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Abstract. Horn functions form an important subclass of Boolean functions and appear in many
different areas of computer science and mathematics as a general tool to describe implications and

dependencies. Finding minimum sized representations for such functions with respect to most com-
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1
monly used measures is a computationally hard problem admitting a 2108 inapproximability

bound.

In this paper we consider the natural class of key Horn functions representing keys of relational
databases. For this class, the minimization problems for most measures remain NP-hard. In this
paper we provide logarithmic factor approximation algorithms for key Horn functions with respect
to all such measures.
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1. Introduction. A Boolean function of n variables is a mapping from {0,1}"
to {0,1}. Boolean functions naturally appear in many areas of mathematics and com-
puter science and constitute a principal concept in complexity theory. In this paper we
shall study an important problem connected to Boolean functions, a so called Boolean
minimization problem, which aims at finding a shortest possible representation of a
given Boolean function. The formal statement of the Boolean minimization problem
(BM) of course depends on (i) how the input function is represented, (ii) how it is
represented on the output, and (iii) the way the output size is measured.

One of the most common representations of Boolean functions are conjunctive
normal forms (CNFs), the conjunctions of clauses which are elementary disjunctions
of literals. There are two usual ways how to measure the size of a CNF: the number
of clauses and the total number of literals (sum of clause lengths). It is easy to see
that BM is NP-hard if both input and output is a CNF (for both above mentioned
measures of the output size). This is an easy consequence of the fact that BM contains
the CNF satisfiability problem (SAT) as its special case (an unsatisfiable formula can
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be trivially recognized from its shortest CNF representation). In fact, BM was shown
to be probably harder than SAT: while SAT is NP-complete (i.e. ¥}-complete [11]),
BM is X-complete [29] (see also the review paper [30] for related results). It was
also shown that BM is ¥5-complete when considering Boolean functions represented
by general formulas of constant depth as both the input and output for BM [8]. A
O(n'~¢)-inapproximability result was given in [28].

Horn functions form a subclass of Boolean functions which plays a fundamental
role in constructive logic and computational logic. They are important in automated
theorem proving and relational databases. An important feature of Horn functions
is that SAT is solvable for this class in linear time [15]. A CNF is Horn if every
clause in it contains at most one positive literal, and it is pure Horn (or definite Horn
in some literature) if every clause in it contains exactly one positive literal. Such a
positive literal is then called the head of the given clause and the set of all negative
literals is called the body of the clause (we often identify the body of a clause with
the set of variables with negative occurrences especially if we view the clause as an
implication in which the body implies the head). A Boolean function is (pure) Horn,
if it admits a (pure) Horn CNF representation. Pure Horn functions represent a
very interesting concept which was studied in many areas of computer science and
mathematics under several different names. The same concept appears as directed
hypergraphs in graph theory and combinatorics, as implicational systems in artificial
intelligence and database theory, and as lattices and closure systems in algebra and
concept lattice analysis [9].

Ezample 1.1. Consider a pure Horn CNF & = (@VvbVeVd)A(dVe)A(dV f)A(dV
g)A(EVfVgVva)A(eV fVvgVb)A(eV fvgVce) on variables a, b, ¢, d, e, f, g, where @ stands
for the negation of a, etc. The CNF @ can be viewed equivalently as a directed hyper-
graph H = (V, &) with vertex set V = {a,b,¢c,d,e, f, g} and directed hyperarcs & =
{({a,b,c},d), ({d}, e), ({d}, f), ({d}. 9), ({e. £, 9}, ), ({e, f,9}.0), ({e, f, 9}, ¢)}. This
latter can be expressed more concisely using a generalization of adjacency lists for
ordinary digraphs in which all hyperarcs with the same body (also called source)
are grouped together {a,b,c} : d;{d} : e, f,g;{e, f,g} : a,b,c, or can be repre-
sented as an implicational (closure) system on variables a,b,c¢,d,e, f,g defined by
rules abc — d,d — efg,efg — abc.

Interestingly, in each of these areas the problem similar to BM, i.e. a problem
of finding the shortest equivalent representation of the input data (CNF, directed
hypergraph, set of rules) was studied. For example, such a representation can be
used to reduce the size of knowledge bases in expert systems, thus improving the
performance of the system. The above examples show that a “natural” way how to
measure the size of the representation depends on the area. Six different measures
and corresponding concepts of minimality were considered in [2,12]: (B) number of
bodies, (BA) body area, (TA) total area, (C) number of clauses, (BC) number of
bodies and clauses, and (L) number of literals. For precise definitions, see Section 2.
With a slight abuse of notation we shall use (B), (BA), (TA), (C), (BC) and (L) to
denote both the measures and the corresponding minimization problems.

The only one of these six minimization problems for which a polynomial time
procedure exists to derive a minimum representation is (B). The first such algorithm
appeared in the database theory literature [23]. Different algorithms for the same
task were then independently discovered in hypergraph theory [2], and in the theory
of closure systems [18].

For the remaining five measures it is NP-hard to find the shortest representation.
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There is an extensive literature on the intractability results in various contexts for
these minimization problems [2,19,23]. It was shown that (C) and (L) stay NP-hard
even when the inputs are limited to cubic (bodies of size at most two) pure Horn
CNFs [6], and the same result extends to the remaining three measures. Note that
if all bodies are of size one then the above problems become equivalent with the
transitive reduction of directed graphs, which is tractable [1]. It should be noted that
there exists many other tractable subclasses, such as acyclic and quasi-acyclic pure
Horn CNFs [20], and CQ Horn CNFs [5]. There are also a few heuristic minimization
algorithms for pure Horn CNFs [4].

It was shown that (C) and (L) are not only hard to solve exactly but even hard
to approximate. More precisely, [3] shows that these problems are inapproximable
within a factor 2°¢' *(") assuming NP C DTIM E(nP°'°9(") where n denotes the
number of variables. In addition, [7] shows that they are inapproximable within a

factor 218" "' n assuming P C N P even when the input is restricted to 3-CNF's with
O(n'*¢) clauses, for some small ¢ > 0. It is not difficult to see that the same proof
extends to (BC) and (TA) as well. On the positive side, (C), (BC), (BA), and (TA)
admit (n — 1)-approximations and (L) has an (})-approximation [19]. To the best of
our knowledge, no better approximations are known even for pure Horn 3-CNFs.

Given a relational database, a key is a set of attributes with the property that a
value assignment to this set uniquely determines the values of all other attributes [24,
27]. The concept of a key is essential for standard database operations. A relational
database uniquely defines a pure Horn function h over the set of attributes, represent-
ing the so-called functional dependencies of the database. An implicate B — v of h
represents the fact that the knowledge of the attribute values in set B uniquely defines
the value for attribute v. If K is a key of the database, then K — v is an implicate of
h for all attributes v. Motivated by this, we say that a pure Horn CNF is key Horn if
each of its bodies implies all other variables, that is, setting all variables in any of its
bodies to one forces all other variables to one. A Boolean function is called key Horn
if it has a key Horn CNF representation. Key Horn functions are natural concepts to
represent the keys of relational databases. They generalize the well studied class of
hydra functions considered in [25]. For this special class, in which all bodies are of size
two, a 2-approximation algorithm for (C) was presented in [25] while the NP-hardness
for (C) was proved in [22]. The latter result implies NP-hardness for hydra functions
also for (BC), (TA), and (L). It is also easy to see that (B) and (BA) are trivial in
this case.

In this paper we consider the minimization problems for key Horn functions. Any
irredundant representation of a key Horn function has the same set of bodies, implying
that problems (B) and (BA) are in P. We show that a simple algorithm gives a kz—ﬁ—
approximation for (TA) and a k-approximation for (C), (BC), and (L), where k is the
size of a largest body. Our paper contains two main results. The first one gives a
min{[logn] + 1, [log k] + 2}-approximation bound for key Horn functions for (C) and
(BC) which is significantly better than the (n — 1)-approximation bound known for
general Horn functions. The second result improves the (g)—approximation bound for
(L) to 1% [log k] + 2. Table 1 summarizes the state of the art of Horn minimization
and the results presented in this paper for key Horn functions.

