem when H is the Kneser graph K(n,k), which is defined on the vertex set
([Z}) = {K@Q n] = {1,2,...,n} : |K| = k} where two vertices K, K" are adjacent if and only if
KNnK =1.

Theorem 1.1 (Alishahi, Taherkhani [1]). For any graph F, let x denote its chromatic number
and let n = n(F) denote the minimum possible size of a color class of G over all possible proper
x-colorings of F'. Then for any k there exists an integer ng = no(k, F') such that if n > ng and
for a family G C ([Z}) the induced subgraph K (n, k)[G) is F-free, then |G| < () — ("X +n—1.
Moreover, if equality holds, then there exists a (x — 1)-set L such that [{G € G: GNL =0} =
n— 1.

Observe that the vertex Turdn problem in the Kneser graph K(n, k) generalizes several in-
tersection problems in ([Z}):

o If F' = K5, the graph consisting a single edge, then the vertex Turédn problem asks for
the maximum size of an independent set in K(n, k) or equivalently the size of a largest
intersecting family F C ([:) (ie. FNE"#( forall F, F’' € F). The celebrated theorem of
Erdés, Ko, and Rado states that this is (Zj) if 2k < n holds. Furthermore, for intersecting

families F C ([Z]) of size (Zj) we have NperF # () provided n > 2k + 1.

e If F' = K, for some s > 3, then the vertex Turdn problem is equivalent to Erdés’s famous
matching conjecture: K(n, k)[F] is K,-free if and only if F does not contain a matching of
size s (s pairwise disjoint sets). Erdés conjectured that the maximum size of such a family

s mae{ (). () — (7).

e Gerbner, Lemons, Palmer, Patkds, and Szécsi [8] considered [-almost intersecting families
F C ([Z}) such that for any F' € F there are at most [ sets in F that are disjoint from F.
This is equivalent to K (n, k)[F| being K, -free.

e Katona and Nagy [10] considered (s,t)-union intersecting families F C ([Z}) such that for
any Iy, Fy, ..., Fy, F{, Fy, ..., F{ € F we have (Uj_, F;) N (Ui, F}) # 0. This is equivalent
to K (n, k)[F] being K, ;-free.

Theorem [Tl leads into several directions. One can try to determine the smallest value of the
threshold no(k, G). Alishahi and Taherkhani [1] improved the upper bound on ng for l-almost
intersecting and (s, t)-union intersecting families. Erdés’s matching conjecture is known to hold



if n > (2s+ 1)k — s. This is due to Frankl [6] and he also showed [5] that the conjecture is true
if k= 3.

Another direction is to determine the “second largest” family with K (n, k)[F] being G-free.
In the case of F' = K, this means that we are looking for the largest intersecting family F C ([Z})
with NperF = (. This is the following famous result of Hilton and Milner.

Theorem 1.2 (Hilton, Milner [9]). If F C ([Z]) is an intersecting family with n > 2k + 1 and

NperF =10, then |F| < (Zj) - (ngﬁl) +1

In the case of F' = K ; extremal families are not intersecting, so to describe the condition of
being “second largest” precisely, we introduce the following parameter.

Definition 1.3. For a family F and integer ¢ > 2 let ¢,(F) denote the minimum number m such
that one can remove m sets from F with the resulting family not containing ¢ pairwise disjoint
sets. We will write ¢(F) instead of ¢5(F). Note that this is the minimum number of sets one
needs to remove from F in order to obtain an intersecting family.

Observe that if s < ¢, then for any family F with ¢(F) < s — 1 the induced subgraph
K(n,k)[F] is K -free. In [I], the following asymptotic stability result was proved.

Theorem 1.4 (Alishahi, Taherkhani [I]). For any integers s <t and k, and positive real number
B, there ezists an ng = no(k,s,t,3) such that the following holds for n > ngy. If for F C ([Z})
with ((F) > s, the induced subgraph K (n, k)[F) is K, ,-free, then |F| < (s+ 8)((;71) — ("*{")
holds.

Note that the above bound is asymptotically optimal as shown by any family F,; = {F €
"y :1e FFFNS # 0y U{H\, Hy,...,H}U{F, F} ...,F_}, where S = [2,sk + 1], H; =
(i —1)k+2,ik+ 1] forall i =1,2,...,s and F|, F}, ..., F}_ | are distinct sets containing 1 and
disjoint with S.

We improve Theorem [[.4] to obtain the following precise stability result for families F for

which K (n, k)[F]| is K -free.

