Stability results for vertex Turán problems in Kneser graphs

Dániel Gerbner^a, Abhishek Methuku^b, Dániel T. Nagy^a, Balázs Patkós^a,* Máté Vizer^a

^a Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences P.O.B. 127, Budapest H-1364, Hungary.

b Central European University, Department of Mathematics Budapest, H-1051, Nádor utca 9.

{gerbner,nagydani,patkos}@renyi.hu, {abhishekmethuku,vizermate}@gmail.com

March 8, 2019

Abstract

The vertex set of the Kneser graph K(n,k) is $V=\binom{[n]}{k}$ and two vertices are adjacent if the corresponding sets are disjoint. For any graph F, the largest size of a vertex set $U\subseteq V$ such that K(n,k)[U] is F-free, was recently determined by Alishahi and Taherkhani, whenever n is large enough compared to k and F. In this paper, we determine the second largest size of a vertex set $W\subseteq V$ such that K(n,k)[W] is F-free, in the case when F is an even cycle or a complete multi-partite graph. In the latter case, we actually give a more general theorem depending on the chromatic number of F.

Mathematics Subject Classification: 05C35, 05D05

Keywords: vertex Turán problems, set systems, intersection theorems

1 Introduction

Turán-type problems are fundamental in extremal (hyper)graph theory. For a pair H and F of graphs, they ask for the maximum number of edges that a subgraph G of the host graph H can

^{*}corresponding author.

have without containing the forbidden graph F. A variant of this problem is the so-called vertex Turán problem where given a host graph H and a forbidden graph F, one is interested in the maximum size of a vertex set $U \subset V(H)$ such that the induced subgraph H[U] is F-free.

This problem has been studied in the context of several host graphs. In this paper we follow the recent work of Alishahi and Taherkhani [1], who determined the exact answer to the vertex Turán problem when H is the Kneser graph K(n,k), which is defined on the vertex set $\binom{[n]}{k} = \{K \subseteq [n] = \{1,2,\ldots,n\} : |K| = k\}$ where two vertices K, K' are adjacent if and only if $K \cap K' = \emptyset$.

Theorem 1.1 (Alishahi, Taherkhani [1]). For any graph F, let χ denote its chromatic number and let $\eta = \eta(F)$ denote the minimum possible size of a color class of G over all possible proper χ -colorings of F. Then for any k there exists an integer $n_0 = n_0(k, F)$ such that if $n \geq n_0$ and for a family $\mathcal{G} \subseteq {n \choose k}$ the induced subgraph $K(n, k)[\mathcal{G}]$ is F-free, then $|\mathcal{G}| \leq {n \choose k} - {n-\chi+1 \choose k} + \eta - 1$. Moreover, if equality holds, then there exists a $(\chi - 1)$ -set L such that $|\{G \in \mathcal{G} : G \cap L = \emptyset\}| = \eta - 1$.

Observe that the vertex Turán problem in the Kneser graph K(n,k) generalizes several intersection problems in $\binom{[n]}{k}$:

- If $F = K_2$, the graph consisting a single edge, then the vertex Turán problem asks for the maximum size of an independent set in K(n,k) or equivalently the size of a largest intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ (i.e. $F \cap F' \neq \emptyset$ for all $F, F' \in \mathcal{F}$). The celebrated theorem of Erdős, Ko, and Rado states that this is $\binom{n-1}{k-1}$ if $2k \leq n$ holds. Furthermore, for intersecting families $\mathcal{F} \subseteq \binom{[n]}{k}$ of size $\binom{n-1}{k-1}$ we have $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$ provided $n \geq 2k+1$.
- If $F = K_s$ for some $s \ge 3$, then the vertex Turán problem is equivalent to Erdős's famous matching conjecture: $K(n,k)[\mathcal{F}]$ is K_s -free if and only if \mathcal{F} does not contain a matching of size s (s pairwise disjoint sets). Erdős conjectured that the maximum size of such a family is $\max\{\binom{sk-1}{k}, \binom{n}{k} \binom{n-s+1}{k}\}$.
- Gerbner, Lemons, Palmer, Patkós, and Szécsi [8] considered *l-almost intersecting* families $\mathcal{F} \subseteq \binom{[n]}{k}$ such that for any $F \in \mathcal{F}$ there are at most l sets in \mathcal{F} that are disjoint from F. This is equivalent to $K(n,k)[\mathcal{F}]$ being $K_{1,l}$ -free.
- Katona and Nagy [10] considered (s,t)-union intersecting families $\mathcal{F} \subseteq \binom{[n]}{k}$ such that for any $F_1, F_2, \ldots, F_s, F'_1, F'_2, \ldots, F'_t \in \mathcal{F}$ we have $(\bigcup_{i=1}^s F_i) \cap (\bigcup_{j=1}^t F'_j) \neq \emptyset$. This is equivalent to $K(n,k)[\mathcal{F}]$ being $K_{s,t}$ -free.

Theorem 1.1 leads into several directions. One can try to determine the smallest value of the threshold $n_0(k, G)$. Alishahi and Taherkhani [1] improved the upper bound on n_0 for l-almost intersecting and (s, t)-union intersecting families. Erdős's matching conjecture is known to hold

if $n \ge (2s+1)k - s$. This is due to Frankl [6] and he also showed [5] that the conjecture is true if k = 3.

Another direction is to determine the "second largest" family with $K(n,k)[\mathcal{F}]$ being G-free. In the case of $F = K_2$ this means that we are looking for the largest intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\bigcap_{F \in \mathcal{F}} F = \emptyset$. This is the following famous result of Hilton and Milner.

Theorem 1.2 (Hilton, Milner [9]). If $\mathcal{F} \subseteq \binom{[n]}{k}$ is an intersecting family with $n \geq 2k+1$ and $\bigcap_{F \in \mathcal{F}} F = \emptyset$, then $|\mathcal{F}| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1$.