The structure of our paper is as follows: Section 2 introduces the necessary defini-
tions and notation, Section 3 provides lower bounds for the measures we introduced,
while Section 4 contains our results on approximation algorithms. For the (L) mea-
sure, our approach in Section 4 relies on approximating a solution to a subproblem
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TABLE 1
Complexity landscape of Horn and key Horn minimization, where the bold letters represent the
results obtained in this paper. Here n and k respectively denote the number of variables and the size
of a largest body. All problems except those labeled by P are NP-hard. Inapproximability bounds for
Horn minimization hold even when the size of the bodies are bounded by k (> 2).

Measure Horn Key Horn
Inapprox. Approx. Inapprox. Approx.
(B) P [23] p (23]
(BA) 1@ n— 10 P
(TA) | 2oe' @ | oo 1 (22 2o
(©) | et @ g | q e min{[logn] + 1, [log k] + 2, k}
(BC) | 2ee T o 1 1221 min{[logn] + 1, [log k] + 2, k}
ORI IR min{ 108 [log k] + 2, k}

which is shown to be NP-hard in Section 5. Finally, Section 6 discusses the rela-
tion of our approach to the problem of finding a minimum weight strongly connected
subgraph.

2. Preliminaries. Let V denote a set of variables. Members of V' are called
positive literals while their negations are called megative literals. Throughout the
paper, the number of variables is denoted by n = |V|. A Boolean function is a
mapping f : {0,1}V — {0,1}. The characteristic vector of a set Z is denoted by xz,
that is, xz(v) =1 if v € Z and 0 otherwise. We say that a set Z C V is a true set of
fif f(xz) =1, and a false set otherwise.

For a subset ) # B C V and v € V \ B we write B — v to denote the pure
Horn clause C' = vV \/,czu. We can consider such a clause to be an implication
as if all variables in B are set to true in a true assignment then v must be true as
well. Here B and v are called the body and head of the clause, respectively. That is,
a pure Horn CNF can be associated with a directed hypergraph where every clause
B — v is considered to be a directed hyperarc oriented from B to v. The set of
bodies appearing in a pure Horn CNF representation ® is denoted by Bg. We will
also use the notation B — H to denote A\ ., B — v. By grouping the clauses with
the same body, a pure Horn CNF & = /\B€B¢ /\UGH(B) B — v can be represented as
Apes, B — H(B). The latter representation is in a one-to-one correspondence with
the adjacency list representation of the corresponding directed hypergraph.

For any pure Horn function A the family of its true sets is closed under taking
intersection (see Lemma 4.5 in [13]) and clearly contains V. This implies that for
any non-empty set Z C V there exists a unique minimal true set containing Z. This
set is called the closure of Z and we denote it by Fp,(Z). If ® is a pure Horn CNF
representation of h, then Fj,(Z) can be computed in linear time in the size of ® [15].
Note that the resulting closure F,(Z) depends only on the set Z and the Horn function
h, and not on the particular CNF ® we use to represent h. It is important to note here
that h : {0,1}V — {0,1} is a function that exists independently of its representations.

This manuscript is for review purposes only.
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It can be represented, in particular, by CNFs, and typically by many different ones.
In our algorithmic approach to generate a better (shorter) CNF representation of a
Horn function, that is represented by a given CNF on the input, we shall rely on
certain invariants that in fact depend only on the function and not on its particular
representation.

One such invariant is the closure of a subset, defined above. The algorithm,
computing the closure F}(Z) of a subset Z using a given CNF representation ® of
h, is also called the forward chaining procedure (see e.g., [12]). Informally speaking,
this algorithm starts with the set Z and as long as there exists a clause in ® with
its body contained in the current set and its head outside of the current set, the
head is added to the current set. More formally the procedure can be described as
follows. We start with F2(Z) := Z. In a general step, if Fi(Z) is a true set then we
output F,(Z) = Fi(Z) and stop. Otherwise, let A C V \ F£(Z) denote the set of all
variables v for which there exists a clause B — v in ® with B C Fi(Z) and define
Fit'(Z) := Fi(Z) U A. Note that any CNF & uniquely defines a Horn function, and
sometimes we do not have separate notation for that function. In such cases we shall
also use Fg(Z) to denote the closure of subset Z with respect to the Horn function
represented by ®.

DEFINITION 2.1. A pure Horn function h is key Horn if it has a CNF represen-
tation of the form \gey B — (V \ B) for some B C 2V \ {V}. In such a case we
shall refer to h as hg.

Assume now that ® is a pure Horn CNF of the form /\:11 B; — H; where B; # B;
for i # j. Note that the number of clauses in the CNF is cg = Y.~ |H;|. The size of
the formula can be measured in different ways:

(B) number of bodies: |®|g :=m,

(BA) body area: |®|ga:=) .-, |Bil,

(TA) total area: |®|ra :=> 1" (|Bi| + |Hil),

(C) number of clauses (i.e., hyperarcs): |®|c := cg,

(BC) number of bodies and clauses: |®|pc :=m+co = >, (|H;i|+1),
(L) number of literals: |®[, := >, ((|B;|+ 1) - |H,|).

These measures come up naturally in connection with directed hypergraphs, im-
plicational systems, and CNF representations. For example, (L) corresponds to the
size of a CNF when encoded in DIMACS format, a format that is widely accepted as
the standard format for Boolean formulas in CNF. The number of clauses (C) is an
important parameter for SAT solvers when the Horn formula in question encodes a
constraint which is part of a larger problem. Similarly, (TA) is the space needed to
store an adjacency list of the corresponding hypergraph, and might be an important
parameter for an efficient implementation. The Horn minimization problem is to find
a representation that is equivalent to a given Horn formula and has minimum size
with respect to | - |« where x denotes one of the aforementioned functions.

Ezxample 2.2. Consider the CNF @ introduced in Example 1.1 written as a con-
junction of implications ® = (abc — d) A (d — efg) A (efg — abc). Note that ® rep-
resents the key Horn function hg defined by the system of bodies B = {{a, b, ¢}, {d},
{e, f,g}}. The CNF ® has m = 3 different bodies, thus |®|p = 3. Furthermore, it
has body area |®|g4 = 7, total area |®|74 = 14, number of clauses |®|c = 7, number
of bodies and clauses |®|gc = 3+ 7 = 10, and number of literals |®|;, = 22. Since
every variable occurs exactly once as a positive literal (or as a head of some clause)
in ®, we can conclude that ® has the smallest number of clauses among the repre-
sentations of hg. However, it is not optimal with respect to the number of literals.

This manuscript is for review purposes only.
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Consider the equivalent formula ® = (abc — d) A (efg — d) A (d — abeefg) which
has only |®’|;, = 20 literals. On the other hand, ®" consists of 8 clauses which is
not optimal with respect to the number of clauses. This example demonstrates that
different measures may be optimized by different CNF formulas.

3. Lower bounds for the size of optimal solutions. The present section
provides some simple reductions of the problem and lower bounds for the size of an
optimal solution. For a family B C 2V \ {V'}, we denote by B+ the family of minimal
elements of B. Recall that hi denotes the function defined by

(3.1) Ug= /\ B—(V\B).
BeB

LEMMA 3.1. For any measure () and for any B C 2V \ {V'}, there exists a | - |.-
minimum representation of hg that uses exactly the bodies in B+.

Proof. Take a | - |,-minimum representation ® for which |Bg \ B*| is as small as
possible. First we show By C BY. Assume that B € By \ B-. As B is a false set
of hy, there must be a clause B’ — v in Uy that is falsified by yp, implying that
B’ C B. Therefore there exists a B” € BL such that B” C B’ C B. If we substitute
every clause B — v of ® by B” — v, then we get another representation of hy since
B"” — v is a clause of . Meanwhile, the | - |, size of the representation does not
increase while |Bg \ B*| decreases, contradicting the choice of ®.

