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Abstract. Horn functions form an important subclass of Boolean functions and appear in many5
different areas of computer science and mathematics as a general tool to describe implications and6
dependencies. Finding minimum sized representations for such functions with respect to most com-7

monly used measures is a computationally hard problem admitting a 2log
1−o(1) n inapproximability8

bound.9
In this paper we consider the natural class of key Horn functions representing keys of relational10

databases. For this class, the minimization problems for most measures remain NP-hard. In this11
paper we provide logarithmic factor approximation algorithms for key Horn functions with respect12
to all such measures.13
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1. Introduction. A Boolean function of n variables is a mapping from {0, 1}n17

to {0, 1}. Boolean functions naturally appear in many areas of mathematics and com-18

puter science and constitute a principal concept in complexity theory. In this paper we19

shall study an important problem connected to Boolean functions, a so called Boolean20

minimization problem, which aims at finding a shortest possible representation of a21

given Boolean function. The formal statement of the Boolean minimization problem22

(BM) of course depends on (i) how the input function is represented, (ii) how it is23

represented on the output, and (iii) the way the output size is measured.24

One of the most common representations of Boolean functions are conjunctive25

normal forms (CNFs), the conjunctions of clauses which are elementary disjunctions26

of literals. There are two usual ways how to measure the size of a CNF: the number27

of clauses and the total number of literals (sum of clause lengths). It is easy to see28

that BM is NP-hard if both input and output is a CNF (for both above mentioned29

measures of the output size). This is an easy consequence of the fact that BM contains30

the CNF satisfiability problem (SAT) as its special case (an unsatisfiable formula can31
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be trivially recognized from its shortest CNF representation). In fact, BM was shown32

to be probably harder than SAT: while SAT is NP-complete (i.e. Σp1-complete [11]),33

BM is Σp2-complete [29] (see also the review paper [30] for related results). It was34

also shown that BM is Σp2-complete when considering Boolean functions represented35

by general formulas of constant depth as both the input and output for BM [8]. A36

O(n1−ε)-inapproximability result was given in [28].37

Horn functions form a subclass of Boolean functions which plays a fundamental38

role in constructive logic and computational logic. They are important in automated39

theorem proving and relational databases. An important feature of Horn functions40

is that SAT is solvable for this class in linear time [15]. A CNF is Horn if every41

clause in it contains at most one positive literal, and it is pure Horn (or definite Horn42

in some literature) if every clause in it contains exactly one positive literal. Such a43

positive literal is then called the head of the given clause and the set of all negative44

literals is called the body of the clause (we often identify the body of a clause with45

the set of variables with negative occurrences especially if we view the clause as an46

implication in which the body implies the head). A Boolean function is (pure) Horn,47

if it admits a (pure) Horn CNF representation. Pure Horn functions represent a48

very interesting concept which was studied in many areas of computer science and49

mathematics under several different names. The same concept appears as directed50

hypergraphs in graph theory and combinatorics, as implicational systems in artificial51

intelligence and database theory, and as lattices and closure systems in algebra and52

concept lattice analysis [9].53

Example 1.1. Consider a pure Horn CNF Φ = (a∨b∨c∨d)∧(d∨e)∧(d∨f)∧(d∨54

g)∧(e∨f∨g∨a)∧(e∨f∨g∨b)∧(e∨f∨g∨c) on variables a, b, c, d, e, f, g, where a stands55

for the negation of a, etc. The CNF Φ can be viewed equivalently as a directed hyper-56

graph H = (V, E) with vertex set V = {a, b, c, d, e, f, g} and directed hyperarcs E =57

{({a, b, c}, d), ({d}, e), ({d}, f), ({d}, g), ({e, f, g}, a), ({e, f, g}, b), ({e, f, g}, c)}. This58

latter can be expressed more concisely using a generalization of adjacency lists for59

ordinary digraphs in which all hyperarcs with the same body (also called source)60

are grouped together {a, b, c} : d; {d} : e, f, g; {e, f, g} : a, b, c, or can be repre-61

sented as an implicational (closure) system on variables a, b, c, d, e, f, g defined by62

rules abc→ d, d→ efg, efg → abc.63

Interestingly, in each of these areas the problem similar to BM, i.e. a problem64

of finding the shortest equivalent representation of the input data (CNF, directed65

hypergraph, set of rules) was studied. For example, such a representation can be66

used to reduce the size of knowledge bases in expert systems, thus improving the67

performance of the system. The above examples show that a “natural” way how to68

measure the size of the representation depends on the area. Six different measures69

and corresponding concepts of minimality were considered in [2, 12]: (B) number of70

bodies, (BA) body area, (TA) total area, (C) number of clauses, (BC) number of71

bodies and clauses, and (L) number of literals. For precise definitions, see Section 2.72

With a slight abuse of notation we shall use (B), (BA), (TA), (C), (BC) and (L) to73

denote both the measures and the corresponding minimization problems.74

The only one of these six minimization problems for which a polynomial time75

procedure exists to derive a minimum representation is (B). The first such algorithm76

appeared in the database theory literature [23]. Different algorithms for the same77

task were then independently discovered in hypergraph theory [2], and in the theory78

of closure systems [18].79

For the remaining five measures it is NP-hard to find the shortest representation.80
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There is an extensive literature on the intractability results in various contexts for81

these minimization problems [2,19,23]. It was shown that (C) and (L) stay NP-hard82

even when the inputs are limited to cubic (bodies of size at most two) pure Horn83

CNFs [6], and the same result extends to the remaining three measures. Note that84

if all bodies are of size one then the above problems become equivalent with the85

transitive reduction of directed graphs, which is tractable [1]. It should be noted that86

there exists many other tractable subclasses, such as acyclic and quasi-acyclic pure87

Horn CNFs [20], and CQ Horn CNFs [5]. There are also a few heuristic minimization88

algorithms for pure Horn CNFs [4].89

It was shown that (C) and (L) are not only hard to solve exactly but even hard90

to approximate. More precisely, [3] shows that these problems are inapproximable91

within a factor 2log1−ε(n) assuming NP ( DTIME(npolylog(n)), where n denotes the92

number of variables. In addition, [7] shows that they are inapproximable within a93

factor 2log1−o(1) n assuming P ( NP even when the input is restricted to 3-CNFs with94

O(n1+ε) clauses, for some small ε > 0. It is not difficult to see that the same proof95

extends to (BC) and (TA) as well. On the positive side, (C), (BC), (BA), and (TA)96

admit (n− 1)-approximations and (L) has an
(
n
2

)
-approximation [19]. To the best of97

our knowledge, no better approximations are known even for pure Horn 3-CNFs.98

Given a relational database, a key is a set of attributes with the property that a99

value assignment to this set uniquely determines the values of all other attributes [24,100

27]. The concept of a key is essential for standard database operations. A relational101

database uniquely defines a pure Horn function h over the set of attributes, represent-102

ing the so-called functional dependencies of the database. An implicate B → v of h103

represents the fact that the knowledge of the attribute values in set B uniquely defines104

the value for attribute v. If K is a key of the database, then K → v is an implicate of105

h for all attributes v. Motivated by this, we say that a pure Horn CNF is key Horn if106

each of its bodies implies all other variables, that is, setting all variables in any of its107

bodies to one forces all other variables to one. A Boolean function is called key Horn108

if it has a key Horn CNF representation. Key Horn functions are natural concepts to109

represent the keys of relational databases. They generalize the well studied class of110

hydra functions considered in [25]. For this special class, in which all bodies are of size111

two, a 2-approximation algorithm for (C) was presented in [25] while the NP-hardness112

for (C) was proved in [22]. The latter result implies NP-hardness for hydra functions113

also for (BC), (TA), and (L). It is also easy to see that (B) and (BA) are trivial in114

this case.115

In this paper we consider the minimization problems for key Horn functions. Any116

irredundant representation of a key Horn function has the same set of bodies, implying117

that problems (B) and (BA) are in P. We show that a simple algorithm gives a 2k
k+1 -118

approximation for (TA) and a k-approximation for (C), (BC), and (L), where k is the119

size of a largest body. Our paper contains two main results. The first one gives a120

min{dlog ne+ 1, dlog ke+ 2}-approximation bound for key Horn functions for (C) and121

(BC) which is significantly better than the (n − 1)-approximation bound known for122

general Horn functions. The second result improves the
(
n
2

)
-approximation bound for123

(L) to 108
17 dlog ke + 2. Table 1 summarizes the state of the art of Horn minimization124

and the results presented in this paper for key Horn functions.125

The structure of our paper is as follows: Section 2 introduces the necessary defini-126

tions and notation, Section 3 provides lower bounds for the measures we introduced,127

while Section 4 contains our results on approximation algorithms. For the (L) mea-128

sure, our approach in Section 4 relies on approximating a solution to a subproblem129
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Table 1
Complexity landscape of Horn and key Horn minimization, where the bold letters represent the

results obtained in this paper. Here n and k respectively denote the number of variables and the size
of a largest body. All problems except those labeled by P are NP-hard. Inapproximability bounds for
Horn minimization hold even when the size of the bodies are bounded by k (≥ 2).