In the case of $F = K_{s,t}$ extremal families are not intersecting, so to describe the condition of being "second largest" precisely, we introduce the following parameter.

Definition 1.3. For a family \mathcal{F} and integer $t \geq 2$ let $\ell_t(\mathcal{F})$ denote the minimum number m such that one can remove m sets from \mathcal{F} with the resulting family not containing t pairwise disjoint sets. We will write $\ell(\mathcal{F})$ instead of $\ell_2(\mathcal{F})$. Note that this is the minimum number of sets one needs to remove from \mathcal{F} in order to obtain an intersecting family.

Observe that if $s \leq t$, then for any family \mathcal{F} with $\ell(\mathcal{F}) \leq s - 1$ the induced subgraph $K(n,k)[\mathcal{F}]$ is $K_{s,t}$ -free. In [1], the following asymptotic stability result was proved.

Theorem 1.4 (Alishahi, Taherkhani [1]). For any integers $s \le t$ and k, and positive real number β , there exists an $n_0 = n_0(k, s, t, \beta)$ such that the following holds for $n \ge n_0$. If for $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\ell(\mathcal{F}) \ge s$, the induced subgraph $K(n, k)[\mathcal{F}]$ is $K_{s,t}$ -free, then $|\mathcal{F}| \le (s + \beta)(\binom{n-1}{k-1} - \binom{n-k-1}{k-1})$ holds.

Note that the above bound is asymptotically optimal as shown by any family $\mathcal{F}_{s,t} = \{F \in \binom{[n]}{k} : 1 \in F, F \cap S \neq \emptyset\} \cup \{H_1, H_2, \dots, H_s\} \cup \{F'_1, F'_2, \dots, F'_{t-1}\}$, where $S = [2, sk + 1], H_i = [(i-1)k+2, ik+1]$ for all $i = 1, 2, \dots, s$ and $F'_1, F'_2, \dots, F'_{t-1}$ are distinct sets containing 1 and disjoint with S.

We improve Theorem 1.4 to obtain the following precise stability result for families \mathcal{F} for which $K(n,k)[\mathcal{F}]$ is $K_{s,t}$ -free.

Theorem 1.5. For any $2 \le s \le t$ and k there exists $n_0 = n_0(s,t,k)$ such that the following holds for $n \ge n_0$. If $\mathcal{F} \subseteq \binom{[n]}{k}$ is a family with $\ell(\mathcal{F}) \ge s$ and $K(n,k)[\mathcal{F}]$ is $K_{s,t}$ -free, then we have $|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-sk-1}{k-1} + s + t - 1$. Moreover, equality holds if and only if \mathcal{F} is isomorphic to some $\mathcal{F}_{s,t}$.

Using Theorem 1.5, we obtain a general stability result for the case when F is a complete multi-partite graph. We consider the family $\mathcal{F}_{s_1,s_2,\dots,s_{r+1}}$ that consists of s_{r+1} pairwise disjoint k-subsets $F_1, F_2, \dots, F_{s_{r+1}}$ of [n] that do not meet [r] and those k-subsets of [n] that either (i) intersect [r-1] or (ii) contain r and meet $\bigcup_{j=1}^{s_r+1} F_j$ and (iii) s_r-1 other k-sets containing r. Clearly, if $s_1 \geq s_2 \geq \dots \geq s_r \geq s_{r+1}$ holds, then $K(n,k)[\mathcal{F}_{s_1,s_2,\dots,s_{r+1}}]$ is $K_{s_1,s_2,\dots,s_{r+1}}$ -free and its size is $\binom{n}{k} - \binom{n-r+1}{k} + \binom{n-r}{k-1} - \binom{n-s_{r+1}k-r}{k-1} + s_r + s_{r+1} - 1$.

Theorem 1.6. For any $k \geq 2$ and integers $s_1 \geq s_2 \geq \cdots \geq s_r \geq s_{r+1} \geq 1$ there exists $n_0 = n_0(k, s_1, \ldots, s_{r+1})$ such that if $n \geq n_0$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is a family with $\ell_{r+1}(\mathcal{F}) \geq s$ and $K(n,k)[\mathcal{F}]$ is $K_{s_1,s_2,\ldots,s_{r+1}}$ -free, then we have $|\mathcal{F}| \leq \binom{n}{k} - \binom{n-r+1}{k} + \binom{n-r}{k-1} - \binom{n-s_{r+1}k-r}{k-1} + s_r + s_{r+1} - 1$. Moreover, equality holds if and only if \mathcal{F} is isomorphic to some $\mathcal{F}_{s_1,s_2,\ldots,s_{r+1}}$.

Note that Frankl and Kupavskii [7] proved the special case $s_1 = s_2 = \cdots = s_{r+1} = 1$ with the asymptotically best possible threshold $n_0 = (2k + o_r(1))(r+1)k$.