Theorem 1.5. For any 2 < s <t and k there exists ng = no(s,t,k) such that the following
holds for n > ng. If F C ([Z]) is a family with ((F) > s and K(n, k)[F] is Ks-free, then we
have |F| < (Zj) — (";8_]“1_1) + s+t —1. Moreover, equality holds if and only if F is isomorphic
to some Fg.

Using Theorem [I.5] we obtain a general stability result for the case when F' is a complete
multi-partite graph. We consider the family F, ,, . .., that consists of s, pairwise disjoint
k-subsets Fi, Fh, ..., Fy ., of [n] that do not meet [r] and those k-subsets of [n] that either (i)
intersect [r — 1] or (i) contain r and meet U;}'F; and (iii) s, — 1 other k-sets containing 7.
Clearly, if s; > sy > -+ > s, > $,41 holds, then K(n, k)[F, is K, s,,...s,,,-free and its

size is () = (") + G5 - (TRAT) A s s - L

1,825+ 5r+1]
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Theorem 1.6. For any k > 2 and integers sy > Sy > -+ > S, > Spp1 > 1 there exists
no = no(k,s1,...,8-41) such that if n > ng and F C ([Z}) is a family with €,.1(F) > s and
K(n,k)[F|is K, sy....5,,1-free, then we have | F| < (Z)—("_;H)Jr(Z:I)—("_Sl:illk_r)+sr+sr+1—1.

Moreover, equality holds if and only if F is isomorphic to some Fg, s, 5011

Note that Frankl and Kupavskii [7] proved the special case s; = s = -+ = s,41 = 1 with the
asymptotically best possible threshold ny = (2k + o,(1))(r + 1)k.

Actually, Theorem is a special case of a more general result that shows that it is enough
to solve the stability problem for bipartite graphs. For any graph F' with x(F') > 3 let us define
Br to be the class of those bipartite graphs B such that there exists a subset U of vertices of
F with F[U] = B and x(F[V(F) \ U]) = x(F) — 2. Note that by definition, for any B € Bp
we have 1(B) > n(F). We define Bg, to be the subset of those bipartite graphs B € Bp
for which n(B) = n(F') holds. To state our result let us introduce some notation. For any
graph F let ex?) (n, k, F') denote the maximum size of a family F C ([Z}) with £y gy (F) > n(F)
and K(n,k)[F] is F-free. Observe that Theorem is about ez’ (n,k, Ks;) and Theorem
determines ez’ (n,k, Kg, 55,...50,1)- We define exq(f)(n, k,Br,) to be the maximum size of a
family F C ([Z}) with ¢o(F) > n(F) such that K(n, k)[F] is B-free for any B € Bp,. Similarly,
let ez (n, k,Br,) be the maximum size of a family F C ([Z}) with (5(F) = n(F) such that
K(n, k)[F] is B-free for any B € Bp,,. Obviously we have ez (n, k, Br,) < ext? (n, k, Bp,) and
we do not know any graph F' for which the two quantities differ.

Theorem 1.7. For any graph with x(F') > 3 there exists an ng = no(F') such that if n is larger
than ng, then we have

e —x(F)+2

&2 (n— x(F), k, By) < ex® (n,k, F) - ((Z) - (" X% )+ )) < ex®(n — x(F), k. Br,).
Let us remark first that in the case of F' = K, ,,

r+ 1} and Bp, = {K;

for K

Sr,Sr4-19

_____ srpr We have Bp = {K,,,, 1 1 <i<j <
wsepn - 1 <4 < r} and obviously for both families the minimum is taken
so Theorems [[.7] and yield the bound of Theorem [L.6l

In view of Theorem [[L7 we turn our attention to bipartite graphs, namely to the case of
even cycles: F' = Cy,. According to Theorem [[LT] the largest families F such that K(n, k)[F] is
Cos-free have ((F) = s — 1, so once again we will be interested in families for which ¢(F) > s.
The case Cy = Kj is solved by Theorem (at least for large enough n). Here we define a
construction that happens to be asymptotically extremal for any s > 3.