Next we prove Bg D B*. If there exists a B € B+ \ Bg, then B is a true set of ®
while it is a false set of hg, contradicting the fact that ® is a representation of hg. O

Recall that a Sperner family is family of subsets of a finite set in which none of
the sets contains another. Lemma 3.1 has an easy corollary.

COROLLARY 3.2. It suffices to consider Sperner families of bodies defining key
Horn functions as an input. Moreover, it is enough to consider pure Horn CNF's using
bodies from the input Sperner family when searching for minimum representations.

For non-key Horn functions, this is not the case. For example, the function defined
by implications a — b, ac — d has five false sets, namely {a}, {a,c}, {a,d}, {a,c,d},
{a,b,c}. Clearly, {a} has to appear as a body in any representation of the function
together with at least one of the other false sets as a body, although it is contained
in the other.

From now on we assume that B is a Sperner family. We also assume that

UB:V and ﬂB:(b.

BeB BeB

Indeed, if a variable v € V' \ [Jpgz B is not covered by the bodies, then there must
be a clause with head v and body in B in any minimum representation of hg, and
actually one such clause suffices. Furthermore, if v € [\zcp B, then we can reduce
the problem by deleting it. None of these reductions affects the approximability of
the problem.

Recall that the size of the ground set is denoted by |V| = n, while |B| = m.
The size of an optimal solution with respect to measure function | - |, is denoted by
OPT,(B). Using these notations Lemma 3.1 has the following easy corollary:

COROLLARY 3.3. We have OPTg(B) = m and OPTpa(B) =) 5.5|B|. There-
fore the minimization problems (B) and (BA) are solvable in polynomial time.

This manuscript is for review purposes only.
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For the remaining measures we prove the following simple lower bound.

LEMMA 3.4. OPT.(B) > m for all measures x, and OPT.(B) > n for x €
{TA,C,BC,L}. Furthermore, we have OPTrs(B) > m+>_1", |B;| and OPTL(B) >
max{n(d + 1),2m}, where ¢ is the size of a smallest body in B.

Proof. By definition, |- |p is a lower bound for all the other measures, implying
OPT.(B) > OPTg(B) = m.

To see the second part, observe that | - | is a lower bound for the three other
measures. Therefore it suffices to prove OPT¢(B) > n. By the assumption that for
every v € V there exists a B € B not containing v, we can conclude by the fact that
the closure F},,(B) = V and by the way the forward chaining procedure works that
every pure Horn CNF representation of hp must contain at least one clause with v as
its head. This implies OPT¢(B) > n.

To see the last part, note that every set B € B is the body of at least one clause,
verifying the lower bound for (TA). Every variable v € V' is the head of at least one
clause, the body of which is of at least size § > 1. Since all clauses are of size at least
2, the bound for (L) follows. |

Let us now introduce a key concept of this paper. For a pair S,T C V of sets,
we denote by price,(S,T) the minimum | - |.-size of a pure Horn CNF & for which
Bs CBand T C Fg(S5), that is,

(3.2) price, (S, T) = ngn{@\* | B € B, T C Fg(S5)}.

Ezample 3.5. Let us consider the set of bodies B = {{a, b, c},{d},{e, f,g}} and
let us consider S = {a,b,c} and T = {e, f,g}. It is easy to see that price~(S,T) =3
and that it is realized by a single implication abc — efg. Actually, as we will show
later in Lemma 4.3, we always have that price(S,T) = |T \ S| provided S,T € B.
However, estimating price; (S,T) is a bit more tricky. Considering the above single
implication abc — efg we get that price; (S,T) < 12. We can do better by using the
small body d. In particular, using implications (abc — d) A (d — efg) we achieve the
optimum value price; (S,T) = 10.

The following lemma plays a principal role in our approximability proofs.

LEMMA 3.6. Let B = By U --- U By be a partition of B and let B; € B; for
i=1,...,q9. Then

(3.3) OPT.(B) > imin{price*(Bz‘7 B) | B e B\ B;}
i=1

for all siz measures *.

Proof. Take a minimum representation ® with respect to | - |« which uses bodies
only from B. Such a representation exists by Lemma 3.1. We claim that the contribu-
tion of the clauses with bodies in B; to the total size of ® is at least min{price, (B;, B) |
B € B\ B;} for each i = 1,...,q. This would prove the lemma as the B;’s form a
partition of B.

To see the claim, take an index ¢ € {1,...,q} and let B’ be the first body (more
precisely, one of the first bodies) not contained in B; that is reached by the forward
chaining procedure from B; with respect to ®. Every clause that is used to reach B’
from B; has its body in B; and their contribution to the size of the representation is
lower bounded by price,(B;, B'), thus concluding the proof. d

This manuscript is for review purposes only.
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4. Approximability results for (TA), (C), (BC), and (L). Given a Sperner
family B C 2\ {V}, we can associate with it a complete directed graph D by defining
V(Dp) = B and E(Dp) = B x B. We refer to Dg as the body graph of B.

For any subset E' C E(Dg), define

(4.1) ®p= [\ B—(B'\B).
(B,B’)EE’

Note that if E' C F(Dg) forms a strongly connected spanning subgraph of Dg, then
®p is a representation of hi. Let us add that not all representations arise this way,
in particular, minimum representations might have significantly smaller size.

LEMMA 4.1. If E' is a Hamiltonian cycle in Dg, then ®g defined in (4.1) pro-
vides a k-approximation for all measures, where k is an upper bound on the sizes of
bodies in B.

Proof. By Lemma 3.1, there exists a minimum representation ® of hg such that
By = B. Since |B’\ B is at most k for all arcs (B, B’) € E’, the statement follows.O

In fact, for (B) and (BA) (4.1) gives an optimal representation for any strongly

connected spanning E’. Furthermore, if E’ is a Hamiltonian cycle, we get a f—_fl—
approximation for (TA) based on the fact that the total area of any representation is

lower bounded by 5.z |B].

THEOREM 4.2. If E’ is a Hamiltonian cycle in Dg, then ®p: defined in (4.1)

provides a kafl-appm:cimation for (TA), where k is an upper bound on the sizes of
bodies in B.

Proof. By Lemma 3.4, OPTra(B) > m+ > ", |B;|. Recall that |B;| < k for i =
1,...,m. Thetotal area of @ is [P/ |ra = > 1w (|Bil+|Bis1\Bi|) < m+>_1", |Bi|+
S (|1Bil = 1) < OPTpa(B) + $770PTpa(B) = 25 0PTpa(B), concluding the
proof. ]

The observation that a strongly connected subgraph of the body graph corre-
sponds to a representation of hg, as in (4.1), suggests the reduction of our problem
to the problem of finding a minimum weight strongly connected spanning subgraph
in a directed graph with arc-weight price, (B, B’) for (B, B’) € E(Dg). The optimum
solution to this problem (MWSCS) is an upper bound for the minimum | - |.-size
of a representation of hg. As there are efficient constant-factor approximations for
MWSCS [17], this approach may look promising. There are, however, two difficulties.
First, in Section 5 we show that computing price; is NP-complete. Second, even
when price, is efficiently computable (for measures (C) and (BC)), the upper bound
obtained in this way may be off by a factor of Q(n) from the optimum, see Section 6
for a construction.

In what follows, we overcome these difficulties. An in-arborescence is a directed,
rooted tree in which all edges point towards the root. An in-arborescence is called
spanning if the underlying tree is spanning. A branching is a directed forest in which
every connected component forms an in-arborescence. For (C), instead of a strongly
connected spanning subgraph, we compute a minimum weight spanning in-arbores-
cence and extend that to a representation of hz. The same approach works for (BC)
as well. For (L), the situation is more complicated. First, we develop an efficient
approximation algorithm for price;. Next, we compute a minimum weight spanning
in-arborescence where its root is pre-specified. Finally, we extend the corresponding
pure Horn CNF to a representation of hiz. We show that the cost of the arborescences
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APPROXIMATING MINIMUM REPRESENTATIONS OF KEY HORN FUNCTIONS 9

built is at most a multiple of the optimum by a logarithmic factor, which in turn
ensures the improved approximation factor.