Measure
Horn Key Horn

Inapprox. Approx. Inapprox. Approx.

(B) P [23] P [23]

(BA) 1 [2] n− 1 [19] P

(TA) 2log
1−o(1) n

[7]

n− 1 [19] 1 [22] 2k
k+1

(C) 2log
1−o(1) n

[7]

n− 1 [19] 1 [22] min{dlog ne + 1, dlog ke + 2, k}

(BC) 2log
1−o(1) n

[7]

n− 1 [19] 1 [22] min{dlog ne + 1, dlog ke + 2, k}

(L) 2log
1−o(1) n

[7] (
n
2

) [19]
1 [22] min{108

17
dlog ke + 2, k}

which is shown to be NP-hard in Section 5. Finally, Section 6 discusses the rela-130

tion of our approach to the problem of finding a minimum weight strongly connected131

subgraph.132

2. Preliminaries. Let V denote a set of variables. Members of V are called133

positive literals while their negations are called negative literals. Throughout the134

paper, the number of variables is denoted by n = |V |. A Boolean function is a135

mapping f : {0, 1}V → {0, 1}. The characteristic vector of a set Z is denoted by χZ ,136

that is, χZ(v) = 1 if v ∈ Z and 0 otherwise. We say that a set Z ⊆ V is a true set of137

f if f(χZ) = 1, and a false set otherwise.138

For a subset ∅ 6= B ⊆ V and v ∈ V \ B we write B → v to denote the pure139

Horn clause C = v ∨
∨
u∈B u. We can consider such a clause to be an implication140

as if all variables in B are set to true in a true assignment then v must be true as141

well. Here B and v are called the body and head of the clause, respectively. That is,142

a pure Horn CNF can be associated with a directed hypergraph where every clause143

B → v is considered to be a directed hyperarc oriented from B to v. The set of144

bodies appearing in a pure Horn CNF representation Φ is denoted by BΦ. We will145

also use the notation B → H to denote
∧
v∈H B → v. By grouping the clauses with146

the same body, a pure Horn CNF Φ =
∧
B∈BΦ

∧
v∈H(B)B → v can be represented as147 ∧

B∈BΦ
B → H(B). The latter representation is in a one-to-one correspondence with148

the adjacency list representation of the corresponding directed hypergraph.149

For any pure Horn function h the family of its true sets is closed under taking150

intersection (see Lemma 4.5 in [13]) and clearly contains V . This implies that for151

any non-empty set Z ⊆ V there exists a unique minimal true set containing Z. This152

set is called the closure of Z and we denote it by Fh(Z). If Φ is a pure Horn CNF153

representation of h, then Fh(Z) can be computed in linear time in the size of Φ [15].154

Note that the resulting closure Fh(Z) depends only on the set Z and the Horn function155

h, and not on the particular CNF Φ we use to represent h. It is important to note here156

that h : {0, 1}V → {0, 1} is a function that exists independently of its representations.157
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It can be represented, in particular, by CNFs, and typically by many different ones.158

In our algorithmic approach to generate a better (shorter) CNF representation of a159

Horn function, that is represented by a given CNF on the input, we shall rely on160

certain invariants that in fact depend only on the function and not on its particular161

representation.162

One such invariant is the closure of a subset, defined above. The algorithm,163

computing the closure Fh(Z) of a subset Z using a given CNF representation Φ of164

h, is also called the forward chaining procedure (see e.g., [12]). Informally speaking,165

this algorithm starts with the set Z and as long as there exists a clause in Φ with166

its body contained in the current set and its head outside of the current set, the167

head is added to the current set. More formally the procedure can be described as168

follows. We start with F 0
Φ(Z) := Z. In a general step, if F iΦ(Z) is a true set then we169

output Fh(Z) = F iΦ(Z) and stop. Otherwise, let A ⊆ V \ F iΦ(Z) denote the set of all170

variables v for which there exists a clause B → v in Φ with B ⊆ F iΦ(Z) and define171

F i+1
Φ (Z) := F iΦ(Z) ∪A. Note that any CNF Φ uniquely defines a Horn function, and172

sometimes we do not have separate notation for that function. In such cases we shall173

also use FΦ(Z) to denote the closure of subset Z with respect to the Horn function174

represented by Φ.175

Definition 2.1. A pure Horn function h is key Horn if it has a CNF represen-176

tation of the form
∧
B∈B B → (V \ B) for some B ⊆ 2V \ {V }. In such a case we177

shall refer to h as hB.178

Assume now that Φ is a pure Horn CNF of the form
∧m
i=1Bi → Hi where Bi 6= Bj179

for i 6= j. Note that the number of clauses in the CNF is cΦ =
∑m
i=1 |Hi|. The size of180

the formula can be measured in different ways:181

• (B) number of bodies: |Φ|B := m,182

• (BA) body area: |Φ|BA :=
∑m
i=1 |Bi|,183

• (TA) total area: |Φ|TA :=
∑m
i=1(|Bi|+ |Hi|),184

• (C) number of clauses (i.e., hyperarcs): |Φ|C := cΦ,185

• (BC) number of bodies and clauses: |Φ|BC := m+ cΦ =
∑m
i=1(|Hi|+1),186

• (L) number of literals: |Φ|L :=
∑m
i=1

(
(|Bi|+ 1) · |Hi|

)
.187

These measures come up naturally in connection with directed hypergraphs, im-188

plicational systems, and CNF representations. For example, (L) corresponds to the189

size of a CNF when encoded in DIMACS format, a format that is widely accepted as190

the standard format for Boolean formulas in CNF. The number of clauses (C) is an191

important parameter for SAT solvers when the Horn formula in question encodes a192

constraint which is part of a larger problem. Similarly, (TA) is the space needed to193

store an adjacency list of the corresponding hypergraph, and might be an important194

parameter for an efficient implementation. The Horn minimization problem is to find195

a representation that is equivalent to a given Horn formula and has minimum size196

with respect to | · |∗ where ∗ denotes one of the aforementioned functions.197

Example 2.2. Consider the CNF Φ introduced in Example 1.1 written as a con-198

junction of implications Φ = (abc→ d) ∧ (d→ efg) ∧ (efg → abc). Note that Φ rep-199

resents the key Horn function hB defined by the system of bodies B = {{a, b, c}, {d},200

{e, f, g}}. The CNF Φ has m = 3 different bodies, thus |Φ|B = 3. Furthermore, it201

has body area |Φ|BA = 7, total area |Φ|TA = 14, number of clauses |Φ|C = 7, number202

of bodies and clauses |Φ|BC = 3 + 7 = 10, and number of literals |Φ|L = 22. Since203

every variable occurs exactly once as a positive literal (or as a head of some clause)204

in Φ, we can conclude that Φ has the smallest number of clauses among the repre-205

sentations of hB. However, it is not optimal with respect to the number of literals.206
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Consider the equivalent formula Φ′ = (abc → d) ∧ (efg → d) ∧ (d → abcefg) which207

has only |Φ′|L = 20 literals. On the other hand, Φ′ consists of 8 clauses which is208

not optimal with respect to the number of clauses. This example demonstrates that209

different measures may be optimized by different CNF formulas.210

3. Lower bounds for the size of optimal solutions. The present section211

provides some simple reductions of the problem and lower bounds for the size of an212

optimal solution. For a family B ⊆ 2V \ {V }, we denote by B⊥ the family of minimal213

elements of B. Recall that hB denotes the function defined by214

(3.1) ΨB =
∧
B∈B

B → (V \B).215

Lemma 3.1. For any measure (∗) and for any B ⊆ 2V \ {V }, there exists a | · |∗-216

minimum representation of hB that uses exactly the bodies in B⊥.217

Proof. Take a | · |∗-minimum representation Φ for which |BΦ \ B⊥| is as small as218

possible. First we show BΦ ⊆ B⊥. Assume that B ∈ BΦ \ B⊥. As B is a false set219

of hB, there must be a clause B′ → v in ΨB that is falsified by χB , implying that220

B′ ⊆ B. Therefore there exists a B′′ ∈ B⊥ such that B′′ ⊆ B′ ⊆ B. If we substitute221

every clause B → v of Φ by B′′ → v, then we get another representation of hB since222

B′′ → v is a clause of ΨB. Meanwhile, the | · |∗ size of the representation does not223

increase while |BΦ \ B⊥| decreases, contradicting the choice of Φ.224

Next we prove BΦ ⊇ B⊥. If there exists a B ∈ B⊥ \ BΦ, then B is a true set of Φ225

while it is a false set of hB, contradicting the fact that Φ is a representation of hB.226