Construction 1.8. Let us define Gg C ([Z]) as

gGI{GE <[Z]) :1eG,Gm[2,2k+1]#@}u{[2,k+1],[k+2,2k+1],[2k+2,3k+1]}.
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So |Gs] = (37) = () +3.
For s > 4 we define the family G,, C ([Z]) in the following way: let K = [2,k + 1], K’ =
[k +2,2k] and let Hy, Hs, ..., Hs 1 be k-sets containing K’ and not containing 1. Then

Gos = {GG <[Z]) 01 GG,GH(KUK')#@}U{K,Hth,---,qu}-

S0 (G20 = (171) = (1) + 5

Somewhat surprisingly, it turns out that the asymptotics of the size of the largest family is
(2k+0(1)) (Z:;) for s = 2 and s = 3 if k is fixed and n tends to infinity, and it is (2k—1+0(1)) (Z:;)
for s > 4.

Observe that K(n, k)[Ga] is Cas-free and £(Ga,) = s. Indeed, if K (n, k)[Gas] contained a copy
of Cyg, then this copy should contain all s sets not containing 1 as the sets containing 1 form an
independent set in K (n, k). In the case s = 3, Fs does not contain any set that is disjoint from
both [2,k + 1] and [k + 2,2k + 1], so no Cy exists in K (n, k)[Gg]. In the case s > 4, there is no
set in Gy, that is disjoint from both K and H; for some 1 =1,2,...,s — 1, so no copy of Cs, can
exist in Gos.

The next theorems state that if n is large enough, then Construction is asymptotically
optimal. Moreover, as the above proofs show that K (n, k)[Gss] does not even contain a path on
2s vertices, Construction is asymptotically optimal for the problem of forbidding paths as
well.

Theorem 1.9. For any k > 2, there exists ng = no(k) with the following property: if n > ny
and F C ([Z]) is a family with ((F) > 3 and K (n, k)[F] is Cs-free, then we have |F| < (}7]) —
n—2k—1 n—1 n—2k—1

( k-1 )+106((k71) _( k-1 ))3/4'

Theorem 1.10. For any s > 4 and k > 3 there exists ng = ng(k, s) such if n > ng and F C ([Z})
is a family with ((F) > s and K (n, k)[F)] is Cas-free, then we have |F| < (171) — (*2F) + (k> +

- k—1 k—1
1 (s)-

Let us finish the introduction by a remark on the second order term in Theorem [L.I0l

Remark. If s — 1 < k, then the family Gy; can be extended to a family g;S U Gys so that
K(n, k)[G5. UGa,] is still Cos-free. Suppose the sets Hy, Hy, ..., Hy_; are all disjoint from K, say
H, =K' U{2k+i} fori=1,2...,s — 1. Then we can define

g;;:{Ge ([Z]) :{1,2k+1,2k+2,...,2k+5—2}QG}

and observe that K (n, k)[Gas U G57] is still Cys-free. Indeed, a copy of Cy, would have to contain
K,H{, Hy,...,H, 1 as other vertices form an independent set. Moreover, K and H; have a
common neighbour in G, U g;s if and only if = s — 1, so K cannot be contained in Cy.

bt



Clearly, |Gy \ Gos| = (";ﬁ;‘ffl), so in particular if s = 4, then the order of magnitude of the

second order term in Theorem [[LT0is sharp (when n is large enough compared to k).

All our results resemble the original Hilton-Milner theorem in the following sense. In Theorem
[LH, Theorem [[L9] Theorem [[.T0, almost all sets of the (asymptotically) extremal family share
a common element x and meet some set S (z ¢ S) of fixed size. We wonder whether this
phenomenon is true for all bipartite graphs.

Question 1.11. Is it true that for any bipartite graph B and integer k > 3 there exists an integer
s such that the following holds:

o for any family F C () with ((F) > n(B) if K(n,k)|F] is B-free, then |F| < (I71) —
(1) o(n™?)

e the family {G € ([Z]) :1e G,GN[2,s+ 1] # 0} is contained in a family G C ([Z}) with
0(G) > n(B) such that K(n,k)[G] is B-free.

2 Proofs

Let us start this section by stating the original Turdn number results on the maximum number
of edges in K -free and Cy,-free graphs.

Theorem 2.1 (K&évéri, Sés, Turdn [I1]). For any pair 1 < s < t of integers if a graph G on n
vertices is K, -free, then e(G) < (1/2 4 o(1))(t — 1)¥*n2% holds.

Theorem 2.2 (Bondy, Simonovits [3]). If G is a graph on n vertices that does not contain a
cycle of length 2s, then e(G) < 100sn'*/* holds.

We will also need the following lemma by Balogh, Bollobas and Narayanan. (It was improved
by a factor of 2 in [I], but for our purposes the original lemma will be sufficient.)

Lemma 2.3 (Balogh, Bollobds, Narayanan [2]). For any family F C ([Z}) we have e(K (n, k)[F]) >
1(F)?