4.1. Clause and body-clause minimum representations. In this section
we consider (C) and (BC) and show that the simple algorithm described in Procedure
1 provides the stated approximation factor. We note that a minimum weight spanning
in-arborescence of a directed graph can be found in polynomial time, see [10, 16].

Procedure 1: Approximation of (C) and (BC)

1 Determine a minimum price-weight spanning in-arborescence T of Dpg.
/* Denote by By the body corresponding to the root of T. */

2 Output ® = &7 A By — (V' \ By).
/* Here ®7 is defined as in (4.1). */

Observe that prices is easy to compute.
LEMMA 4.3. price-(B,B") =|B'\ B| for B, B’ € B.

Proof. Take a pure Horn CNF & attaining the minimum in (3.2). As every
variable in B’ \ B is reached by the forward chaining procedure from B with respect
to ®, each such variable must be a head of at least one clause in ®. That is, ¢ contains
at least | B\ B| clauses. On the other hand, B — (B’\ B) uses exactly |B’\ B| clauses,
hence price~(B, B’') = |B’ \ B| as stated. d

LEMMA 4.4. Let T denote a minimum price-weight spanning in-arborescence in
Dg. Then

|®7|c < [log k]OPTc(B) + max{0,m — k},

where k is an upper bound on the sizes of bodies in B.

Proof. We construct a subgraph T of Dp such that (i) it is a spanning in-
arborescence, and (i) |®r|c < [logk]OPT¢(B) + max{0,m — k}. This proves the
lemma as the weight of 7' upper bounds the weight of 7.

We start with the digraph 77 on node set B that has no arcs. In a general step of
the algorithm, T; will denote the graph constructed so far. We maintain the property
that T; is a branching, that is, a collection of node-disjoint in-arborescences spanning
all nodes. In an iteration, for each such in-arborescence we choose an arc of minimum
weight with respect to price, that goes from the root of the in-arborescence to some
other component. We add these arcs to T;, and for each directed cycle created, we
delete one of its arcs. This results in a graph T;,; with at most half the number of
weakly connected components that T; has, all being in-arborescences. We repeat this
until the number of components becomes at most max{1,m/k}. To reach this, we need
at most [log k] iterations. Finally, we choose one of the roots of the components and
add an arc from all the other roots to this one, obtaining a spanning in-arborescence
T.

It remains to show that 7" also satisfies (ii). In the final stage, we add at most
max{1,m/k} — 1 arcs to T, which corresponds to at most k(max{1l,m/k} — 1) <
max{0, m—k} clauses in ®7. Now we bound the rest of ®7. In iteration 7, components
of T; define a partition B = B;U---UB,. Let us denote by B; the body corresponding
to the root of the arborescence with node-set B;. Let us consider the arcs {(B;, Bj) |
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j=1,...,q} chosen to be added in the ith iteration. Now we obtain

|(I)Ti+l\Ti

q q
c < Zp?"z‘ceC(Bj7 B)) = Zng{IBj pricec(Bj, B) < OPT¢(B).
j=1

Jj=1

The first inequality follows from the construction of T. The equality follows from the
criterion to choose the arcs to be added. The last inequality follows from Lemma 3.6.
Since we have at most [log k] iterations, the lemma follows. |

THEOREM 4.5. For key Horn functions, there exists a polynomial time
min{[logn] +1, [log k] + 2, k}-approzimation algorithm for (C) and (BC), where k is
an upper bound on the sizes of bodies in B.

Proof. We first show that ® provided by Procedure 1 is a min{[logn] + 1, [log k|
+ 2}-approximation for (C) and (BC). Note that ® is a subformula of Uy defined by
(3.1) since all bodies in ® are from B. Furthermore, by our construction, Fg(B) =V
for all B € B. This implies that the output ® represents hi. Using Lemma 4.4 and
the fact that we added |V \ By| < n clauses to @7 in Step 2, we obtain

|®|c < [log k|OPT¢(B) + max{0,m — k} + n.

By Lemma 3.4, this gives a ([logk] + 2)-approximation, while setting k = n gives a
([logn] + 1)-approximation. By Lemma 3.1, OPTpc(B) = |B| + OPT¢(B). Since
|®|pc = |B] + |®|c, the same approximation ratios as above follow for (BC) as well.

Finally, Lemma 4.1 provides a different pure Horn CNF that is a k-approximation
for (C) and (BC). O

4.2. Literal minimum representations. In this section we consider (L). The
first difficulty that we have to overcome is that, unlike in the case of (C) and (BC),
computing price;, is NP-hard as we show in Section 5. To circumvent this, we give an
O(1)-approximation algorithm for price (S, S’) for any pair of sets 5,5’ C V. Note
that if S does not contain a body B € B then price; (S, S") = oo, hence we assume
that this is not the case.

We first analyze the structure of a pure Horn CNF & attaining the minimum in
(3.2) for (L). Starting the forward chaining procedure from S with respect to @, let
W; denote the set of variables reached within the first ¢ steps. That is, S = Wy C
Wy C - C Wy 25, We choose ® in such a way that ¢ is as small as possible (among
those pure Horn CNFs that already minimize (3.2) for (L)). Let B; € B be a smallest
body contained in W; for : =0,...,t — 1 and set By := 5’.

PROPOSITION 4.6. B; £ W;_1 fori=1,...,t.

Proof. Suppose to the contrary that B; € W;_; for some 1 < i < t —1. By
the definition of forward chaining, every variable v € W, 1 \ W; is reached through a
clause B — v where BN(W;\ W;_1) # . Now substitute each such clause by B; — v.
As |B;| < |B|, the | - |, size of the CNF does not increase. However, the number of
steps in the forward chaining procedure decreases by at least one, contradicting the
choice of ®. Finally, S’ = B; C W;_; would contradict the minimality of ¢. O

Proposition 4.6 immediately implies that |Bg| > |B1| > ... > |Bi_1].
PROPOSITION 4.7. W1 \ W; C Biyq for i =0,...,t—1.

Proof. Let ¢ be the smallest index that violates the condition. Take an arbitrary
variable v € W1 \ W; for which v € B;y1. Then v is reached in the (i + 1)th step
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APPROXIMATING MINIMUM REPRESENTATIONS OF KEY HORN FUNCTIONS 11

of the forward chaining procedure from a body of size at least |B;|. If we substitute
this clause by B;y1 — v, the resulting pure Horn CNF still satisfies Fg(Bg) 2 5" but
has smaller | - |, size by |B;t+1| < |B;|, contradicting the minimality of ®. ad

By Proposition 4.7, Wit1 \ W; = Bi1 \ (SUUS_, B;). Define

t—1 i
o= A B; = (Bij1 \ (SU | B))).
i=0 j=1

Observe that ®) has a simple structure which is based on a linear order of bodies
By, ..., B;.

PROPOSITION 4.8. [®(M|, = |®|p.

Proof. Take an arbitrary variable v € B;11\(SUU;_, B;) for somei = 0,...,t—1.
By the observation above, v € W; ;1 \ W;. This means that ® has at least one clause
entering v, say B — v, for which B C W; and so |B| > |B;|. However, ®®") has
exactly one clause entering v, namely B; — v. This implies that |®(M|, < |®|r, and
equality holds by the minimality of ®. ]

The proposition implies that ®(1) also realizes price; (S, S’). As we show later
in Theorem 5.8, computing price; (S, S’) is NP-hard and thus we do not know any
efficient algorithm to compute ®1). Using the next two propositions, we define a pure
Horn CNF that approximates ®() well and can be computed efficiently. We then use
it to show in Theorem 4.13 that there is a polynomial time ©(logk) approximation
algorithm for (L).