Recall that a Sperner family is family of subsets of a finite set in which none of227

the sets contains another. Lemma 3.1 has an easy corollary.228

Corollary 3.2. It suffices to consider Sperner families of bodies defining key229

Horn functions as an input. Moreover, it is enough to consider pure Horn CNFs using230

bodies from the input Sperner family when searching for minimum representations.231

For non-key Horn functions, this is not the case. For example, the function defined232

by implications a→ b, ac→ d has five false sets, namely {a}, {a, c}, {a, d}, {a, c, d},233

{a, b, c}. Clearly, {a} has to appear as a body in any representation of the function234

together with at least one of the other false sets as a body, although it is contained235

in the other.236

From now on we assume that B is a Sperner family. We also assume that237 ⋃
B∈B

B = V and
⋂
B∈B

B = ∅.238

Indeed, if a variable v ∈ V \
⋃
B∈B B is not covered by the bodies, then there must239

be a clause with head v and body in B in any minimum representation of hB, and240

actually one such clause suffices. Furthermore, if v ∈
⋂
B∈B B, then we can reduce241

the problem by deleting it. None of these reductions affects the approximability of242

the problem.243

Recall that the size of the ground set is denoted by |V | = n, while |B| = m.244

The size of an optimal solution with respect to measure function | · |∗ is denoted by245

OPT∗(B). Using these notations Lemma 3.1 has the following easy corollary:246

Corollary 3.3. We have OPTB(B) = m and OPTBA(B) =
∑
B∈B |B|. There-247

fore the minimization problems (B) and (BA) are solvable in polynomial time.248
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For the remaining measures we prove the following simple lower bound.249

Lemma 3.4. OPT∗(B) ≥ m for all measures ∗, and OPT∗(B) ≥ n for ∗ ∈250

{TA,C,BC,L}. Furthermore, we have OPTTA(B) ≥ m+
∑m
i=1 |Bi| and OPTL(B) ≥251

max{n(δ + 1), 2m}, where δ is the size of a smallest body in B.252

Proof. By definition, | · |B is a lower bound for all the other measures, implying253

OPT∗(B) ≥ OPTB(B) = m.254

To see the second part, observe that | · |C is a lower bound for the three other255

measures. Therefore it suffices to prove OPTC(B) ≥ n. By the assumption that for256

every v ∈ V there exists a B ∈ B not containing v, we can conclude by the fact that257

the closure FhB(B) = V and by the way the forward chaining procedure works that258

every pure Horn CNF representation of hB must contain at least one clause with v as259

its head. This implies OPTC(B) ≥ n.260

To see the last part, note that every set B ∈ B is the body of at least one clause,261

verifying the lower bound for (TA). Every variable v ∈ V is the head of at least one262

clause, the body of which is of at least size δ ≥ 1. Since all clauses are of size at least263

2, the bound for (L) follows.264

Let us now introduce a key concept of this paper. For a pair S, T ⊆ V of sets,265

we denote by price∗(S, T ) the minimum | · |∗-size of a pure Horn CNF Φ for which266

BΦ ⊆ B and T ⊆ FΦ(S), that is,267

(3.2) price∗(S, T ) = min
Φ

{
|Φ|∗ | BΦ ⊆ B, T ⊆ FΦ(S)

}
.268

Example 3.5. Let us consider the set of bodies B = {{a, b, c}, {d}, {e, f, g}} and269

let us consider S = {a, b, c} and T = {e, f, g}. It is easy to see that priceC(S, T ) = 3270

and that it is realized by a single implication abc → efg. Actually, as we will show271

later in Lemma 4.3, we always have that priceC(S, T ) = |T \ S| provided S, T ∈ B.272

However, estimating priceL(S, T ) is a bit more tricky. Considering the above single273

implication abc→ efg we get that priceL(S, T ) ≤ 12. We can do better by using the274

small body d. In particular, using implications (abc→ d)∧ (d→ efg) we achieve the275

optimum value priceL(S, T ) = 10.276

The following lemma plays a principal role in our approximability proofs.277

Lemma 3.6. Let B = B1 ∪ · · · ∪ Bq be a partition of B and let Bi ∈ Bi for278

i = 1, . . . , q. Then279

(3.3) OPT∗(B) ≥
q∑
i=1

min{price∗(Bi, B) | B ∈ B \ Bi}280

for all six measures ∗.281

Proof. Take a minimum representation Φ with respect to | · |∗ which uses bodies282

only from B. Such a representation exists by Lemma 3.1. We claim that the contribu-283

tion of the clauses with bodies in Bi to the total size of Φ is at least min{price∗(Bi, B) |284

B ∈ B \ Bi} for each i = 1, . . . , q. This would prove the lemma as the Bi’s form a285

partition of B.286

To see the claim, take an index i ∈ {1, . . . , q} and let B′ be the first body (more287

precisely, one of the first bodies) not contained in Bi that is reached by the forward288

chaining procedure from Bi with respect to Φ. Every clause that is used to reach B′289

from Bi has its body in Bi and their contribution to the size of the representation is290

lower bounded by price∗(Bi, B
′), thus concluding the proof.291
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4. Approximability results for (TA), (C), (BC), and (L). Given a Sperner292

family B ⊆ 2V \{V }, we can associate with it a complete directed graph DB by defining293

V (DB) = B and E(DB) = B × B. We refer to DB as the body graph of B.294

For any subset E′ ⊆ E(DB), define295

(4.1) ΦE′ =
∧

(B,B′)∈E′
B → (B′ \B).296

Note that if E′ ⊆ E(DB) forms a strongly connected spanning subgraph of DB, then297

ΦE′ is a representation of hB. Let us add that not all representations arise this way,298

in particular, minimum representations might have significantly smaller size.299

Lemma 4.1. If E′ is a Hamiltonian cycle in DB, then ΦE′ defined in (4.1) pro-300

vides a k-approximation for all measures, where k is an upper bound on the sizes of301

bodies in B.302

Proof. By Lemma 3.1, there exists a minimum representation Φ of hB such that303

BΦ = B. Since |B′ \B| is at most k for all arcs (B,B′) ∈ E′, the statement follows.304

In fact, for (B) and (BA) (4.1) gives an optimal representation for any strongly305

connected spanning E′. Furthermore, if E′ is a Hamiltonian cycle, we get a 2k
k+1 -306

approximation for (TA) based on the fact that the total area of any representation is307

lower bounded by
∑
B∈B |B|.308

Theorem 4.2. If E′ is a Hamiltonian cycle in DB, then ΦE′ defined in (4.1)309

provides a 2k
k+1 -approximation for (TA), where k is an upper bound on the sizes of310

bodies in B.311

Proof. By Lemma 3.4, OPTTA(B) ≥ m+
∑m
i=1 |Bi|. Recall that |Bi| ≤ k for i =312

1, . . . ,m. The total area of ΦE′ is |ΦE′ |TA =
∑m
i=1(|Bi|+|Bi+1\Bi|) ≤ m+

∑m
i=1 |Bi|+313 ∑m

i=1(|Bi| − 1) ≤ OPTTA(B) + k−1
k+1OPTTA(B) = 2k

k+1OPTTA(B), concluding the314

proof.315

The observation that a strongly connected subgraph of the body graph corre-316

sponds to a representation of hB, as in (4.1), suggests the reduction of our problem317

to the problem of finding a minimum weight strongly connected spanning subgraph318

in a directed graph with arc-weight price∗(B,B
′) for (B,B′) ∈ E(DB). The optimum319

solution to this problem (MWSCS) is an upper bound for the minimum | · |∗-size320

of a representation of hB. As there are efficient constant-factor approximations for321

MWSCS [17], this approach may look promising. There are, however, two difficulties.322

First, in Section 5 we show that computing priceL is NP-complete. Second, even323

when price∗ is efficiently computable (for measures (C) and (BC)), the upper bound324

obtained in this way may be off by a factor of Ω(n) from the optimum, see Section 6325

for a construction.326

In what follows, we overcome these difficulties. An in-arborescence is a directed,327

rooted tree in which all edges point towards the root. An in-arborescence is called328

spanning if the underlying tree is spanning. A branching is a directed forest in which329

every connected component forms an in-arborescence. For (C), instead of a strongly330

connected spanning subgraph, we compute a minimum weight spanning in-arbores-331

cence and extend that to a representation of hB. The same approach works for (BC)332

as well. For (L), the situation is more complicated. First, we develop an efficient333

approximation algorithm for priceL. Next, we compute a minimum weight spanning334

in-arborescence where its root is pre-specified. Finally, we extend the corresponding335

pure Horn CNF to a representation of hB. We show that the cost of the arborescences336
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built is at most a multiple of the optimum by a logarithmic factor, which in turn337

ensures the improved approximation factor.338

4.1. Clause and body-clause minimum representations. In this section339

we consider (C) and (BC) and show that the simple algorithm described in Procedure340

1 provides the stated approximation factor. We note that a minimum weight spanning341

in-arborescence of a directed graph can be found in polynomial time, see [10,16].342

Procedure 1: Approximation of (C) and (BC)

1 Determine a minimum priceC-weight spanning in-arborescence T of DB.

/∗ Denote by B0 the body corresponding to the root of T . ∗/
2 Output Φ = ΦT ∧B0 → (V \B0).