2(%)”
We start with the following simple lemma.

Lemma 2.4. Let s <t and let Hy, Hs, ..., Hy, Hy\ 1 be sets in ([Z]) and x € [n]\UT! H;. Suppose

that F C {F € ([Z]) :x € F} such that for F' := F U{Hy, Ha,...,Hs1} the induced subgraph
K(n, k)[F'] is Ks-free. Then there exists ng = no(k, s,t) such that if n > ng holds, then we have

|| < (Z:i) — (”_ L:?EJ B 1) +(s+1)(t—1).
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Proof. The number of sets in F that meet at most one H; is at most (s+1)(t —1) as K(n, k)[F]
is K -free. Let us define T'={y € [n] : 3i # j y € H; N H;}. Those sets in F that meet at
least two of the H;’s must either a) intersect 7" or b) intersect at least two of the (H; \ T')’s.
Clearly, |T| < L%J, so the number of sets in F meeting 7" is at most (}_;) — ("*lfm) <

o k-1 k-1
() - (2 ) =B
Assume first |T| < Lsgl) |, then B — ((77}) — ("_kle‘)) = Q(n*=2). Observe that the
number of sets in F that are disjoint with 7" and meet at least two H; \ T is at most Z |H; \
T| - [HN\T)(323) < Yk (723) = O(n*=3). Therefore if n is large enough, then |F| < (k D=
(LT
k=1
Assume now T = This implies that at most one of the H; \ T' is non-empty, so F
does not contain sets of type b). Thus we have |F| < B+ (s + 1)(t — 1) O

— en*2 for some ¢ > 0.
L(S+1 J

Now we are ready to prove our main result on families F C (["}) with K(n, k)[F] being
K, i-free.

Proof of Theorem[LA. Let F C ( ) be a family such that K(n,k)[F] is Ks-free and |F| =
(Z_i) (" k“fl 1) + s+t —1. We consider three cases according to the value of ¢(F).

Case I {(F) =
Consider Fy, Fy, ..., Fy € F such that 7/ = F\ {F; : 1 <i < s} is intersecting. Then, as

g (n—=1\ (n—sk—1 B n—1\ (n—k—-1
‘]:‘—(k:—l) ( k-1 )” 1>(/<;—1 k-1 )

Theorem implies that the sets in F’ share a common element. Since K (n, k)[F] is K -free
F' can contain at most t — 1 sets disjoint from 7" := Uj_, F;. So the size of F is at most

n—1 n—|T|—1 it l4s< n—1 n—sk—1 tstt—1
k—1 k—1 =\k-1 k-1 i
with equality if and only if F is isomorphic to some Fj ;.

CASE II: s+ 1 < {(F) < ((Z i) _ (n;sffl))l,g'

Let F’ be a largest intersecting subfamily of F. As the size of F' is (Zﬁ) — (" sk 1) + s+
t — 1 — [(F) which is larger than (Zj) — (" i 1) + 1 if n is large enough, Theorem [L.2 - implies

that the sets in F’ share a common element. Let us apply Lemma 2.4] to 7’ and s + 1 sets
F\,F,, ..., Fy1 € F\ F' to obtain

n—1 n— Gtk
| < — 2 —1).
|f\_<k_1) < Eoq )—I—(s—l—l)(t 1)
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Therefore, we have

A= () (e () ()

which is smaller than (Zj) — ("_k‘ikl_ 1), if n is large enough.

Case L ((77]) — (”’Sk’l))lfi”% < U(F).

k-1 k-1
Then by Lemma 2.3 we have

((Zj) — (”kﬂc11))2328.
2(2:)

For large enough n, this is larger than (1/2+ o(1))(t —1)%|F|2~+, so K (n, k)[F] contains K, by
Theorem 2.1] O

e(K(n, k)[F]) =

Proof of Theorem[L0. Let F C ([Z}) be a family of size (Z) — ("j:“) + (Z:;) — ("ﬂgillk*r) + 8+
Sp41 — 1 with £,41(F) > s,41 such that K(n,k)[F] is K, s,..s.,,-free. The proof proceeds by
a case analysis according to the number of large degree vertices. We say that = € [n] has large

degree if F, = {F € F : x € F'} has size at least d = (Zj) — ("_,f_ﬁ_l) + @ where Q) := E:;Lll 5.
Let D denote the set of large degree vertices. We will use the following claim in which G; & Gs
denotes the join of G; and G, i.e. the graph consisting of disjoint copies of G; and G4 with all

possible edges between the G and Gs.