Let i9 = 0 and for j > 0 let i; denote the smallest index for which |Bij| <
|Bi,_,|/2. Let r — 1 be the largest value for which B exists and set B; := 5’.
Now define

7;7‘—1

r—1 J
o®:= A\ B, = (Bi,,, \(SUJB.,)).
j=0 =1

It is easy to see that Fge2) (S) 2 5.
PROPOSITION 4.9. [®2)|, < 2[0W)|,.

Proof. Take an arbitrary variable v € B, \ (S U U%:l B;,) for some j =

0,...,7 — 1. Then both ®@1) and ®® contain a single clause entering v. Namely,
v is reached from B; 1 in &M and from B;, in ®®2). By the definition of the
sequence ig, i1, ...,4—1, we get |B;,| < 2|B;,,, 1|, concluding the proof. d

Although ®®) gives a 2-approximation for |®|z, it is not clear how we could find
such a representation, because bodies B;;, j = 0,...,7 —1 depend on ® which is hard
to compute. Define

r—1
o) .= /\ B, = (Bi,,, \ (SUB,)).
j=0

The only difference between ®) and &) is that we add unnecessary clauses to the
representation. The distinguishing feature of ®(®) is that each of its implications
depends only on two bodies B;; and B;,,,, and thus ®®) represents a path from a
body contained in S to S’ in the body graph extended with a new node S’. This will
allow us to obtain a CNF which is not longer than ®®) and allows to derive S’ from
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S by forward chaining (see Lemma 4.11). The next claim shows that the size of the
formula cannot increase too much.

PROPOSITION 4.10. [@®)|, < 2119(3)|,.

Proof. Take an arbitrary variable v that appears as the head of a clause in the
representation ®®). Let j be the smallest index for which v € B;,,, \ (SUUj_, Bs,)-
Then &) contains a single clause entering v, namely B;; — v. On the other hand,
the set {B;, — v}U{B;, = v | €= j+2,...,r—1} contains all the clauses of ) that
enter v. By the definition of the sequence g, 41, .. .,%r—1, We get ZZ;;+2(|BQ‘ +1) =
(T _j - 2) + ZZ;;JFQ |Biz| < Llog |Bij+1 H + |Bij ‘/2 -1< Llog |Bij H + ‘BZJ |/2 —2. We
get at most this many extra literals in ®®) on top of the |B;,| + 1 literals in P2 As
logz|/(z+1)+z/(2(x+1))—2/(x+1) < 10/17 for x € Z, the statement follows.O

By Propositions 4.8, 4.9 and 4.10,
27 54 54
@G, <« ZL1@), « @, = 2=
(4.2) 2L < 127 < 219 = - |®2.

LEMMA 4.11. There exists an efficient algorithm to construct a pure Horn CNF
A(S,S") such that |A(S,S")|L < %priceL(S, S"), Bacs,sry € B, and Fys,51(S) 2 5"

Proof. We consider an extension of the body graph by adding S’ to V(Dg). We
also define arc-weights by setting w(B, B") := |B’\(SUB)|(|B|+1) for B, B’ € BU{S"}.
Let By be a smallest body contained in S (as defined before Proposition 4.6). Compute
a shortest path P from Bg to S’ and define

(4.3) AS, 8= N\ B—=(B'\(SUB)).
(B,B")eP

Note that, by definition, |A(S, S")|1, is the weight of the shortest path P, while |[®(®)|,
is the length of one of the paths from S to S’. By (4.2), [A(S, S|, < [#®)], < 23|®|,.
That is, A(S,S’) provides a %—approximation for price; (S, S’") as required, finishing
the proof of the lemma. ]

We prove that the algorithm described in Procedure 2 provides the stated approx-
imated factor for (L). We note that a minimum weight spanning in-arborescence of a
directed graph rooted at a fixed node can be found in polynomial time, see [10,16]. Let
Buin be a smallest body in B, let § := |Byin| and denote B’ = B\ {Bupin}. We define
the weight of an arc (B, B’) € E(Dg) in the body graph to be w(B, B") = |A(B, B)|L.

Procedure 2: Approximation of (L)

1 Let Bpin be a smallest body in B.

2 Set w(B,B’) = |A(B, B’)|, for (B,B’) € E(Dp).

3 Determine a minimum w-weight spanning in-arborescence T of Dy such that
T is rooted at Bpin.

4 Output & = /\(B7B,)€T A(B,B") A (Bmin — (V' \ Bmin))-
/x Here A(B, B’) is defined as in (4.3). */

The proof of the following lemma is very similar to the proof of Lemma 4.4.
There are a few differences: The first one is that we use a different cost function
on the edges (the approximation value |A(B, B’)|L given by Lemma 4.11 instead of
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183 price(B, B")). We also have a slightly different terminating condition (m/k? instead
484 of m/k). Finally, in the last step of the construction we do not use an arbitrary root,
485 but we make sure that By, is the root of the constructed in-arborescence.

LEMMA 4.12. Let T denote a minimum w-weight spanning in-arborescence in Dg
such that T is rooted at Bpin. Then

A AB,B) g(llofnogmﬂ)opn(zs),

(B,B")eT I

486 where k is the size of a largest body in B.

487 Proof. We construct a subgraph T of Dg such that (i) it is a spanning in-
188 arborescence, and (ii) | A 5 pner AB, B')|L < (1% log k]+1)OPTy(B). This clearly
489 proves the lemma as the weight of T upper bounds the weight of T.

490 We start with the directed graph 77 on node set B that has no arcs. In a general
191 step of the algorithm, T; will denote the graph constructed so far. We maintain the
192 property that T; is a branching, that is, a collection of node-disjoint in-arborescences
493 spanning all nodes. In an iteration, for each such in-arborescence we choose an arc
494  of minimum weight with respect to w that goes from the root of the in-arborescence
495 to some other component. We add these arcs to T;, and for each directed cycle
196 created, we delete one of its arcs. This results in a graph T;4; with at most half the
197 number of weakly connected components that 7; has, all being in-arborescences. We
198 repeat this until the number of components becomes at most max{1, m/k?}. To reach
199 this, we need at most [log k?] < 2[log k] iterations. Finally, we add an arc from all
the other roots to By, and delete all the arcs leaving By,j,, obtaining a spanning
in-arborescence T rooted at Bpip-

2 It remains to show that T also satisfies (ii). In the final stage, we add at most
s max{1,m/k?} arcs to T whose total weight is upper bounded by (k+1)6 max{1,m/k?}J]
4 Since k+1 < n, we have that (k+1)d < nd. We have that %ﬂ = %-%m <2m
5 where the inequality holds, because (k + 1)/k < 2 for k¥ > 1 and § < k. Together
6 we get that the total weight of arcs added in the last step is upper bounded by
7 (k+1)d max{1,m/k?} < max{nd,2m} < OPTL(B) where the last inequality follows
§ by Lemma 3.4. Now we bound the rest of A\ 5 pyep A(B, B’). In iteration 4, com-
9 ponents of T; define a partition B = By U--- U B;. Let us denote by B; the body
10 corresponding to the root of the arborescence with node-set B;. Let us consider the
11 ares {(Bj, B}) | j =1,...,q} chosen to be added in the ith iteration. Now we obtain

= O

v Ot Ot Ot

v Ot Ot Ot Ot Ut Ot Ut

a q
512 A(B,B")| = B;,B)) = i B;,B

/\ (B, B") Zw( 3s J) : Bg}gl\ngjw( i, B)

(B,B")€Ti+1\T; =1 Jj=1
54 . . 54

513 < T JE::I ng{l@j pricey (Bj, B) < T?OPTL(B),
514 where the first and second inequalities follow by Lemmas 4.11 and 3.6, respectively.
515 Since we have at most 2[log k| iterations, the lemma follows. a
516 THEOREM 4.13. For key Horn functions, there exists a polynomial time
517 min 11—078 [log k| +2, k}-approximation algorithm for (L), where k is the size of a largest
518  body in B.
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Proof. We first show that ® provided by Procedure 2 is a ({2[logk] + 2)-
approximation for (L). Note that ® is a subformula of ¥y defined by (3.1) since
all bodies in ® are from B. Furthermore, by our construction, Fg(B) = V for all
B € B. This implies that the output ® represents hg. By Lemma 3.4, we add at
most n(d + 1) < OPTL(B) literals to A\ prer A(B, B') in Step 4. This, together
with Lemma 4.12, implies the theorem. ]

5. Hardness of computing price;. In this section we prove that computing
price; is NP-hard. Given a sequence S = (Sp, S1, ..., Ss) of sets we associate to it a
pure Horn CNF

s—1
(5.1) os= N\ |Si— S\ S
i=0 j<i

We denote by costr(S) = costr(So, ..., Ss) the L-measure (number of literals) of ®g,
ie.,

s—1
cost,(8) = costr,(So, ..., S Z (1Si] +1) - |Sit1 \ U S;
=0

J<i

Let us note that we view S as a sequence of subsets. This is because in this section we
are concerned with sequences between given sets Sy and Sy that minimize costr(S)
over all possible sequences S that start at Sy and end at Ss.