/∗ Here ΦT is defined as in (4.1). ∗/

Observe that priceC is easy to compute.343

Lemma 4.3. priceC(B,B′) = |B′ \B| for B,B′ ∈ B.344

Proof. Take a pure Horn CNF Φ attaining the minimum in (3.2). As every345

variable in B′ \B is reached by the forward chaining procedure from B with respect346

to Φ, each such variable must be a head of at least one clause in Φ. That is, Φ contains347

at least |B′\B| clauses. On the other hand, B → (B′\B) uses exactly |B′\B| clauses,348

hence priceC(B,B′) = |B′ \B| as stated.349

Lemma 4.4. Let T denote a minimum priceC-weight spanning in-arborescence in
DB. Then

|ΦT |C ≤ dlog keOPTC(B) + max{0,m− k},

where k is an upper bound on the sizes of bodies in B.350

Proof. We construct a subgraph T of DB such that (i) it is a spanning in-351

arborescence, and (ii) |ΦT |C ≤ dlog keOPTC(B) + max{0,m − k}. This proves the352

lemma as the weight of T upper bounds the weight of T .353

We start with the digraph T1 on node set B that has no arcs. In a general step of354

the algorithm, Ti will denote the graph constructed so far. We maintain the property355

that Ti is a branching, that is, a collection of node-disjoint in-arborescences spanning356

all nodes. In an iteration, for each such in-arborescence we choose an arc of minimum357

weight with respect to priceC that goes from the root of the in-arborescence to some358

other component. We add these arcs to Ti, and for each directed cycle created, we359

delete one of its arcs. This results in a graph Ti+1 with at most half the number of360

weakly connected components that Ti has, all being in-arborescences. We repeat this361

until the number of components becomes at most max{1,m/k}. To reach this, we need362

at most dlog ke iterations. Finally, we choose one of the roots of the components and363

add an arc from all the other roots to this one, obtaining a spanning in-arborescence364

T .365

It remains to show that T also satisfies (ii). In the final stage, we add at most366

max{1,m/k} − 1 arcs to T , which corresponds to at most k(max{1,m/k} − 1) ≤367

max{0,m−k} clauses in ΦT . Now we bound the rest of ΦT . In iteration i, components368

of Ti define a partition B = B1∪· · ·∪Bq. Let us denote by Bj the body corresponding369

to the root of the arborescence with node-set Bj . Let us consider the arcs {(Bj , B′j) |370
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j = 1, . . . , q} chosen to be added in the ith iteration. Now we obtain371

|ΦTi+1\Ti |C ≤
q∑
j=1

priceC(Bj , B
′
j) =

q∑
j=1

min
B∈B\Bj

priceC(Bj , B) ≤ OPTC(B).372

The first inequality follows from the construction of T . The equality follows from the373

criterion to choose the arcs to be added. The last inequality follows from Lemma 3.6.374

Since we have at most dlog ke iterations, the lemma follows.375

Theorem 4.5. For key Horn functions, there exists a polynomial time376

min{dlog ne+ 1, dlog ke+ 2, k}-approximation algorithm for (C) and (BC), where k is377

an upper bound on the sizes of bodies in B.378

Proof. We first show that Φ provided by Procedure 1 is a min{dlog ne+ 1, dlog ke379

+ 2}-approximation for (C) and (BC). Note that Φ is a subformula of ΨB defined by380

(3.1) since all bodies in Φ are from B. Furthermore, by our construction, FΦ(B) = V381

for all B ∈ B. This implies that the output Φ represents hB. Using Lemma 4.4 and382

the fact that we added |V \B0| ≤ n clauses to ΦT in Step 2, we obtain383

|Φ|C ≤ dlog keOPTC(B) + max{0,m− k}+ n.384

By Lemma 3.4, this gives a (dlog ke + 2)-approximation, while setting k = n gives a385

(dlog ne + 1)-approximation. By Lemma 3.1, OPTBC(B) = |B| + OPTC(B). Since386

|Φ|BC = |B|+ |Φ|C , the same approximation ratios as above follow for (BC) as well.387

Finally, Lemma 4.1 provides a different pure Horn CNF that is a k-approximation388

for (C) and (BC).389

4.2. Literal minimum representations. In this section we consider (L). The390

first difficulty that we have to overcome is that, unlike in the case of (C) and (BC),391

computing priceL is NP-hard as we show in Section 5. To circumvent this, we give an392

O(1)-approximation algorithm for priceL(S, S′) for any pair of sets S, S′ ⊆ V . Note393

that if S does not contain a body B ∈ B then priceL(S, S′) = ∞, hence we assume394

that this is not the case.395

We first analyze the structure of a pure Horn CNF Φ attaining the minimum in396

(3.2) for (L). Starting the forward chaining procedure from S with respect to Φ, let397

Wi denote the set of variables reached within the first i steps. That is, S = W0 (398

W1 ( · · · (Wt ⊇ S′. We choose Φ in such a way that t is as small as possible (among399

those pure Horn CNFs that already minimize (3.2) for (L)). Let Bi ∈ B be a smallest400

body contained in Wi for i = 0, . . . , t− 1 and set Bt := S′.401

Proposition 4.6. Bi 6⊆Wi−1 for i = 1, . . . , t.402

Proof. Suppose to the contrary that Bi ⊆ Wi−1 for some 1 ≤ i ≤ t − 1. By403

the definition of forward chaining, every variable v ∈Wi+1 \Wi is reached through a404

clause B → v where B∩(Wi \Wi−1) 6= ∅. Now substitute each such clause by Bi → v.405

As |Bi| ≤ |B|, the | · |L size of the CNF does not increase. However, the number of406

steps in the forward chaining procedure decreases by at least one, contradicting the407

choice of Φ. Finally, S′ = Bt ⊆Wt−1 would contradict the minimality of t.408

Proposition 4.6 immediately implies that |B0| > |B1| > . . . > |Bt−1|.409

Proposition 4.7. Wi+1 \Wi ⊆ Bi+1 for i = 0, . . . , t− 1.410

Proof. Let i be the smallest index that violates the condition. Take an arbitrary411

variable v ∈ Wi+1 \Wi for which v 6∈ Bi+1. Then v is reached in the (i + 1)th step412
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of the forward chaining procedure from a body of size at least |Bi|. If we substitute413

this clause by Bi+1 → v, the resulting pure Horn CNF still satisfies FΦ(B0) ⊇ S′ but414

has smaller | · |L size by |Bi+1| < |Bi|, contradicting the minimality of Φ.415

By Proposition 4.7, Wi+1 \Wi = Bi+1 \ (S ∪
⋃i
j=1Bj). Define416

Φ(1) :=

t−1∧
i=0

Bi → (Bi+1 \ (S ∪
i⋃

j=1

Bj)).417

Observe that Φ(1) has a simple structure which is based on a linear order of bodies418

B0, . . . , Bt.419

Proposition 4.8. |Φ(1)|L = |Φ|L.420

Proof. Take an arbitrary variable v ∈ Bi+1\(S∪
⋃i
j=1Bj) for some i = 0, . . . , t−1.421

By the observation above, v ∈Wi+1 \Wi. This means that Φ has at least one clause422

entering v, say B → v, for which B ⊆ Wi and so |B| ≥ |Bi|. However, Φ(1) has423

exactly one clause entering v, namely Bi → v. This implies that |Φ(1)|L ≤ |Φ|L, and424

equality holds by the minimality of Φ.425

The proposition implies that Φ(1) also realizes priceL(S, S′). As we show later426

in Theorem 5.8, computing priceL(S, S′) is NP-hard and thus we do not know any427

efficient algorithm to compute Φ(1). Using the next two propositions, we define a pure428

Horn CNF that approximates Φ(1) well and can be computed efficiently. We then use429

it to show in Theorem 4.13 that there is a polynomial time Θ(log k) approximation430

algorithm for (L).431

Let i0 = 0 and for j > 0 let ij denote the smallest index for which |Bij | ≤432

|Bij−1
|/2. Let r − 1 be the largest value for which Bir−1

exists and set Bir := S′.433

Now define434

Φ(2) :=

r−1∧
j=0

Bij → (Bij+1
\ (S ∪

j⋃
`=1

Bi`)).435

It is easy to see that FΦ(2)(S) ⊇ S′.436

Proposition 4.9. |Φ(2)|L ≤ 2|Φ(1)|L.437

Proof. Take an arbitrary variable v ∈ Bij+1
\ (S ∪

⋃j
`=1Bi`) for some j =438

0, . . . , r − 1. Then both Φ(1) and Φ(2) contain a single clause entering v. Namely,439

v is reached from Bij+1−1 in Φ(1) and from Bij in Φ(2). By the definition of the440

sequence i0, i1, . . . , ir−1, we get |Bij | ≤ 2|Bij+1−1|, concluding the proof.441