Actually, Theorem 1.6 is a special case of a more general result that shows that it is enough to solve the stability problem for bipartite graphs. For any graph F with $\chi(F) \geq 3$ let us define \mathcal{B}_F to be the class of those bipartite graphs B such that there exists a subset U of vertices of F with F[U] = B and $\chi(F[V(F) \setminus U]) = \chi(F) - 2$. Note that by definition, for any $B \in \mathcal{B}_F$ we have $\eta(B) \geq \eta(F)$. We define $\mathcal{B}_{F,\eta}$ to be the subset of those bipartite graphs $B \in \mathcal{B}_F$ for which $\eta(B) = \eta(F)$ holds. To state our result let us introduce some notation. For any graph F let $ex_v^{(2)}(n,k,F)$ denote the maximum size of a family $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\ell_{\chi(F)}(\mathcal{F}) \geq \eta(F)$ and $K(n,k)[\mathcal{F}]$ is F-free. Observe that Theorem 1.5 is about $ex_v^{(2)}(n,k,K_{s,t})$ and Theorem 1.6 determines $ex_v^{(2)}(n,k,K_{s_1,s_2,\ldots,s_{r+1}})$. We define $ex_v^{(2)}(n,k,\mathcal{B}_{F,\eta})$ to be the maximum size of a family $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\ell_2(\mathcal{F}) \geq \eta(F)$ such that $K(n,k)[\mathcal{F}]$ is B-free for any $B \in \mathcal{B}_{F,\eta}$. Similarly, let $\widehat{ex}_v^{(2)}(n,k,\mathcal{B}_{F,\eta})$ be the maximum size of a family $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\ell_2(\mathcal{F}) = \eta(F)$ such that $K(n,k)[\mathcal{F}]$ is B-free for any $B \in \mathcal{B}_{F,\eta}$. Obviously we have $\widehat{ex}_v^{(2)}(n,k,\mathcal{B}_{F,\eta}) \leq ex_v^{(2)}(n,k,\mathcal{B}_{F,\eta})$ and we do not know any graph F for which the two quantities differ.

Theorem 1.7. For any graph with $\chi(F) \geq 3$ there exists an $n_0 = n_0(F)$ such that if n is larger than n_0 , then we have

$$\widehat{ex}_{v}^{(2)}(n - \chi(F), k, \mathcal{B}_{F,\eta}) \leq ex_{v}^{(2)}(n, k, F) - \left(\binom{n}{k} - \binom{n - \chi(F) + 2}{k}\right) \leq ex_{v}^{(2)}(n - \chi(F), k, \mathcal{B}_{F,\eta}).$$

Let us remark first that in the case of $F = K_{s_1, s_2, \dots, s_{r+1}}$ we have $\mathcal{B}_F = \{K_{s_i, s_j} : 1 \leq i < j \leq r+1\}$ and $\mathcal{B}_{F,\eta} = \{K_{s_i, s_{r+1}} : 1 \leq i \leq r\}$ and obviously for both families the minimum is taken for $K_{s_r, s_{r+1}}$, so Theorems 1.7 and 1.5 yield the bound of Theorem 1.6.

In view of Theorem 1.7, we turn our attention to bipartite graphs, namely to the case of even cycles: $F = C_{2s}$. According to Theorem 1.1, the largest families \mathcal{F} such that $K(n,k)[\mathcal{F}]$ is C_{2s} -free have $\ell(\mathcal{F}) = s - 1$, so once again we will be interested in families for which $\ell(\mathcal{F}) \geq s$. The case $C_4 = K_{2,2}$ is solved by Theorem 1.5 (at least for large enough n). Here we define a construction that happens to be asymptotically extremal for any $s \geq 3$.

Construction 1.8. Let us define $\mathcal{G}_6 \subseteq \binom{[n]}{k}$ as

$$\mathcal{G}_6 = \left\{ G \in \binom{[n]}{k} : 1 \in G, G \cap [2, 2k+1] \neq \emptyset \right\} \cup \{ [2, k+1], [k+2, 2k+1], [2k+2, 3k+1] \}.$$

So
$$|\mathcal{G}_6| = \binom{n-1}{k-1} - \binom{n-2k-1}{k-1} + 3$$

So $|\mathcal{G}_6| = \binom{n-1}{k-1} - \binom{n-2k-1}{k-1} + 3$. For $s \geq 4$ we define the family $\mathcal{G}_{2s} \subseteq \binom{[n]}{k}$ in the following way: let $K = [2, k+1], K' = (n-1)^{k-1}$ [k+2,2k] and let H_1,H_2,\ldots,H_{s-1} be k-sets containing K' and not containing 1. Then

$$\mathcal{G}_{2s} = \left\{ G \in {[n] \choose k} : 1 \in G, G \cap (K \cup K') \neq \emptyset \right\} \cup \{K, H_1, H_2, \dots, H_{s-1}\}.$$

So
$$|\mathcal{G}_{2s}| = \binom{n-1}{k-1} - \binom{n-2k}{k-1} + s$$
.

Somewhat surprisingly, it turns out that the asymptotics of the size of the largest family is $(2k+o(1))\binom{n-2}{k-2}$ for s=2 and s=3 if k is fixed and n tends to infinity, and it is $(2k-1+o(1))\binom{n-2}{k-2}$

Observe that $K(n,k)[\mathcal{G}_{2s}]$ is C_{2s} -free and $\ell(\mathcal{G}_{2s})=s$. Indeed, if $K(n,k)[\mathcal{G}_{2s}]$ contained a copy of C_{2s} , then this copy should contain all s sets not containing 1 as the sets containing 1 form an independent set in K(n,k). In the case s=3, \mathcal{F}_6 does not contain any set that is disjoint from both [2, k+1] and [k+2, 2k+1], so no C_6 exists in $K(n,k)[\mathcal{G}_6]$. In the case $s \geq 4$, there is no set in \mathcal{G}_{2s} that is disjoint from both K and H_i for some $i=1,2,\ldots,s-1$, so no copy of C_{2s} can exist in \mathcal{G}_{2s} .

The next theorems state that if n is large enough, then Construction 1.8 is asymptotically optimal. Moreover, as the above proofs show that $K(n,k)[\mathcal{G}_{2s}]$ does not even contain a path on 2s vertices, Construction 1.8 is asymptotically optimal for the problem of forbidding paths as well.

Theorem 1.9. For any $k \geq 2$, there exists $n_0 = n_0(k)$ with the following property: if $n \geq n_0$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is a family with $\ell(\mathcal{F}) \geq 3$ and $K(n,k)[\mathcal{F}]$ is C_6 -free, then we have $|\mathcal{F}| < \binom{n-1}{k-1} - \binom{n-2k-1}{k-1} + 10^6 (\binom{n-1}{k-1} - \binom{n-2k-1}{k-1})^{3/4}$.