By Proposition 4.6 we can assume for such sequences that [So| > [S1] > -+ >
|Ss—1|. Note also that costr,(S) = costr(S,0). In other words, concatenating/deleting
empty sets from the end of the sequence does not change the costy, value.

We will show NP-hardness for computing price; by a reduction from 3-SAT.
Consider a 3-CNF (exactly 3 literals in each clause) ® = AJ", Cj in which every
variable x;, i = 1,...,n appears at most 4 times. SAT is NP-complete for this family
of CNFs [26]. For a clause C' € @, let us denote by C(C) the set of eight possible
clauses consisting of the three variables in C. For example, if C = (T1 V z2 V z4),
then C(C) = {(x1 V@2 V x4), (T1 Va2V 24), (21 VT2V xy), (X1 V22 VTy), (T1 VT2V
x4), (T1 V@2 VT4), (1 VT2 VITy), (T1 VTV Eq)}. Furthermore, let

U ce

Ced

We regard M as a multiset, that is, if two clauses C' and C’ share the same three
variables then C(C) and C(C") are considered to be disjoint, and so the corresponding
eight clauses are added for both of them. Accordingly, ® N C(C) is defined to be C.
Let us denote by §; the number of clauses in M containing positive literal x;. Note
that for all i = 1,...,n, the negative literal T; also appears in §; clauses of M, and
0; < 16.

Let us introduce

M(z;)) = {CeM|z;€C} and M(z;)) = {Ce M|z, €C}.
Let us next define sets T, B; (j =0,...,n) and A; (j =1,...,n+1) to be pairwise

disjoint and disjoint from M, such that for some integer parameters «, § and 7 we
have |[T| =7, |[4j|=a (j=1,..,n+1),and |B;| =5 (j =0,...,n).
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Let us further introduce

Xi = UBJ U LZJlAJ UM(I‘Z‘), and
j=

Y, = LnJ‘Bj U LZJlAJ UM(i‘i)7
j=

for i = 0,...,n + 1. Note that since xg and x,; are not variables of ®, we have
Xo=Yy=ByU---UB, and X, 41 = Y41 = A1 U---U A, 4. Finally, let us define
S = Xo, Z =X 41 UP, and set

(5.2) Be ={S,Z,TYU{X,,Y; |i=1,...,n}.

Our aim is to show that with these definitions and appropriate choices for pa-
rameters «, 8 and 7, the quantity price; (S,T), with respect the family Bg, attains
its minimum possible value if and only if ® is a satisfiable formula.

We plan to choose 7> > a > max{n, m} such that we have

S| > X0 = Vi > - > | X | = [V > [Z].

Given this, let us recall that an optimal solution realizing price; (S, T) with respect to
the family Bg involves sets from Bg in strictly decreasing order of their size by Propo-
sition 4.6. To handle such sequences of sets, we introduce P(o) = (P/*, Py?, ..., P")
for o € {0,1, *}[" where for 1 <i <n and ¢ € {0, 1, *} we have

Note that for index i with o; = * the corresponding sequence P(o) simply skips both
X; and Y;. For instance, for n = 4 and o = (1, %,0, *) we have P(c) = (X1, Y3).

Note that an optimal sequence realizing price; (S, T), with respect to Bg, has the
form (S,P(c),T) or (S,P(0), Z,T) for some o € {0,1,*}[". For this reason, we also
use the notation op = 1 and Py° = P} =S = X, =Y. For such sequences we also
introduce

Wi(o) = SU U P;j
i<i
EFEa
for i = 1,...,n to denote the initial segments covered by the sequence.

In the rest of this section, we shall show that with the right choice of the pa-
rameters 7, B, and «, any optimal sequence realizing price; (S, T) has the form
(S,P(0), Z,T) for some o € {0,1}"). In particular, we will show the following prop-
erties of optimal sequences:

(I) Z is a part of any optimal sequence, and

(IT) for every i, X; or Y; is a part of the sequence.

Later, we will show that in any optimal sequence ¢ minimizes the number of un-
satisfied clauses in ®. In particular, there is a quantity f which depends on the
structure of formula ® such that price; (S,T) = f + (|Z] + 1) - |T| if ® is satisfiable
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and price; (S,T) > f+ (|Z] + 1) - |T| if ® is not satisfiable. The reason for this is
that if P is a part of the sequence and a clause C' in ® is satisfied by literal x; or
T; (depending on the value of ¢;), then C is already added to the forward chaining
closure when reaching P7*. Thus when adding Z to the sequence, we do not have to
add a clause with head C.

For simplicity, introduce o = 0,41 = 0 and recall that §; = |M(z;)| = |M(Z;)]
for i = 1,...,n. We start by observing the following easy to see relations that we will
rely on in our proof sometimes without mentioning them explicitly:

1) & =1X;NM|=Y;NnM| <16 for i =0,...,n+ 1,
(i) |Z] = (n+ 1)a+m,
(iii) | X;|=Yil=(n—i+1)B+ia+d; fori=0,..,n+1,

In what follows, we show first that, with a right choice of parameters, such an
optimal solution must include Z, thus proving statement (I).

LEMMA 5.1. For all o € {0,1,*}!", we have
costr,(S,P(o),T) > costr(S,P(o), Z,T)
whenever
(5.3) B-—a-m)-7 > (n+1)B+17)-((n+ 1)a+ 8m).
Proof. Define i € {0,1,...,n} to be the largest index such that o; € {0,1}. Since

we defined og = 1 above, such an 7 exists. Then we can write

+1) [T\ Wi(o)], and
+1) 2\ Wilo)] + (1Z] + DT\ (ZUWi(o)],

cost,(S,P(o),T) =p+ (P
COStL(Sap(U)7ZaT) :M+(|P'LUL

where i = costr, (S, P(0)) denotes the sum contributed to costy, by the common initial
sequence.

Since TNW;(0) =T NZ =10, we have |T\ W;(c)] = |T\(ZUW;(0))] = T
Since Z\ Wi(c) CMUA;11U...UA,41, we have |Z\ W;(o)] < (n+1—1i)a+8m.
Thus we can write

costr(S,P(0), T) —costr(S,P(o),Z,T)

(1B = 12D7 = (1P [+ D((n + 1 —4)a + 8m)
(n—i+1)(B—a)+6—m)T
—((n—i+1)B+ia+d+1)((n—i+1)a+8m),

v

where the last equality follows by (ii) and (iii). Since (n —i+1)(8 —a) + 6 —m >
B—a—m, (n—i+1)f+ia+d;+1 < (n+1)5+17, and (n—i+1)a+8m < (n+1)a+8m,
our claim, that is, the positivity of the above difference, is implied by our assumption
(5.3). |

For o € {0,1,*}!" with o; = *, let us denote by 097 and 07! the sequences
obtained by switching the jth entry in o to 0 and 1, respectively. Next we show that,
with a right choice of parameters, an optimal solution must include exactly one of X;
and Y; for all ¢ = 1,...,n, thus proving statement (II).