Although Φ(2) gives a 2-approximation for |Φ|L, it is not clear how we could find442

such a representation, because bodies Bij , j = 0, . . . , r−1 depend on Φ which is hard443

to compute. Define444

Φ(3) :=

r−1∧
j=0

Bij → (Bij+1
\ (S ∪Bij )).445

The only difference between Φ(2) and Φ(3) is that we add unnecessary clauses to the446

representation. The distinguishing feature of Φ(3) is that each of its implications447

depends only on two bodies Bij and Bij+1
, and thus Φ(3) represents a path from a448

body contained in S to S′ in the body graph extended with a new node S′. This will449

allow us to obtain a CNF which is not longer than Φ(3) and allows to derive S′ from450
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S by forward chaining (see Lemma 4.11). The next claim shows that the size of the451

formula cannot increase too much.452

Proposition 4.10. |Φ(3)|L ≤ 27
17 |Φ

(2)|L.453

Proof. Take an arbitrary variable v that appears as the head of a clause in the454

representation Φ(3). Let j be the smallest index for which v ∈ Bij+1
\ (S ∪

⋃j
`=1Bi`).455

Then Φ(2) contains a single clause entering v, namely Bij → v. On the other hand,456

the set {Bij → v}∪{Bi` → v | ` = j+2, . . . , r−1} contains all the clauses of Φ(3) that457

enter v. By the definition of the sequence i0, i1, . . . , ir−1, we get
∑r−1
`=j+2(|Bi` |+ 1) =458

(r− j− 2) +
∑r−1
`=j+2 |Bi` | ≤ blog |Bij+1 |c+ |Bij |/2− 1 ≤ blog |Bij |c+ |Bij |/2− 2. We459

get at most this many extra literals in Φ(3) on top of the |Bij |+ 1 literals in Φ(2). As460

blog xc/(x+ 1) +x/(2(x+ 1))− 2/(x+ 1) ≤ 10/17 for x ∈ Z+, the statement follows.461

By Propositions 4.8, 4.9 and 4.10,462

(4.2) |Φ(3)|L ≤
27

17
|Φ(2)|L ≤

54

17
|Φ(1)|L =

54

17
|Φ|L.463

Lemma 4.11. There exists an efficient algorithm to construct a pure Horn CNF464

Λ(S, S′) such that |Λ(S, S′)|L ≤ 54
17 priceL(S, S′), BΛ(S,S′) ⊆ B, and FΛ(S,S′)(S) ⊇ S′.465

Proof. We consider an extension of the body graph by adding S′ to V (DB). We466

also define arc-weights by setting w(B,B′) := |B′\(S∪B)|(|B|+1) forB,B′ ∈ B∪{S′}.467

Let B0 be a smallest body contained in S (as defined before Proposition 4.6). Compute468

a shortest path P from B0 to S′ and define469

(4.3) Λ(S, S′) =
∧

(B,B′)∈P

B → (B′ \ (S ∪B)).470

Note that, by definition, |Λ(S, S′)|L is the weight of the shortest path P , while |Φ(3)|L471

is the length of one of the paths from S to S′. By (4.2), |Λ(S, S′)|L ≤ |Φ(3)|L ≤ 54
17 |Φ|L.472

That is, Λ(S, S′) provides a 54
17 -approximation for priceL(S, S′) as required, finishing473

the proof of the lemma.474

We prove that the algorithm described in Procedure 2 provides the stated approx-475

imated factor for (L). We note that a minimum weight spanning in-arborescence of a476

directed graph rooted at a fixed node can be found in polynomial time, see [10,16]. Let477

Bmin be a smallest body in B, let δ := |Bmin| and denote B′ = B \ {Bmin}. We define478

the weight of an arc (B,B′) ∈ E(DB) in the body graph to be w(B,B′) = |Λ(B,B′)|L.479

Procedure 2: Approximation of (L)

1 Let Bmin be a smallest body in B.
2 Set w(B,B′) = |Λ(B,B′)|L for (B,B′) ∈ E(DB).

3 Determine a minimum w-weight spanning in-arborescence T of DB such that

T is rooted at Bmin.
4 Output Φ =

∧
(B,B′)∈T Λ(B,B′) ∧ (Bmin → (V \Bmin)).

/∗ Here Λ(B,B′) is defined as in (4.3). ∗/

The proof of the following lemma is very similar to the proof of Lemma 4.4.480

There are a few differences: The first one is that we use a different cost function481

on the edges (the approximation value |Λ(B,B′)|L given by Lemma 4.11 instead of482
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priceC(B,B′)). We also have a slightly different terminating condition (m/k2 instead483

of m/k). Finally, in the last step of the construction we do not use an arbitrary root,484

but we make sure that Bmin is the root of the constructed in-arborescence.485

Lemma 4.12. Let T denote a minimum w-weight spanning in-arborescence in DB
such that T is rooted at Bmin. Then∣∣∣∣∣∣

∧
(B,B′)∈T

Λ(B,B′)

∣∣∣∣∣∣
L

≤
(

108

17
dlog ke+ 1

)
OPTL(B),

where k is the size of a largest body in B.486

Proof. We construct a subgraph T of DB such that (i) it is a spanning in-487

arborescence, and (ii) |
∧

(B,B′)∈T Λ(B,B′)|L ≤ ( 108
17 dlog ke+1)OPTL(B). This clearly488

proves the lemma as the weight of T upper bounds the weight of T .489

We start with the directed graph T1 on node set B that has no arcs. In a general490

step of the algorithm, Ti will denote the graph constructed so far. We maintain the491

property that Ti is a branching, that is, a collection of node-disjoint in-arborescences492

spanning all nodes. In an iteration, for each such in-arborescence we choose an arc493

of minimum weight with respect to w that goes from the root of the in-arborescence494

to some other component. We add these arcs to Ti, and for each directed cycle495

created, we delete one of its arcs. This results in a graph Ti+1 with at most half the496

number of weakly connected components that Ti has, all being in-arborescences. We497

repeat this until the number of components becomes at most max{1,m/k2}. To reach498

this, we need at most dlog k2e ≤ 2dlog ke iterations. Finally, we add an arc from all499

the other roots to Bmin and delete all the arcs leaving Bmin, obtaining a spanning500

in-arborescence T rooted at Bmin.501

It remains to show that T also satisfies (ii). In the final stage, we add at most502

max{1,m/k2} arcs to T whose total weight is upper bounded by (k+1)δmax{1,m/k2}.503

Since k+1 ≤ n, we have that (k+1)δ ≤ nδ. We have that (k+1)δm
k2 = k+1

k ·
δ
k ·m ≤ 2m504

where the inequality holds, because (k + 1)/k ≤ 2 for k ≥ 1 and δ ≤ k. Together505

we get that the total weight of arcs added in the last step is upper bounded by506

(k + 1)δmax{1,m/k2} ≤ max{nδ, 2m} ≤ OPTL(B) where the last inequality follows507

by Lemma 3.4. Now we bound the rest of
∧

(B,B′)∈T Λ(B,B′). In iteration i, com-508

ponents of Ti define a partition B = B1 ∪ · · · ∪ Bq. Let us denote by Bj the body509

corresponding to the root of the arborescence with node-set Bj . Let us consider the510

arcs {(Bj , B′j) | j = 1, . . . , q} chosen to be added in the ith iteration. Now we obtain511 ∣∣∣∣∣∣
∧

(B,B′)∈Ti+1\Ti

Λ(B,B′)

∣∣∣∣∣∣
L

=

q∑
j=1

w(Bj , B
′
j) =

q∑
j=1

min
B∈B\Bj

w(Bj , B)512

≤ 54

17

q∑
j=1

min
B∈B\Bj

priceL(Bj , B) ≤ 54

17
OPTL(B),513

where the first and second inequalities follow by Lemmas 4.11 and 3.6, respectively.514

Since we have at most 2dlog ke iterations, the lemma follows.515

Theorem 4.13. For key Horn functions, there exists a polynomial time516

min{ 108
17 dlog ke+2, k}-approximation algorithm for (L), where k is the size of a largest517

body in B.518
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Proof. We first show that Φ provided by Procedure 2 is a ( 108
17 dlog ke + 2)-519

approximation for (L). Note that Φ is a subformula of ΨB defined by (3.1) since520

all bodies in Φ are from B. Furthermore, by our construction, FΦ(B) = V for all521