Theorem 1.10. For any $s \ge 4$ and $k \ge 3$ there exists $n_0 = n_0(k, s)$ such if $n \ge n_0$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is a family with $\ell(\mathcal{F}) \ge s$ and $K(n, k)[\mathcal{F}]$ is C_{2s} -free, then we have $|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-2k}{k-1} + (k^2 + k)$ $1)\binom{n-3}{k-3}.$

Let us finish the introduction by a remark on the second order term in Theorem 1.10.

Remark. If $s-1 \leq k$, then the family \mathcal{G}_{2s} can be extended to a family $\mathcal{G}_{2s}^+ \cup \mathcal{G}_{2s}$ so that $K(n,k)[\mathcal{G}_{2s}^+ \cup \mathcal{G}_{2s}]$ is still C_{2s} -free. Suppose the sets $H_1, H_2, \ldots, H_{s-1}$ are all disjoint from K, say $H_i = K' \cup \{2k+i\}$ for $i = 1, 2, \dots, s-1$. Then we can define

$$\mathcal{G}_{2s}^{+} = \left\{ G \in {[n] \choose k} : \{1, 2k+1, 2k+2, \dots, 2k+s-2\} \subseteq G \right\}$$

and observe that $K(n,k)[\mathcal{G}_{2s}\cup\mathcal{G}_{2s}^+]$ is still C_{2s} -free. Indeed, a copy of C_{2s} would have to contain $K, H_1, H_2, \ldots, H_{s-1}$ as other vertices form an independent set. Moreover, K and H_i have a common neighbour in $\mathcal{G}_{2s} \cup \mathcal{G}_{2s}^+$ if and only if i = s - 1, so K cannot be contained in C_{2s} .

Clearly, $|\mathcal{G}_{2s}^+ \setminus \mathcal{G}_{2s}| = \binom{n-k-s+1}{k-s+1}$, so in particular if s=4, then the order of magnitude of the second order term in Theorem 1.10 is sharp (when n is large enough compared to k).

All our results resemble the original Hilton-Milner theorem in the following sense. In Theorem 1.5, Theorem 1.9, Theorem 1.10, almost all sets of the (asymptotically) extremal family share a common element x and meet some set S ($x \notin S$) of fixed size. We wonder whether this phenomenon is true for all bipartite graphs.

Question 1.11. Is it true that for any bipartite graph B and integer $k \geq 3$ there exists an integer s such that the following holds:

- for any family $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\ell(\mathcal{F}) \geq \eta(B)$ if $K(n,k)[\mathcal{F}]$ is B-free, then $|\mathcal{F}| \leq \binom{n-1}{k-1} \binom{n-1-s}{k-1} + o(n^{k-2})$
- the family $\{G \in {[n] \choose k} : 1 \in G, G \cap [2, s+1] \neq \emptyset\}$ is contained in a family $\mathcal{G} \subseteq {[n] \choose k}$ with $\ell(\mathcal{G}) \geq \eta(B)$ such that $K(n, k)[\mathcal{G}]$ is B-free.

2 Proofs

Let us start this section by stating the original Turán number results on the maximum number of edges in $K_{s,t}$ -free and C_{2s} -free graphs.

Theorem 2.1 (Kővári, Sós, Turán [11]). For any pair $1 \le s \le t$ of integers if a graph G on n vertices is $K_{s,t}$ -free, then $e(G) \le (1/2 + o(1))(t-1)^{1/s}n^{2-\frac{1}{s}}$ holds.

Theorem 2.2 (Bondy, Simonovits [3]). If G is a graph on n vertices that does not contain a cycle of length 2s, then $e(G) \le 100sn^{1+1/s}$ holds.

We will also need the following lemma by Balogh, Bollobás and Narayanan. (It was improved by a factor of 2 in [1], but for our purposes the original lemma will be sufficient.)

Lemma 2.3 (Balogh, Bollobás, Narayanan [2]). For any family $\mathcal{F} \subseteq \binom{[n]}{k}$ we have $e(K(n,k)[\mathcal{F}]) \ge \frac{l(\mathcal{F})^2}{2\binom{2k}{k}}$.

We start with the following simple lemma.

Lemma 2.4. Let $s \leq t$ and let $H_1, H_2, \ldots, H_s, H_{s+1}$ be sets in $\binom{[n]}{k}$ and $x \in [n] \setminus \bigcup_{i=1}^{s+1} H_i$. Suppose that $\mathcal{F} \subseteq \{F \in \binom{[n]}{k} : x \in F\}$ such that for $\mathcal{F}' := \mathcal{F} \cup \{H_1, H_2, \ldots, H_{s+1}\}$ the induced subgraph $K(n,k)[\mathcal{F}']$ is $K_{s,t}$ -free. Then there exists $n_0 = n_0(k,s,t)$ such that if $n \geq n_0$ holds, then we have

$$|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n - \lfloor \frac{(s+1)k}{2} \rfloor - 1}{k-1} + (s+1)(t-1).$$

Proof. The number of sets in \mathcal{F} that meet at most one H_j is at most (s+1)(t-1) as $K(n,k)[\mathcal{F}']$ is $K_{s,t}$ -free. Let us define $T = \{y \in [n] : \exists i \neq j \ y \in H_i \cap H_j\}$. Those sets in \mathcal{F} that meet at least two of the H_j 's must either a) intersect T or b) intersect at least two of the $(H_j \setminus T)$'s. Clearly, $|T| \leq \lfloor \frac{(s+1)k}{2} \rfloor$, so the number of sets in \mathcal{F} meeting T is at most $\binom{n-1}{k-1} - \binom{n-1-|T|}{k-1} \leq \binom{n-1}{k-1} - \binom{n-1-|T|}{k-1} =: B$.