Claim 2.5. Suppose F contains a subfamily G C (["}k\D) with |G] < Q — E'@ﬂ s; and K(n, k)[G]
is isomorphic to G, then K (n, k)[F| contains K, , ®G.

..... S‘D‘

Proof of Claim. Note that d is @ plus the number of k-subsets of [n] containing a fixed element
x of [n] and meeting a set S of size Qk. As K, 5, . sip) @ G contains at most QF vertices, we can
pick the sets corresponding to K, s, ..., 81D greedily. Indeed, for each high degree vertex, we can
choose s; sets containing it which avoid the set spanned by the already chosen sets and the (at
most () sets corresponding to G. O

Case I: |D| > r.
Let D' C D be of size r and let Fy, Fy,...,F. be sets in F not meeting D’. (There

» = Sr41
exists such sets as otherwise ¢,1(F) < s,11 would hold.) Applying Claim with G =
{F\, F,, ..., F, ,} we obtain that K(n, k)[F] is not K, , -free.

----- Sr+1

Case II: |[D|=r —1.



Then F' = F \ UgepFr C ([" \D) has size at least ( ) — (" " S{“k) + 8, + Spq1 — 1 with

equality if and only if U,epF, contains all k-sets meeting D. Either K (n, k)[F'] contains K, .,
and thus, by Claim 2.5 F contains Ky, s, . ,. Otherwise note that ¢, 1(F) > s,41 implies
Uo(F') = U(F") > Sp41, so Theorem [LH implies that if n is large enough, then F” is some Fy,

and thus, F is some Fj, 4,

3Sr41

7777 Sr+41°

Case III: |D| <r —2.

In this case F' = F \ UgepFsz C (["]k\D) has size at least (";Yl) +(777) - ("_T,;fflk) + s, +
$,41 — 1. The order of magnitude of this is n*~1, thus it is larger than Qkd if n is large enough.
We claim that K(n,k)[F'] contains Kq and therefore a copy of Ky, s,  s..,. Indeed, for any
F € F' there are at most kd sets in F’ that intersect F', thus we can pick ) pairwise disjoint
sets greedily.

O

Proof of Theorem[1.7. First we show the construction for the lower bound. For a graph F
with x(F) > 3, let Gp C (["ﬂ‘f)”}) be a family of size Eff) (n — x(F) + 2,k, Bp,,) such that
K(n—x(F)+2,k)|Gr| is B-free for any B € Bp,, and {(Gr) = n(F'). Let us define Fp C ([Z]) as

.FF:QFU{KG C?) :Kﬂ[n—x(F)+3,n]7é@}.

Clearly, we have

—v(F)+2 ~
5= () - (Y w2

and we claim that K(n,k)[Fg| is F-free. Indeed, if K(n,k)[Fr| contains F, then K (n,k)[GF]
contains some B € Bp, as {K € ([Z]) : KNn—x(F)+3,n # 0} is the union y(F) — 2
intersecting families. This is impossible for B € Bp,, by definition of G, and it is also impossible
for B € Br \ B, as £(Gp) = n(F) < n(B).

The proof of the upper bound is basically identical to that of the upper bound in Theorem
L8 so we just outline it. Let F C ([Z}) with €y g (F) > n(F) and |F| > () — ("7 x(F) %) be such
that K (n, k)[F] is F-free. Let us define d = (*.') — ("1 4 [V(F)] and let D C V(F) be
the set of vertices with degree at least d in F.

Case I |D| > x(F) — 1.
Then one can pick sets of F greedily to form a copy of F' in K(n, k)[F], a contradiction.

Case II: |D| = x(F) — 2.



Then 7' = {K € F : KND # 0} has size at most (})— ("7X$€F)+2). Also K (n, k)[F\F'] cannot

contain any B € B, as otherwise K (n, k)[F| would contain F. Observe that £, (F) > n(F)
implies £(F \ F') > n(F), so we have |F \ F/| < ex?) (n, k,Br.y).

Case III: |D| < x(F) — 3.

Then F' = {K € F : KN D # (0} has size at most (7) — (" )*%). Therefore F \ F' is of

size at least ("*’Ig(_ﬂ)”). If n is large enough compared to k, then one can pick greedily a copy of

Ky in K(n, k)[F\ F]. ]

Now we turn our attention to proving theorems on families that induce cycle-free subgraphs
in the Kneser graph.