B ∈ B. This implies that the output Φ represents hB. By Lemma 3.4, we add at522

most n(δ + 1) ≤ OPTL(B) literals to
∧

(B,B′)∈T Λ(B,B′) in Step 4. This, together523

with Lemma 4.12, implies the theorem.524

5. Hardness of computing priceL. In this section we prove that computing525

priceL is NP-hard. Given a sequence S = (S0, S1, ..., Ss) of sets we associate to it a526

pure Horn CNF527

(5.1) ΦS =

s−1∧
i=0

Si →
Si+1 \

⋃
j≤i

Sj

 .528

We denote by costL(S) = costL(S0, ..., Ss) the L-measure (number of literals) of ΦS ,529

i.e.,530

costL(S) = costL(S0, ..., Ss) =

s−1∑
i=0

(|Si|+ 1) ·

∣∣∣∣∣∣Si+1 \

⋃
j≤i

Sj

∣∣∣∣∣∣ .531

Let us note that we view S as a sequence of subsets. This is because in this section we532

are concerned with sequences between given sets S0 and Ss that minimize costL(S)533

over all possible sequences S that start at S0 and end at Ss.534

By Proposition 4.6 we can assume for such sequences that |S0| > |S1| > · · · >535

|Ss−1|. Note also that costL(S) = costL(S, ∅). In other words, concatenating/deleting536

empty sets from the end of the sequence does not change the costL value.537

We will show NP-hardness for computing priceL by a reduction from 3-SAT.538

Consider a 3-CNF (exactly 3 literals in each clause) Φ =
∧m
k=1 Ck in which every539

variable xi, i = 1, ..., n appears at most 4 times. SAT is NP-complete for this family540

of CNFs [26]. For a clause C ∈ Φ, let us denote by C(C) the set of eight possible541

clauses consisting of the three variables in C. For example, if C = (x1 ∨ x2 ∨ x4),542

then C(C) = {(x1 ∨ x2 ∨ x4), (x1 ∨ x2 ∨ x4), (x1 ∨ x2 ∨ x4), (x1 ∨ x2 ∨ x4), (x1 ∨ x2 ∨543

x4), (x1 ∨ x2 ∨ x4), (x1 ∨ x2 ∨ x4), (x1 ∨ x2 ∨ x4)}. Furthermore, let544

M =
⋃
C∈Φ

C(C).545

We regard M as a multiset, that is, if two clauses C and C ′ share the same three546

variables then C(C) and C(C ′) are considered to be disjoint, and so the corresponding547

eight clauses are added for both of them. Accordingly, Φ ∩ C(C) is defined to be C.548

Let us denote by δi the number of clauses in M containing positive literal xi. Note549

that for all i = 1, . . . , n, the negative literal xi also appears in δi clauses of M , and550

δi ≤ 16.551

Let us introduce552

M(xi) = {C ∈M | xi ∈ C} and M(x̄i) = {C ∈M | x̄i ∈ C}.553

Let us next define sets T , Bj (j = 0, ..., n) and Aj (j = 1, ..., n+ 1) to be pairwise554

disjoint and disjoint from M , such that for some integer parameters α, β and τ we555

have |T | = τ , |Aj | = α (j = 1, ..., n+ 1), and |Bj | = β (j = 0, ..., n).556
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Let us further introduce557

Xi =

 n⋃
j=i

Bj

 ∪
 i⋃
j=1

Aj

 ∪M(xi), and558

Yi =

 n⋃
j=i

Bj

 ∪
 i⋃
j=1

Aj

 ∪M(x̄i),559

560

for i = 0, ..., n + 1. Note that since x0 and xn+1 are not variables of Φ, we have561

X0 = Y0 = B0 ∪ · · · ∪Bn and Xn+1 = Yn+1 = A1 ∪ · · · ∪ An+1. Finally, let us define562

S = X0, Z = Xn+1 ∪ Φ, and set563

(5.2) BΦ = {S,Z, T} ∪ {Xi, Yi | i = 1, ..., n}.564

Our aim is to show that with these definitions and appropriate choices for pa-565

rameters α, β and τ , the quantity priceL(S, T ), with respect the family BΦ, attains566

its minimum possible value if and only if Φ is a satisfiable formula.567

We plan to choose τ � β � α� max{n,m} such that we have568

|S| > |X1| = |Y1| > · · · > |Xn| = |Yn| > |Z|.569

Given this, let us recall that an optimal solution realizing priceL(S, T ) with respect to570

the family BΦ involves sets from BΦ in strictly decreasing order of their size by Propo-571

sition 4.6. To handle such sequences of sets, we introduce P(σ) = (Pσ1
1 , Pσ2

2 , ..., P σnn )572

for σ ∈ {0, 1, ∗}[n], where for 1 ≤ i ≤ n and ξ ∈ {0, 1, ∗} we have573

P ξi =

{
Xi if ξ = 1,

Yi if ξ = 0.
574

Note that for index i with σi = ∗ the corresponding sequence P(σ) simply skips both575

Xi and Yi. For instance, for n = 4 and σ = (1, ∗, 0, ∗) we have P(σ) = (X1, Y3).576

Note that an optimal sequence realizing priceL(S, T ), with respect to BΦ, has the577

form (S,P(σ), T ) or (S,P(σ), Z, T ) for some σ ∈ {0, 1, ∗}[n]. For this reason, we also578

use the notation σ0 = 1 and Pσ0
0 = P 1

0 = S = X0 = Y0. For such sequences we also579

introduce580

Wi(σ) = S ∪

 ⋃
j≤i
σj 6=∗

P
σj
j

581

for i = 1, ..., n to denote the initial segments covered by the sequence.582

In the rest of this section, we shall show that with the right choice of the pa-583

rameters τ , β, and α, any optimal sequence realizing priceL(S, T ) has the form584

(S,P(σ), Z, T ) for some σ ∈ {0, 1}[n]. In particular, we will show the following prop-585

erties of optimal sequences:586

(I) Z is a part of any optimal sequence, and587

(II) for every i, Xi or Yi is a part of the sequence.588

Later, we will show that in any optimal sequence σ minimizes the number of un-589

satisfied clauses in Φ. In particular, there is a quantity f which depends on the590

structure of formula Φ such that priceL(S, T ) = f + (|Z| + 1) · |T | if Φ is satisfiable591
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and priceL(S, T ) > f + (|Z| + 1) · |T | if Φ is not satisfiable. The reason for this is592

that if Pσii is a part of the sequence and a clause C in Φ is satisfied by literal xi or593

xi (depending on the value of σi), then C is already added to the forward chaining594

closure when reaching Pσii . Thus when adding Z to the sequence, we do not have to595

add a clause with head C.596

For simplicity, introduce δ0 = δn+1 = 0 and recall that δi = |M(xi)| = |M(x̄i)|597

for i = 1, ..., n. We start by observing the following easy to see relations that we will598

rely on in our proof sometimes without mentioning them explicitly:599

(i) δi = |Xi ∩M | = |Yi ∩M | ≤ 16 for i = 0, ..., n+ 1,600

(ii) |Z| = (n+ 1)α+m,601

(iii) |Xi| = |Yi| = (n− i+ 1)β + iα+ δi for i = 0, ..., n+ 1,602

In what follows, we show first that, with a right choice of parameters, such an603

optimal solution must include Z, thus proving statement (I).604

Lemma 5.1. For all σ ∈ {0, 1, ∗}[n], we have605

costL(S,P(σ), T ) > costL(S,P(σ), Z, T )606

whenever607

(5.3) (β − α−m) · τ > ((n+ 1)β + 17) · ((n+ 1)α+ 8m).608

Proof. Define i ∈ {0, 1, ..., n} to be the largest index such that σi ∈ {0, 1}. Since609

we defined σ0 = 1 above, such an i exists. Then we can write610

costL(S,P(σ), T ) = µ+ (|Pσii |+ 1) |T \Wi(σ)| , and
costL(S,P(σ), Z, T ) = µ+ (|Pσii |+ 1) |Z \Wi(σ)|+ (|Z|+ 1) |T \ (Z ∪Wi(σ))| ,611

where µ = costL(S,P(σ)) denotes the sum contributed to costL by the common initial612

sequence.613

Since T ∩Wi(σ) = T ∩ Z = ∅, we have |T \Wi(σ)| = |T \ (Z ∪Wi(σ))| = τ.614

Since Z \Wi(σ) ⊆M ∪Ai+1 ∪ ...∪An+1, we have |Z \Wi(σ)| ≤ (n+ 1− i)α+ 8m.615

Thus we can write616

costL(S,P(σ), T ) − costL(S,P(σ), Z, T )
≥ (|Pσii | − |Z|)τ − (|Pσii |+ 1)((n+ 1− i)α+ 8m)
= ((n− i+ 1)(β − α) + δi −m)τ
− ((n− i+ 1)β + iα+ δi + 1)((n− i+ 1)α+ 8m),