Assume first $|T| < \lfloor \frac{(s+1)k}{2} \rfloor$, then $B - (\binom{n-1}{k-1} - \binom{n-1-|T|}{k-1}) = \Omega(n^{k-2})$. Observe that the number of sets in \mathcal{F} that are disjoint with T and meet at least two $H_j \setminus T$ is at most $\sum_{i,j} |H_i \setminus T| \cdot |H_j \setminus T| \binom{n-3}{k-3} \le \binom{s+1}{2} k^2 \binom{n-3}{k-3} = O(n^{k-3})$. Therefore if n is large enough, then $|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-\lfloor \frac{(s+1)k}{k-1} \rfloor - 1}{k-1} - \varepsilon n^{k-2}$ for some $\varepsilon > 0$.

Assume now $T = \lfloor \frac{(s+1)k}{2} \rfloor$. This implies that at most one of the $H_j \setminus T$ is non-empty, so \mathcal{F} does not contain sets of type b). Thus we have $|\mathcal{F}| \leq B + (s+1)(t-1)$.

Now we are ready to prove our main result on families $\mathcal{F} \subseteq \binom{[n]}{k}$ with $K(n,k)[\mathcal{F}]$ being $K_{s,t}$ -free.

Proof of Theorem 1.5. Let $\mathcal{F} \subseteq {[n] \choose k}$ be a family such that $K(n,k)[\mathcal{F}]$ is $K_{s,t}$ -free and $|\mathcal{F}| = {n-1 \choose k-1} - {n-sk-1 \choose k-1} + s + t - 1$. We consider three cases according to the value of $\ell(\mathcal{F})$.

Case I: $\ell(\mathcal{F}) = s$.

Consider $F_1, F_2, \ldots, F_s \in \mathcal{F}$ such that $\mathcal{F}' = \mathcal{F} \setminus \{F_i : 1 \leq i \leq s\}$ is intersecting. Then, as

$$|\mathcal{F}'| = \binom{n-1}{k-1} - \binom{n-sk-1}{k-1} + t - 1 > \binom{n-1}{k-1} - \binom{n-k-1}{k-1},$$

Theorem 1.2 implies that the sets in \mathcal{F}' share a common element. Since $K(n,k)[\mathcal{F}]$ is $K_{s,t}$ -free \mathcal{F}' can contain at most t-1 sets disjoint from $T:=\bigcup_{i=1}^s F_i$. So the size of \mathcal{F} is at most

$$\binom{n-1}{k-1} - \binom{n-|T|-1}{k-1} + t - 1 + s \le \binom{n-1}{k-1} - \binom{n-sk-1}{k-1} + s + t - 1$$

with equality if and only if \mathcal{F} is isomorphic to some $\mathcal{F}_{s,t}$.

Case II:
$$s + 1 \le \ell(\mathcal{F}) \le (\binom{n-1}{k-1} - \binom{n-sk-1}{k-1})^{1-\frac{1}{3s}}$$
.

Let \mathcal{F}' be a largest intersecting subfamily of \mathcal{F} . As the size of \mathcal{F}' is $\binom{n-1}{k-1} - \binom{n-sk-1}{k-1} + s + t - 1 - l(\mathcal{F})$ which is larger than $\binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1$ if n is large enough, Theorem 1.2 implies that the sets in \mathcal{F}' share a common element. Let us apply Lemma 2.4 to \mathcal{F}' and s+1 sets $F_1, F_2, \ldots, F_{s+1} \in \mathcal{F} \setminus \mathcal{F}'$ to obtain

$$|\mathcal{F}'| \le \binom{n-1}{k-1} - \binom{n - \frac{(s+1)k}{2} - 1}{k-1} + (s+1)(t-1).$$

Therefore, we have

$$|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n - \frac{(s+1)k}{2} - 1}{k-1} + (s+1)(t-1) + \left(\binom{n-1}{k-1} - \binom{n-sk-1}{k-1}\right)^{1 - \frac{1}{3s}},$$

which is smaller than $\binom{n-1}{k-1} - \binom{n-sk-1}{k-1}$, if n is large enough.

Case III: $\binom{n-1}{k-1} - \binom{n-sk-1}{k-1}^{1-\frac{1}{3s}} \le \ell(\mathcal{F}).$

Then by Lemma 2.3, we have

$$e(K(n,k)[\mathcal{F}]) \ge \frac{\left(\binom{n-1}{k-1} - \binom{n-sk-1}{k-1}\right)^{2-\frac{2}{3s}}}{2\binom{2k}{k}}.$$

For large enough n, this is larger than $(1/2 + o(1))(t-1)^{\frac{1}{s}}|\mathcal{F}|^{2-\frac{1}{s}}$, so $K(n,k)[\mathcal{F}]$ contains $K_{s,t}$ by Theorem 2.1.

Proof of Theorem 1.6. Let $\mathcal{F} \subseteq \binom{[n]}{k}$ be a family of size $\binom{n}{k} - \binom{n-r+1}{k} + \binom{n-r}{k-1} - \binom{n-s_{r+1}k-r}{k-1} + s_r + s_{r+1} - 1$ with $\ell_{r+1}(\mathcal{F}) \geq s_{r+1}$ such that $K(n,k)[\mathcal{F}]$ is $K_{s_1,s_2,\dots,s_{r+1}}$ -free. The proof proceeds by a case analysis according to the number of large degree vertices. We say that $x \in [n]$ has large degree if $\mathcal{F}_x = \{F \in \mathcal{F} : x \in F\}$ has size at least $d = \binom{n-1}{k-1} - \binom{n-Qk-1}{k-1} + Q$ where $Q := \sum_{i=1}^{r+1} s_i$. Let D denote the set of large degree vertices. We will use the following claim in which $G_1 \oplus G_2$ denotes the join of G_1 and G_2 , i.e. the graph consisting of disjoint copies of G_1 and G_2 with all possible edges between the G_1 and G_2 .