LEMMA 5.2. For every o € {0,1,*}" with o; = x, and for every e € {0,1} we
have

cost,(S,P(c), Z,T) > costr(S,P(c77), Z,T),

This manuscript is for review purposes only.
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if the following inequality holds:
(5.4) (B—a) (a+8m) > 16m(ng+ 17).

Proof. Similarly as before, let us define 0 = 0y1 = 1, Py° = S and Py ;7' = Z.
Let us set @ to be the largest index i < j with o; # * while k to be the smallest index
j < k with 0; # *. As 09 = 0,41 = 1, such ¢ and k exist, and i < j < k.

Let us introduce the notation I = P;/*, J = Pf and K = PZ*. Let us further de-
note by Q the initial and by R the terminating subsequence of P (o) such that P(c) =
(Q,I,R). Finally, set U = W;(0), u = costr(S,Q), v = costr(S,P(c), Z,T) —
costr (S, Q,1,K), and v/ = costr,(S,P(c77¢),Z,T) — costr (S, Q,1I,J, K).

Note that by the definition of costy, the expression for v and v/ are almost the
same. The only difference is the sum defining v’ has J added to the unions which
are taken away in each term and thus the corresponding cardinalities cannot increase.
We thus have that v/ < v.

Note also that with the above notation we can write

costr(S,P(o), Z,T) w~+ (Il + 1K\ U]+ v, and
costr (S, P(a?7¢), Z,T) p+ (I +DJ\NU|+ (T + DK\ (UUJI)|+ .

Thus, the difference between the above two left hand sides is at least (|| + 1)(|K \
Ul —=1J\U|) = (|J|+ DK \ (UUJ)|. By our definitions of these sets we have

K\U DA 1U---UAy,
J\U QMUAZ'_HU"'UA]', and
K\(UUJ) QMUAj+1U~~~UAk.

Hence, using our notation and (iii) we get

cost,(S,P(0), Z,T) — costr(S,P(c?7¢),Z,T)
(n—i+1)p+ia+0;,+1)((k—i)a—(j —i)a—8m)
— ((n=g+1)p+ja+d;+1)8m+ (k—j)a)

Y

= (k—=j)a((j —i)(B—a)+4d; — &)
— 8m((2n —i—j+2)B+ (i + j)a+ 6 +5; +2).

Using (i), j—i>1,k—j>1,and i+ j > 1 we can conclude that

costr,(S,P(o), Z,T) — costr(S,P(c?7¢),Z,T)
> (B —a)(a+8m)—16m(ns + 17),

where the right hand side is positive by our assumption (5.4), hence completing our
proof. ]

It is easy to see that we can choose a, (3, and 7 such that (5.3) and (5.4) hold, and
all of these parameters are O(m?n?). Indeed, set a := 16mn. Then (5.4) simplifies
to (8 — 16mn) - (16mn + 8m) > 16m(nfS + 17), which holds if we set 3 := 32mn? +
16mn + 35. Now (5.3) transforms into (32mn? —m +35) -7 > ((16mn + 1)(32mn? +
16mn + 35) +17) - ((n + 1)16mn + 8m), therefore setting 7 := [((16mn + 1)(32mn? +
16mn + 35) + 17) - ((n + 1)16mn + 8m) /(32mn? — m + 35) + 1] gives a proper choice
of the parameters. In this way our construction above has polynomial size in the size
of ®. Let us assume for the rest of our proof that we fix such a choice for «, 5 and 7.

In what follows we show that price; (S,T) is the smallest if and only if ® is
satisfiable.

This manuscript is for review purposes only.
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LEMMA 5.3. There exists a function d : [n] — Z4 such that

[ Xiv1 \ Wilo)| = [Yigr \ Wilo)| = d(i).
for everyi=0,...,n and o € {0,1}[".

Proof. To see the claim, let us consider a clause C' of ® that contains variable
Zi+1 or its negation. Recall that C(C') C M denotes the set of eight possible clauses
included in M consisting of the three variables in C. Let us further denote by I(C) =
{u,v,w} the indices u < v < w of the variables that are involved (with or without a
complementation) in C. Let us then observe that if ¢ + 1 = u is the smallest index
in I(C), then both X,;11 \ W;(0) and Y;41 \ W;(o) contain exactly four elements of
C(C). This is because W;(c) contains clauses from M that contain variables z; or
its negation, depending on §;, for j < ¢. Thus none of the eight clauses of C(C)
are contained in W;(o), and exactly four of those contain x;;; and four contain its
negation. If i + 1 = v is the second smallest index in I(C), then both X;11 \ W;(o)
and Y; 1 \ W;(0) contain exactly two elements of C(C'). This is because C(C) \ W; (o)
contains now exactly the four clauses that contain either x,, or its negation, depending
on o,, and thus two of those four contain z;;1 and two contain Z;;;. Finally, if
i+ 1 = w is the largest index in I(C), then both X;41 \ W;(o) and Yiy1 \ W;(o)
contain exactly 1 element of C(C'). This is because in this case C(C) \ W;(o) contains
only the two clauses that do not contain the particular combination of z, or its
negation and z, or its negation that corresponds to (o, 0,), and of those two one
contains x;11 and one contains its negation.

Note that these counts do not depend on o € {0, 1}["}, and hence the claim
follows. d

LEMMA 5.4. There exists an integer g € Z, such that

costr,(S,P(o)) =g

for every o € {0,1}[".

Proof. The claim follows by Lemma 5.3 and the fact that |X;| = |Y;| for i =
1,...,n. 0

LEMMA 5.5. There exists an integer f such that for all o € {0, 1}[”] we have
costr,(S,P(o), Xn+1) = .

Proof. By (iii) we have |P7"| = |X,,| = |Y,| = B+na+d,, and by our construction
we have X,,11 \ W, (0) = A,41. Thus, by Lemma 5.4 we get f =g+ (8 +na+9d, +
D|An+1| =g+ (B+na+ 6, + 1)a and the statement follows. O

LEMMA 5.6. For o € {0,1}[" we have
costr,(S,P(0), 2,T) = f + (B +na+ b, +1) - |(0)[ + (|Z] +1) - |T],

where |®(0)| denotes the number of clauses of ® that are not satisfied by o.
Proof. The lemma follows by the construction and by Lemma 5.5. O
LEMMA 5.7. For Bg defined in (5.2) we have

pricer,(S,T) = f+(1Z| +1) - |T|
if and only if ® is satisfiable.

This manuscript is for review purposes only.
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Proof. The construction of ®() in Section 4.2 shows that there exists a pure Horn
CNF attaining the minimum in price, (S, T) that can be written in form (5.1) for some
sequence {Sp,...,Ss} C Bg where |Sp| > [S1] > ... > |Ss|. By Lemmas 5.1 and 5.2,
we may assume that S = {S,P(c),Z,T} for some truth assignment ¢ € {0,1}[").
Lemma 5.6 implies that price; (S,T) = costr(S,P(0),Z,T) = f+ (|Z]| + 1) - |T] if
and only if |®(o)| = 0, that is, if o is a true point of ®. |

THEOREM 5.8. Computing price;, is NP-hard.

Proof. Let ® be a 3-CNF in which every variable appears at most 4 times. Recall
that SAT is NP-complete even when restricted to this class of CNF formulas [26]. By
Lemma 5.7, ® is satisfiable if and only if price; (S,T) = f+(|Z]|+1)-|T| that is if and
only if there exists a o € {0,1}!" such that |®(o)| = 0. This shows that computing
price;, is NP-hard. |

6. Clause minimization and strongly connected subgraphs. For a strong-
ly connected graph D = (V| E) and non-negative weights w : E — Z,, we denote
by MWSCS(D, w) the problem of finding a minimum weight subset F' C E of the arcs
such that (V| F) is also strongly connected. We denote by mwscs(D,w) = w(F') the
weight of such a minimum weight arc subset. MWSCS is an NP-hard problem, for
which polynomial time approximation algorithms are known. For the case of uniform
weights a 1.61-approximation was given by Khuller et al. [21]. For general weights a
simple 2-approximation is due to Fredericson and J4ja [17]. Note that in the case of
general weights, we can assume that D is a complete directed graph.