617

where the last equality follows by (ii) and (iii). Since (n − i + 1)(β − α) + δi −m ≥618

β−α−m, (n−i+1)β+iα+δi+1 ≤ (n+1)β+17, and (n−i+1)α+8m ≤ (n+1)α+8m,619

our claim, that is, the positivity of the above difference, is implied by our assumption620

(5.3).621

For σ ∈ {0, 1, ∗}[n] with σj = ∗, let us denote by σj→0 and σj→1 the sequences622

obtained by switching the jth entry in σ to 0 and 1, respectively. Next we show that,623

with a right choice of parameters, an optimal solution must include exactly one of Xi624

and Yi for all i = 1, . . . , n, thus proving statement (II).625

Lemma 5.2. For every σ ∈ {0, 1, ∗}[n] with σj = ∗, and for every ε ∈ {0, 1} we626

have627

costL(S,P(σ), Z, T ) > costL(S,P(σj→ε), Z, T ),628
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if the following inequality holds:629

(5.4) (β − α) · (α+ 8m) > 16m(nβ + 17).630

Proof. Similarly as before, let us define σ0 = σn+1 = 1, Pσ0
0 = S and P

σn+1

n+1 = Z.631

Let us set i to be the largest index i < j with σi 6= ∗ while k to be the smallest index632

j < k with σi 6= ∗. As σ0 = σn+1 = 1, such i and k exist, and i < j < k.633

Let us introduce the notation I = Pσii , J = P εj and K = Pσkk . Let us further de-634

note by Q the initial and by R the terminating subsequence of P(σ) such that P(σ) =635

(Q, I,R). Finally, set U = Wi(σ), µ = costL(S,Q), ν = costL(S,P(σ), Z, T ) −636

costL(S,Q, I,K), and ν′ = costL(S,P(σj→ε), Z, T )− costL(S,Q, I, J,K).637

Note that by the definition of costL, the expression for ν and ν′ are almost the638

same. The only difference is the sum defining ν′ has J added to the unions which639

are taken away in each term and thus the corresponding cardinalities cannot increase.640

We thus have that ν′ ≤ ν.641

Note also that with the above notation we can write642

costL(S,P(σ), Z, T ) = µ+ (|I|+ 1)|K \ U |+ ν, and
costL(S,P(σj→ε), Z, T ) = µ+ (|I|+ 1)|J \ U |+ (|J |+ 1)|K \ (U ∪ J)|+ ν′.

643

Thus, the difference between the above two left hand sides is at least (|I| + 1)(|K \644

U | − |J \ U |)− (|J |+ 1)|K \ (U ∪ J)|. By our definitions of these sets we have645

K \ U ⊇ Ai+1 ∪ · · · ∪Ak,
J \ U ⊆M ∪Ai+1 ∪ · · · ∪Aj , and

K \ (U ∪ J) ⊆M ∪Aj+1 ∪ · · · ∪Ak.
646

Hence, using our notation and (iii) we get647

costL(S,P(σ), Z, T ) − costL(S,P(σj→ε), Z, T )
≥ ((n− i+ 1)β + iα+ δi + 1)((k − i)α− (j − i)α− 8m)

− ((n− j + 1)β + jα+ δj + 1)(8m+ (k − j)α)

= (k − j)α((j − i)(β − α) + δj − δi)
− 8m((2n− i− j + 2)β + (i+ j)α+ δi + δj + 2).

648

Using (i), j − i ≥ 1, k − j ≥ 1, and i+ j ≥ 1 we can conclude that649

costL(S,P(σ), Z, T ) − costL(S,P(σj→ε), Z, T )
≥ (β − α)(α+ 8m)− 16m(nβ + 17),

650

where the right hand side is positive by our assumption (5.4), hence completing our651

proof.652

It is easy to see that we can choose α, β, and τ such that (5.3) and (5.4) hold, and653

all of these parameters are O(m2n3). Indeed, set α := 16mn. Then (5.4) simplifies654

to (β − 16mn) · (16mn+ 8m) > 16m(nβ + 17), which holds if we set β := 32mn2 +655

16mn+ 35. Now (5.3) transforms into (32mn2 −m+ 35) · τ > ((16mn+ 1)(32mn2 +656

16mn+ 35) + 17) · ((n+ 1)16mn+ 8m), therefore setting τ := d((16mn+ 1)(32mn2 +657

16mn+ 35) + 17) · ((n+ 1)16mn+ 8m)/(32mn2 −m+ 35) + 1e gives a proper choice658

of the parameters. In this way our construction above has polynomial size in the size659

of Φ. Let us assume for the rest of our proof that we fix such a choice for α, β and τ .660

In what follows we show that priceL(S, T ) is the smallest if and only if Φ is661

satisfiable.662

This manuscript is for review purposes only.
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Lemma 5.3. There exists a function d : [n]→ Z+ such that663

|Xi+1 \Wi(σ)| = |Yi+1 \Wi(σ)| = d(i).664

for every i = 0, . . . , n and σ ∈ {0, 1}[n].665

Proof. To see the claim, let us consider a clause C of Φ that contains variable666

xi+1 or its negation. Recall that C(C) ⊆ M denotes the set of eight possible clauses667

included in M consisting of the three variables in C. Let us further denote by I(C) =668

{u, v, w} the indices u < v < w of the variables that are involved (with or without a669

complementation) in C. Let us then observe that if i + 1 = u is the smallest index670

in I(C), then both Xi+1 \Wi(σ) and Yi+1 \Wi(σ) contain exactly four elements of671

C(C). This is because Wi(σ) contains clauses from M that contain variables xj or672

its negation, depending on δj , for j ≤ i. Thus none of the eight clauses of C(C)673

are contained in Wi(σ), and exactly four of those contain xi+1 and four contain its674

negation. If i + 1 = v is the second smallest index in I(C), then both Xi+1 \Wi(σ)675

and Yi+1 \Wi(σ) contain exactly two elements of C(C). This is because C(C) \Wi(σ)676

contains now exactly the four clauses that contain either xv or its negation, depending677

on σv, and thus two of those four contain xi+1 and two contain xi+1. Finally, if678

i + 1 = w is the largest index in I(C), then both Xi+1 \ Wi(σ) and Yi+1 \ Wi(σ)679

contain exactly 1 element of C(C). This is because in this case C(C) \Wi(σ) contains680

only the two clauses that do not contain the particular combination of xu or its681

negation and xv or its negation that corresponds to (σu, σv), and of those two one682

contains xi+1 and one contains its negation.683

Note that these counts do not depend on σ ∈ {0, 1}[n], and hence the claim684

follows.685

Lemma 5.4. There exists an integer g ∈ Z+ such that686

costL(S,P(σ)) = g687

for every σ ∈ {0, 1}[n].688

Proof. The claim follows by Lemma 5.3 and the fact that |Xi| = |Yi| for i =689

1, . . . , n.690

Lemma 5.5. There exists an integer f such that for all σ ∈ {0, 1}[n] we have691

costL(S,P(σ), Xn+1) = f.692

Proof. By (iii) we have |Pσnn | = |Xn| = |Yn| = β+nα+δn, and by our construction693

we have Xn+1 \Wn(σ) = An+1. Thus, by Lemma 5.4 we get f = g + (β + nα+ δn +694

1)|An+1| = g + (β + nα+ δn + 1)α and the statement follows.695

Lemma 5.6. For σ ∈ {0, 1}[n] we have696

costL(S,P(σ), Z, T ) = f + (β + nα+ δn + 1) · |Φ(σ)|+ (|Z|+ 1) · |T |,697

where |Φ(σ)| denotes the number of clauses of Φ that are not satisfied by σ.698

Proof. The lemma follows by the construction and by Lemma 5.5.699

Lemma 5.7. For BΦ defined in (5.2) we have700

priceL(S, T ) = f + (|Z|+ 1) · |T |701

if and only if Φ is satisfiable.702
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Proof. The construction of Φ(1) in Section 4.2 shows that there exists a pure Horn703

CNF attaining the minimum in priceL(S, T ) that can be written in form (5.1) for some704

sequence {S0, . . . , Ss} ⊆ BΦ where |S0| > |S1| > ... > |Ss|. By Lemmas 5.1 and 5.2,705

we may assume that S = {S,P(σ), Z, T} for some truth assignment σ ∈ {0, 1}[n].706

Lemma 5.6 implies that priceL(S, T ) = costL(S,P(σ), Z, T ) = f + (|Z| + 1) · |T | if707

and only if |Φ(σ)| = 0, that is, if σ is a true point of Φ.708

Theorem 5.8. Computing priceL is NP-hard.709

Proof. Let Φ be a 3-CNF in which every variable appears at most 4 times. Recall710

that SAT is NP-complete even when restricted to this class of CNF formulas [26]. By711