Proof of Theorem[1.9. Let F C ([Z]) be a family of subsets such that K(n,k)[F] is Cg-free,

((F) >3 and |F| = (Zp) = (277 +10°((0)) — (2P

6, /m— n—2k—

Case L 0(F) < X((32)) — (247 1)

Let Hy, Hy, ..., Hyr) be sets in F such that 7' := F \ {H;, Hy,..., Hyr)} is intersecting.
Then as

Fl> n—1\ (n—2k-—1 +106 n—1 n—2k—1 3/4> n=1\_(n—k-1)

“\k—-1 E—1 2 E—1 E—1 kE—1 k—1 ’
Theorem implies that the sets in F’ share a common element x. The H,’s do not contain
this x, since F’ is a largest intersecting family in F. As |H; U H;| < 2k and

F| > n—1 n—2k—1 +106 n—1 n—2k—1\\**
—\k—-1 k—1 2 k—1 k—1 ’
for any i # j there exist 3 sets F; 1, Fj 2, F j3 € F' that are disjoint from H; U H;. So we can
find a copy of Cy in F, in which the sets Hy, Hy, H3 represent three independent vertices and the
other three sets can be chosen from {F; ;; : 1 <i < j <3,1 <k < 3} greedily.
6/ /m—1 n—2k—1
Case IL: ((F) > 2-((2)) — ("5

By Lemma K(n, k)[F] contains at least %((Zj) — (”;2_’?1*1))3/2 edges and when n is

large enough, this is bigger than 300|F|**, so by Theorem it contains a copy of Cj, as
desired. O

|4/3

Proof of Theorem[L10. Let F C ([Z]) be a family of subsets such that K(n,k)[F] is Cas-free,
UF) z 3 and 17| = (7)) = (47 + (R + 1D (%)
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Case I: ((F) < 20s2F((171) — ("-2)) 5

Let Hy, Hy, ..., Hyr) be sets in F such that F' := F \ {H, Hs,..., Hyr)} is intersecting.
Then as | 7| > (;73) — (32) + (8 + 1) (73) - 20s2%((53) — (50)) % > (5) = (57 + 1,
Theorem implies that the sets in F’ share a common element x. The H;’s do not contain
this z, since F’ is a maximal intersecting family in F. Let us define the following auxiliary
graph I' with vertex set {Hy, Ha, ..., Hs}: two sets H;, H; are adjacent if and only if there exist
s sets in F' that are disjoint from H; U H;. Observe that if I contains a Hamiltonian cycle,
then JF contains a copy of Css. Indeed, if Hy1y, Hy(9), ..., Ho(s) is a Hamiltonian cycle, then
for any pair H,q), Hoi41) (With s +1 = 1) we can greedily pick different sets F; € F' with
F; N (Hg(i) U Hg(i_;,_l)) =0 to get Hg(l), Fl,HU(Q), L, .. .,Ha(s), F, a copy of Uy, in K(n, k)[f]
Therefore the next claim and Dirac’s theorem [4] finishes the proof of Case I.

Claim 2.6. The minimum degree of I' is at least s — 2.

Proof of Claim. First note that if H; and H; are not joined in I', then they must be disjoint.
Indeed, otherwise |H; U H;| < 2k — 1 and as |F'| > (}7]) — (72__21k) + s, there are at least s sets
in 7' avoiding H; U H;. Now assume for contradiction that H; is not connected to Hy and Hj,

so in particular Hy N (Hy U H3) = (). Observe the following

e there are at most s — 1 sets in F’ that avoid H; U Hy and another s — 1 sets avoiding
H, U Hj,

e as |Hy U (Hy N Hs)| < 2k — 1, there are at most (}_}) — (T;C__Qlk) sets in gcF” that meet
H, U (Hy N Hy).

So there are at least (k* + 1)(1_3) — 20s2%((} ) — (";_21]“))% sets of F' containing at least

one element hy € Hy \ Hz and one element hy € Hj \ Hy. Since the number of such pairs is at
most k2, there exists a pair hs, hg such that the number of sets in F’ containing both hs, hs is

more than (Z:g’) But this is clearly impossible as the total number of k-sets containing x, ho, h3
is (3s)- :

s+1

CASE II: ((F) > 20s2%((771) — (" 2F) 5.

k-1
By Lemma 2.3 K (n, k)[F] contains at least 402052}2)% (3=} - (’;ff))i1 > 100s|F|1+1/* edges,
and thus by Theorem it contains a copy of Coy,. O
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