As already observed in the beginning of Section 4, there is a natural relation of
the above problem to the minimization of a key Horn function. Let us consider a
Sperner hypergraph B C 2V \ {V} and the corresponding Horn function

(6.1) hg = N\ B— (V\B).
BeB

The body graph of B was a complete directed graph Dg where V(Dg) = B. Define
a weight function w on the arcs of this graph by setting w(B, B') = price, (B, B’)
for all B,B’" € B, B # B’, where price, is defined in (3.2). Then any solution
H C E(Dg) = B x B of problem MWSCS(Dpg, w) defines a representation of hg:

(6.2) ®H) = [\ @.(BB),
(B,B")eH

where ®.(B, B’) is a formula for which B C Fy (g5 (B), Bs,,py € B and
|®.(B, B')|« = price,(B,B’). Tt is immediate to see that OPT.(B) < w(H) holds.
Thus, it is natural to expect that a polynomial time approximation of problem
MWSCS(Dp, w) provides also a good approximation for OPT,(B). This however turns
out to be false for the case of x = C. Our construction uses finite projective spaces
PG(d, q) where d is the dimension and ¢ is the order.

THEOREM 6.1. Let d > 4 be a positive integer, n be the number of points of
PG(d,2) and V =Z,,. Then we have

mwscs(Dpg, price) _ n+1
max >
BC2V\{V} OPTx(B) 8

(6.3)

Before proving the theorem, let us recall first some basic facts on finite projective
spaces from the book [14]. The finite projective space PG(d,q) of dimension d over
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a finite field GF(q) of order ¢ (prime power) has n = ¢% + ¢*~! +--- 4+ ¢ + 1 points.
Subspaces of dimension k are isomorphic to PG(k, q) for 0 < k < d, where 0-dimension
subspaces are the points themselves. The number of subspaces of dimension k < d is

ko d+1—i 1

q
Ni(d,q) = H o1

i—0

and the number of points of such a subspace is ¢* + ¢*~' +--- 4+ ¢ + 1. In particular,
the number of subspaces of dimension d — 1 is Ny_1(d,q) = n. If F and F’ are two
distinct subspaces of dimension k, then

2% —d < dim(FNF')<k—1.

Furthermore, any k£ 4 1 points belong to at least one subspace of dimension k.

Let us also recall that PG(d, q) has a cyclic automorphism. In other words the
points of PG(d, q) can be identified with the integers of the cyclic group Z,, of modulo
n addition such that if F' C Z, is a subspace of dimension k, then F'+i = {f +1¢
mod n | f € F} is also a subspace of dimension k. Furthermore, two subspaces F' and
F + i are distinct if 20 (mod n).

Let us consider a subspace @Q C Z,, of dimension d — 1. Then the family defined
as @ ={Q +i | i € Z,} contains all subspaces of PG(d,q) of dimension d — 1 and
the size of @ is n. In the rest of this section we use + for the modulo n addition of
integers.

LEMMA 6.2. For every k =0,...,d—1 there exists a unique subspace of dimension
k that contains {0,1,...,k}.

Proof. By the properties we recalled above it follows that there is at least one
such subspace for every 0 < k < d. We prove that there is at most one by induction
on k. For k = 0 this is obvious, since the points are the only subspaces of dimension
0. Assume next that the claim is already proved for all ¥’ < k, and assume that there
are two distinct subspaces, R and R’, of dimension k& both of which contains the set
{0,1,..,k}. Then RN R and (R—1)N (R —1) = (RN R') — 1 are two distinct
subspaces of dimension k¥’ < k and both contain {0,1, ...,k — 1}, contradicting our
inductive assumption, and thus proving our claim. 0

Thus, by Lemma 6.2, there exists a unique subspace @ C Z,, of dimension d — 1
that contains {0,1,...,d — 1}.

LEMMA 6.3. d € Q.

Proof. Assume to the contrary that d € Q. Then the set {0,1,...,d — 1} is
contained by both @ and @ —1 = Q + (n — 1), contradicting Lemma 6.2, since @) and
@ — 1 are distinct subspaces of dimension d — 1. 0

Let us also introduce the set D = {0, 1, ...,d}. Now we are in the position to prove
the theorem.

Proof of Theorem 6.1. Let us define B:= QU {D +i | i € Z,}, and observe that
for any distinct pair B € Q and B’ € B we have |B\ B’| > 2471, This is obvious if
B’ € Q by properties of subspaces, and follows easily for B’ € B\ Q because d is at
least four. Since in any solution H C B x B we must have an arc entering B for all
B € Q, and for each such arc (B’, B) € H the CNF ®¢(B’, B) must contain a clause
with head z for each x € B\ B’, we get

(6.4) mwscs(Dg, pricec) > n-2971

This manuscript is for review purposes only.
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On the other hand, we have that
(6.5) d = (/\(Q+i)—>(d—|—i)>/\(/\(D+i)—>(d+1+i)>
i€Zn i€Zn

is a representation of hg and |®|c < 2n. Asn =27 +4-.. +24+1 =291 1 we have
29=1 = (n 4 1)/4. Thus

n+1

(6.6) mwscs(Dg, prices) > -OPT¢(B),

completing the proof of the theorem. 0

Let us note that for such a negative result, we need to rely on Horn functions
with large bodies. For the case when we limit the body sizes of the underlying Horn
function by a constant k, we have already showed that there exists a solution which
is a k-approximation for the CNF minimization problem as well as for the MWSCS
problem, see Lemma 4.1.

7. Conclusions. In this paper we study the class of key Horn functions which
is a generalization of a well-studied class of hydra functions [22,25]. Given a CNF
representing a key Horn function, we are interested in finding the minimum size
logically equivalent pure Horn CNF, where the size of the output CNF is measured in
several different ways. This problem is known to be NP-hard already for hydra CNFs
for most common measures of the CNF size.

The main results of the paper are two approximation algorithms for key Horn
CNF's — one for minimizing the number of clauses and the other for minimizing the
total number of literals in the output CNF. Both algorithms achieve a logarithmic
approximation bound with respect to the size of the largest body in the input CNF
(denoted by k). This parameter can be also defined as the size of the largest clause
in the input CNF minus one. Note that & is a trivial lower bound on the number of
variables (denoted by n).

These algorithms are (to the best of our knowledge) the first approximation algo-
rithms for NP-hard Horn minimization problems that guarantee a sublinear approx-
imation bound with respect to k. It follows that both algorithms also guarantee a
sublinear approximation bound with respect to n. There are two approximation algo-
rithms for Horn minimization known in the literature, one for general Horn CNFs [19],
and one for hydra CNFs [25], but both of them guarantee only a linear (or higher)
approximation bound with respect to k (see Table 1 and the relevant text in the
introduction section for details).

For a given pair of sets S,7T and set of bodies BB, we prove NP-hardness of the
problem of finding a literal minimum pure Horn CNF & that uses bodies only from B
and for which the forward chaining procedure starting from S reaches all the variables
inT.

In contrast to our approach which takes an in-branching in the body graph and
extends it with a small number of additional edges, we show that no polynomial time
approximation of the minimum weight strongly connected subgraph problem in the
body graph may provide a good solution for the CNF minimization problem. The
counterexample is based on a construction using finite projective spaces.

Our analysis of Procedure 1 provides an approximation factor of min{[logn] +
1, [log k] + 2} for (C) and (BC). However, we do not know whether our analysis pro-
vides the best bound in general. We actually believe that the proposed algorithm
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(possibly with slight modifications) could be used to obtain a constant factor ap-
proximation for (C) and (BC). Similarly, no example is known for which the solution
provided by Procedure 2 attains the proved approximation bound tightly. A better
analysis of these procedures possibly leading to a constant factor approximation or a
better lower bound than the one given in Lemma 3.6 is subject of future research.
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