Claim 2.5. Suppose \mathcal{F} contains a subfamily $\mathcal{G} \subseteq \binom{[n] \setminus D}{k}$ with $|\mathcal{G}| \leq Q - \sum_{i=1}^{|D|} s_i$ and $K(n,k)[\mathcal{G}]$ is isomorphic to G, then $K(n,k)[\mathcal{F}]$ contains $K_{s_1,s_2,...,s_{|D|}} \oplus G$.

Proof of Claim. Note that d is Q plus the number of k-subsets of [n] containing a fixed element x of [n] and meeting a set S of size Qk. As $K_{s_1,s_2,\ldots,s_{|D|}} \oplus G$ contains at most Qk vertices, we can pick the sets corresponding to $K_{s_1,s_2,\ldots,s_{|D|}}$ greedily. Indeed, for each high degree vertex, we can choose s_i sets containing it which avoid the set spanned by the already chosen sets and the (at most Q) sets corresponding to G.

Case I: $|D| \ge r$.

Let $D' \subset D$ be of size r and let $F_1, F_2, \ldots, F_{s_{r+1}}$ be sets in \mathcal{F} not meeting D'. (There exists such sets as otherwise $\ell_{r+1}(\mathcal{F}) < s_{r+1}$ would hold.) Applying Claim 2.5 with $\mathcal{G} = \{F_1, F_2, \ldots, F_{s_{r+1}}\}$ we obtain that $K(n, k)[\mathcal{F}]$ is not $K_{s_1, s_2, \ldots, s_{r+1}}$ -free.

Case II: |D| = r - 1.

Then $\mathcal{F}' = \mathcal{F} \setminus \bigcup_{x \in D} \mathcal{F}_x \subseteq {[n] \setminus D \choose k}$ has size at least ${n-r \choose k-1} - {n-r-s_{r+1}k \choose k-1} + s_r + s_{r+1} - 1$ with equality if and only if $\bigcup_{x \in D} \mathcal{F}_x$ contains all k-sets meeting D. Either $K(n,k)[\mathcal{F}']$ contains $K_{s_r,s_{r+1}}$ and thus, by Claim 2.5, \mathcal{F} contains $K_{s_1,s_2,\ldots,s_{r+1}}$. Otherwise note that $\ell_{r+1}(\mathcal{F}) \geq s_{r+1}$ implies $\ell_2(\mathcal{F}') = \ell(\mathcal{F}') \geq s_{r+1}$, so Theorem 1.5 implies that if n is large enough, then \mathcal{F}' is some $\mathcal{F}_{s_r,s_{r+1}}$ and thus, \mathcal{F} is some $\mathcal{F}_{s_1,s_2,\ldots,s_{r+1}}$.

Case III: $|D| \le r - 2$.

In this case $\mathcal{F}' = \mathcal{F} \setminus \bigcup_{x \in D} \mathcal{F}_x \subseteq \binom{[n] \setminus D}{k}$ has size at least $\binom{n-r+1}{k-1} + \binom{n-r}{k-1} - \binom{n-r-s_{r+1}k}{k-1} + s_r + s_{r+1} - 1$. The order of magnitude of this is n^{k-1} , thus it is larger than Qkd if n is large enough. We claim that $K(n,k)[\mathcal{F}']$ contains K_Q and therefore a copy of $K_{s_1,s_2,\dots,s_{r+1}}$. Indeed, for any $F \in \mathcal{F}'$ there are at most kd sets in \mathcal{F}' that intersect F, thus we can pick Q pairwise disjoint sets greedily.

Proof of Theorem 1.7. First we show the construction for the lower bound. For a graph F with $\chi(F) \geq 3$, let $\mathcal{G}_F \subseteq \binom{[n-\chi(F)+2]}{k}$ be a family of size $\widehat{ex}_v^{(2)}(n-\chi(F)+2,k,\mathcal{B}_{F,\eta})$ such that $K(n-\chi(F)+2,k)[\mathcal{G}_F]$ is B-free for any $B \in \mathcal{B}_{F,\eta}$ and $\ell(\mathcal{G}_F) = \eta(F)$. Let us define $\mathcal{F}_F \subseteq \binom{[n]}{k}$ as

$$\mathcal{F}_F = \mathcal{G}_F \cup \left\{ K \in {[n] \choose k} : K \cap [n - \chi(F) + 3, n] \neq \emptyset \right\}.$$

Clearly, we have

$$|\mathcal{F}_F| = \binom{n}{k} - \binom{n - \chi(F) + 2}{k} + \widehat{ex}_v^{(2)}(n - \chi(F) + 2, k, \mathcal{B}_{F,\eta})$$

and we claim that $K(n,k)[\mathcal{F}_F]$ is F-free. Indeed, if $K(n,k)[\mathcal{F}_F]$ contains F, then $K(n,k)[\mathcal{G}_F]$ contains some $B \in \mathcal{B}_F$, as $\{K \in {[n] \choose k} : K \cap [n-\chi(F)+3,n] \neq \emptyset\}$ is the union $\chi(F)-2$ intersecting families. This is impossible for $B \in \mathcal{B}_{F,\eta}$ by definition of \mathcal{G}_F , and it is also impossible for $B \in \mathcal{B}_F \setminus \mathcal{B}_{F,\eta}$ as $\ell(\mathcal{G}_F) = \eta(F) < \eta(B)$.

The proof of the upper bound is basically identical to that of the upper bound in Theorem 1.6, so we just outline it. Let $\mathcal{F} \subseteq \binom{[n]}{k}$ with $\ell_{\chi(F)}(\mathcal{F}) \geq \eta(F)$ and $|\mathcal{F}| \geq \binom{n}{k} - \binom{n-\chi(F)+2}{k}$ be such that $K(n,k)[\mathcal{F}]$ is F-free. Let us define $d = \binom{n-1}{k} - \binom{n-|v(F)|k-1}{k} + |V(F)|$ and let $D \subseteq V(F)$ be the set of vertices with degree at least d in \mathcal{F} .

Case I: $|D| \ge \chi(F) - 1$.

Then one can pick sets of \mathcal{F} greedily to form a copy of F in $K(n,k)[\mathcal{F}]$, a contradiction.

Case II: $|D| = \chi(F) - 2$.

Then $\mathcal{F}' = \{K \in \mathcal{F} : K \cap D \neq \emptyset\}$ has size at most $\binom{n}{k} - \binom{n - \chi(F) + 2}{k}$. Also $K(n, k)[\mathcal{F} \setminus \mathcal{F}']$ cannot contain any $B \in \mathcal{B}_{F,\eta}$, as otherwise $K(n, k)[\mathcal{F}]$ would contain F. Observe that $\ell_{\chi(F)}(\mathcal{F}) \geq \eta(F)$ implies $\ell(\mathcal{F} \setminus \mathcal{F}') \geq \eta(F)$, so we have $|\mathcal{F} \setminus \mathcal{F}'| \leq ex_v^{(2)}(n, k, \mathcal{B}_{F,\eta})$.

Case III: $|D| \leq \chi(F) - 3$.

Then $\mathcal{F}' = \{K \in \mathcal{F} : K \cap D \neq \emptyset\}$ has size at most $\binom{n}{k} - \binom{n-\chi(F)+3}{k}$. Therefore $\mathcal{F} \setminus \mathcal{F}'$ is of size at least $\binom{n-\chi(F)+2}{k-1}$. If n is large enough compared to k, then one can pick greedily a copy of $K_{|V(F)|}$ in $K(n,k)[\mathcal{F} \setminus \mathcal{F}']$.

Now we turn our attention to proving theorems on families that induce cycle-free subgraphs in the Kneser graph.

Proof of Theorem 1.9. Let $\mathcal{F} \subseteq \binom{[n]}{k}$ be a family of subsets such that $K(n,k)[\mathcal{F}]$ is C_6 -free, $\ell(\mathcal{F}) \geq 3$ and $|\mathcal{F}| = \binom{n-1}{k-1} - \binom{n-2k-1}{k-1} + 10^6 \binom{n-1}{k-1} - \binom{n-2k-1}{k-1})^{3/4}$.

Case I:
$$\ell(\mathcal{F}) \le \frac{10^6}{2} (\binom{n-1}{k-1} - \binom{n-2k-1}{k-1})^{3/4}$$
.

Let $H_1, H_2, \ldots, H_{\ell(\mathcal{F})}$ be sets in \mathcal{F} such that $\mathcal{F}' := \mathcal{F} \setminus \{H_1, H_2, \ldots, H_{\ell(\mathcal{F})}\}$ is intersecting. Then as

$$|\mathcal{F}'| \geq \binom{n-1}{k-1} - \binom{n-2k-1}{k-1} + \frac{10^6}{2} \left(\binom{n-1}{k-1} - \binom{n-2k-1}{k-1} \right)^{3/4} > \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1,$$

Theorem 1.2 implies that the sets in \mathcal{F}' share a common element x. The H_i 's do not contain this x, since \mathcal{F}' is a largest intersecting family in \mathcal{F} . As $|H_i \cup H_j| \leq 2k$ and

$$|\mathcal{F}'| \ge \binom{n-1}{k-1} - \binom{n-2k-1}{k-1} + \frac{10^6}{2} \left(\binom{n-1}{k-1} - \binom{n-2k-1}{k-1} \right)^{3/4},$$

for any $i \neq j$ there exist 3 sets $F_{i,j,1}, F_{i,j,2}, F_{i,j,3} \in \mathcal{F}'$ that are disjoint from $H_i \cup H_j$. So we can find a copy of C_6 in \mathcal{F} , in which the sets H_1, H_2, H_3 represent three independent vertices and the other three sets can be chosen from $\{F_{i,j,k}: 1 \leq i < j \leq 3, 1 \leq k \leq 3\}$ greedily.

Case II:
$$\ell(\mathcal{F}) \ge \frac{10^6}{2} (\binom{n-1}{k-1} - \binom{n-2k-1}{k-1})^{3/4}$$
.

By Lemma 2.3 $K(n,k)[\mathcal{F}]$ contains at least $\frac{10^{12}}{8\binom{2k}{k}}(\binom{n-1}{k-1}-\binom{n-2k-1}{k-1})^{3/2}$ edges and when n is large enough, this is bigger than $300|\mathcal{F}|^{4/3}$, so by Theorem 2.2 it contains a copy of C_6 , as desired.

Proof of Theorem 1.10. Let $\mathcal{F} \subseteq {n \brack k}$ be a family of subsets such that $K(n,k)[\mathcal{F}]$ is C_{2s} -free, $\ell(\mathcal{F}) \geq 3$ and $|\mathcal{F}| = {n-1 \choose k-1} - {n-2k \choose k-1} + (k^2+1){n-3 \choose k-3}$.

Case I:
$$\ell(\mathcal{F}) \le 20s2^k {\binom{n-1}{k-1} - \binom{n-2k}{k-1}}^{\frac{s+1}{2s}}$$
.

Let $H_1, H_2, \ldots, H_{\ell(\mathcal{F})}$ be sets in \mathcal{F} such that $\mathcal{F}' := \mathcal{F} \setminus \{H_1, H_2, \ldots, H_{\ell(\mathcal{F})}\}$ is intersecting. Then as $|\mathcal{F}'| \geq \binom{n-1}{k-1} - \binom{n-2k}{k-1} + (k^2+1)\binom{n-3}{k-3} - 20s2^k(\binom{n-1}{k-1} - \binom{n-2k}{k-1})^{\frac{s+1}{2s}} > \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1$, Theorem 1.2 implies that the sets in \mathcal{F}' share a common element x. The H_i 's do not contain this x, since \mathcal{F}' is a maximal intersecting family in \mathcal{F} . Let us define the following auxiliary graph Γ with vertex set $\{H_1, H_2, \ldots, H_s\}$: two sets H_i, H_j are adjacent if and only if there exist s sets in \mathcal{F}' that are disjoint from $H_i \cup H_j$. Observe that if Γ contains a Hamiltonian cycle, then \mathcal{F} contains a copy of C_{2s} . Indeed, if $H_{\sigma(1)}, H_{\sigma(2)}, \ldots, H_{\sigma(s)}$ is a Hamiltonian cycle, then for any pair $H_{\sigma(i)}, H_{\sigma(i+1)}$ (with s+1=1) we can greedily pick different sets $F_i \in \mathcal{F}'$ with $F_i \cap (H_{\sigma(i)} \cup H_{\sigma(i+1)}) = \emptyset$ to get $H_{\sigma(1)}, F_1, H_{\sigma(2)}, F_2, \ldots, H_{\sigma(s)}, F_s$ a copy of C_{2s} in $K(n,k)[\mathcal{F}]$. Therefore the next claim and Dirac's theorem [4] finishes the proof of Case I.

Claim 2.6. The minimum degree of Γ is at least s-2.

Proof of Claim. First note that if H_i and H_j are not joined in Γ , then they must be disjoint. Indeed, otherwise $|H_i \cup H_j| \leq 2k-1$ and as $|\mathcal{F}'| \geq \binom{n-1}{k-1} - \binom{n-2k}{k-1} + s$, there are at least s sets in \mathcal{F}' avoiding $H_i \cup H_j$. Now assume for contradiction that H_1 is not connected to H_2 and H_3 , so in particular $H_1 \cap (H_2 \cup H_3) = \emptyset$. Observe the following

- there are at most s-1 sets in \mathcal{F}' that avoid $H_1 \cup H_2$ and another s-1 sets avoiding $H_1 \cup H_3$,
- as $|H_1 \cup (H_2 \cap H_3)| \leq 2k-1$, there are at most $\binom{n-1}{k-1} \binom{n-2k}{k-1}$ sets in qcF' that meet $H_1 \cup (H_2 \cap H_3)$.

So there are at least $(k^2+1)\binom{n-3}{k-3}-20s2^k(\binom{n-1}{k-1}-\binom{n-2k}{k-1})^{\frac{s+1}{2s}}$ sets of \mathcal{F}' containing at least one element $h_2 \in H_2 \setminus H_3$ and one element $h_3 \in H_3 \setminus H_2$. Since the number of such pairs is at most k^2 , there exists a pair h_2, h_3 such that the number of sets in \mathcal{F}' containing both h_2, h_3 is more than $\binom{n-3}{k-3}$. But this is clearly impossible as the total number of k-sets containing x, h_2, h_3 is $\binom{n-3}{k-3}$.

Case II:
$$\ell(\mathcal{F}) \ge 20s2^k {\binom{n-1}{k-1} - \binom{n-2k}{k-1}}^{\frac{s+1}{2s}}$$
.

By Lemma 2.3 $K(n,k)[\mathcal{F}]$ contains at least $\frac{400s^22^{2k}}{2\binom{2k}{k}}(\binom{n-1}{k-1}-\binom{n-2k}{k-1})^{\frac{s+1}{s}} > 100s|\mathcal{F}|^{1+1/s}$ edges, and thus by Theorem 2.2 it contains a copy of C_{2s} .

Funding: Research supported by the ÚNKP-17-3 New National Excellence Program of the Ministry of Human Capacities, by National Research, Development and Innovation Office - NKFIH under the grants SNN 116095 and K 116769, by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences and the Taiwanese-Hungarian Mobility Program of the Hungarian Academy of Sciences.

References

- [1] M.E. ALISHAHI, A. TAHERKHANI. Extremal G-free induced subgraphs of Kneser graphs, Journal of Combinatorial Theory, Series A, 159 (2018) 269–282.
- [2] J. BALOGH, B BOLLOBÁS, B.P. NARAYANAN. Transference for the Erdős–Ko–Rado theorem, Forum of Mathematics, Sigma, 3 (2015) e23.
- [3] A. Bondy, M. Simonovits, Cycles of even length in graphs. Journal of Combinatorial Theory, Series B 16, (1974) 97-105.
- [4] G.A. DIRAC, Some theorems on abstract graphs, Proceedings of the London Mathematical Society, 3rd Ser., 2 (1952) 69-81.
- [5] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, Discrete Applied Mathematics, 216 (2017), 562-581.
- [6] P. Frankl, Improved bounds for Erdős matching conjecture, Journal of Combinatorial Theory, Series A, 120(5) (2013), 1068-1072.
- [7] P. Frankl, A. Kupavskii, Two problems of P. Erdős on matchings in set families, (2016) arXiv preprint arXiv:1607.06126.
- [8] D. Gerbner, N. Lemons, C. Palmer, B. Patkós, and V. Szécsi, Almost intersecting families of sets, SIAM Journal on Discrete Mathematics, 26 (2012), 1657-1669.
- [9] A.J. HILTON, E.C. MILNER, Some intersection theorems for systems of finite sets, The Quarterly Journal of Mathematics, 18(1) (1967), 369-384.
- [10] G.O.H. KATONA, D.T. NAGY Union-intersecting set systems, Graphs and Combinatorics, 31(5) (2015), 1507-1516.
- [11] T. KŐVÁRI, V. SÓS, P. TURÁN, On a problem of K. Zarankiewicz, Colloquium Mathematicae, 3 (1954) 50-57.