Lemma 5.7, Φ is satisfiable if and only if priceL(S, T ) = f+(|Z|+1) · |T | that is if and712

only if there exists a σ ∈ {0, 1}[n] such that |Φ(σ)| = 0. This shows that computing713

priceL is NP-hard.714

6. Clause minimization and strongly connected subgraphs. For a strong-715

ly connected graph D = (V,E) and non-negative weights w : E → Z+, we denote716

by MWSCS(D,w) the problem of finding a minimum weight subset F ⊆ E of the arcs717

such that (V, F ) is also strongly connected. We denote by mwscs(D,w) = w(F ) the718

weight of such a minimum weight arc subset. MWSCS is an NP-hard problem, for719

which polynomial time approximation algorithms are known. For the case of uniform720

weights a 1.61-approximation was given by Khuller et al. [21]. For general weights a721

simple 2-approximation is due to Fredericson and Jájá [17]. Note that in the case of722

general weights, we can assume that D is a complete directed graph.723

As already observed in the beginning of Section 4, there is a natural relation of724

the above problem to the minimization of a key Horn function. Let us consider a725

Sperner hypergraph B ⊆ 2V \ {V } and the corresponding Horn function726

(6.1) hB =
∧
B∈B

B → (V \B).727

The body graph of B was a complete directed graph DB where V (DB) = B. Define728

a weight function w on the arcs of this graph by setting w(B,B′) = price∗(B,B
′)729

for all B,B′ ∈ B, B 6= B′, where price∗ is defined in (3.2). Then any solution730

H ⊆ E(DB) = B × B of problem MWSCS(DB, w) defines a representation of hB:731

(6.2) Φ(H) =
∧

(B,B′)∈H

Φ∗(B,B
′),732

where Φ∗(B,B
′) is a formula for which B′ ⊆ FΦ∗(B,B′)(B), BΦ∗(B,B′) ⊆ B and733

|Φ∗(B,B′)|∗ = price∗(B,B
′). It is immediate to see that OPT∗(B) ≤ w(H) holds.734

Thus, it is natural to expect that a polynomial time approximation of problem735

MWSCS(DB, w) provides also a good approximation for OPT∗(B). This however turns736

out to be false for the case of ∗ = C. Our construction uses finite projective spaces737

PG(d, q) where d is the dimension and q is the order.738

Theorem 6.1. Let d ≥ 4 be a positive integer, n be the number of points of739

PG(d, 2) and V = Zn. Then we have740

(6.3) max
B⊆2V \{V }

mwscs(DB, priceC)

OPTC(B)
≥ n+ 1

8
.741

Before proving the theorem, let us recall first some basic facts on finite projective742

spaces from the book [14]. The finite projective space PG(d, q) of dimension d over743
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a finite field GF (q) of order q (prime power) has n = qd + qd−1 + · · ·+ q + 1 points.744

Subspaces of dimension k are isomorphic to PG(k, q) for 0 ≤ k < d, where 0-dimension745

subspaces are the points themselves. The number of subspaces of dimension k < d is746

Nk(d, q) =

k∏
i=0

qd+1−i − 1

qi+1 − 1
,747

and the number of points of such a subspace is qk + qk−1 + · · ·+ q+ 1. In particular,748

the number of subspaces of dimension d − 1 is Nd−1(d, q) = n. If F and F ′ are two749

distinct subspaces of dimension k, then750

2k − d ≤ dim(F ∩ F ′) ≤ k − 1.751

Furthermore, any k + 1 points belong to at least one subspace of dimension k.752

Let us also recall that PG(d, q) has a cyclic automorphism. In other words the753

points of PG(d, q) can be identified with the integers of the cyclic group Zn of modulo754

n addition such that if F ⊆ Zn is a subspace of dimension k, then F + i = {f + i755

mod n | f ∈ F} is also a subspace of dimension k. Furthermore, two subspaces F and756

F + i are distinct if i 6= 0 (mod n).757

Let us consider a subspace Q ⊆ Zn of dimension d− 1. Then the family defined758

as Q = {Q + i | i ∈ Zn} contains all subspaces of PG(d, q) of dimension d − 1 and759

the size of Q is n. In the rest of this section we use + for the modulo n addition of760

integers.761

Lemma 6.2. For every k = 0, ..., d−1 there exists a unique subspace of dimension762

k that contains {0, 1, ..., k}.763

Proof. By the properties we recalled above it follows that there is at least one764

such subspace for every 0 ≤ k < d. We prove that there is at most one by induction765

on k. For k = 0 this is obvious, since the points are the only subspaces of dimension766

0. Assume next that the claim is already proved for all k′ < k, and assume that there767

are two distinct subspaces, R and R′, of dimension k both of which contains the set768

{0, 1, ..., k}. Then R ∩ R′ and (R − 1) ∩ (R′ − 1) = (R ∩ R′) − 1 are two distinct769

subspaces of dimension k′ < k and both contain {0, 1, ..., k − 1}, contradicting our770

inductive assumption, and thus proving our claim.771

Thus, by Lemma 6.2, there exists a unique subspace Q ⊆ Zn of dimension d− 1772

that contains {0, 1, ..., d− 1}.773

Lemma 6.3. d 6∈ Q.774

Proof. Assume to the contrary that d ∈ Q. Then the set {0, 1, ..., d − 1} is775

contained by both Q and Q− 1 = Q+ (n− 1), contradicting Lemma 6.2, since Q and776

Q− 1 are distinct subspaces of dimension d− 1.777

Let us also introduce the set D = {0, 1, ..., d}. Now we are in the position to prove778

the theorem.779

Proof of Theorem 6.1. Let us define B := Q∪ {D + i | i ∈ Zn}, and observe that780

for any distinct pair B ∈ Q and B′ ∈ B we have |B \ B′| ≥ 2d−1. This is obvious if781

B′ ∈ Q by properties of subspaces, and follows easily for B′ ∈ B \ Q because d is at782

least four. Since in any solution H ⊆ B × B we must have an arc entering B for all783

B ∈ Q, and for each such arc (B′, B) ∈ H the CNF ΦC(B′, B) must contain a clause784

with head x for each x ∈ B \B′, we get785

(6.4) mwscs(DB, priceC) ≥ n · 2d−1.786
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On the other hand, we have that787

(6.5) Φ =

( ∧
i∈Zn

(Q+ i)→ (d+ i)

)
∧

( ∧
i∈Zn

(D + i)→ (d+ 1 + i)

)
788

is a representation of hB and |Φ|C ≤ 2n. As n = 2d + · · ·+ 2 + 1 = 2d+1 − 1, we have789

2d−1 = (n+ 1)/4. Thus790

(6.6) mwscs(DB, priceC) ≥ n+ 1

8
·OPTC(B),791

completing the proof of the theorem.792

Let us note that for such a negative result, we need to rely on Horn functions793

with large bodies. For the case when we limit the body sizes of the underlying Horn794

function by a constant k, we have already showed that there exists a solution which795

is a k-approximation for the CNF minimization problem as well as for the MWSCS796

problem, see Lemma 4.1.797

7. Conclusions. In this paper we study the class of key Horn functions which798

is a generalization of a well-studied class of hydra functions [22, 25]. Given a CNF799

representing a key Horn function, we are interested in finding the minimum size800

logically equivalent pure Horn CNF, where the size of the output CNF is measured in801

several different ways. This problem is known to be NP-hard already for hydra CNFs802

for most common measures of the CNF size.803

The main results of the paper are two approximation algorithms for key Horn804

CNFs – one for minimizing the number of clauses and the other for minimizing the805

total number of literals in the output CNF. Both algorithms achieve a logarithmic806

approximation bound with respect to the size of the largest body in the input CNF807

(denoted by k). This parameter can be also defined as the size of the largest clause808

in the input CNF minus one. Note that k is a trivial lower bound on the number of809

variables (denoted by n).810

These algorithms are (to the best of our knowledge) the first approximation algo-811

rithms for NP-hard Horn minimization problems that guarantee a sublinear approx-812

imation bound with respect to k. It follows that both algorithms also guarantee a813

sublinear approximation bound with respect to n. There are two approximation algo-814

rithms for Horn minimization known in the literature, one for general Horn CNFs [19],815

and one for hydra CNFs [25], but both of them guarantee only a linear (or higher)816

approximation bound with respect to k (see Table 1 and the relevant text in the817

introduction section for details).818

For a given pair of sets S, T and set of bodies B, we prove NP-hardness of the819

problem of finding a literal minimum pure Horn CNF Φ that uses bodies only from B820

and for which the forward chaining procedure starting from S reaches all the variables821

in T .822

In contrast to our approach which takes an in-branching in the body graph and823

extends it with a small number of additional edges, we show that no polynomial time824

approximation of the minimum weight strongly connected subgraph problem in the825

body graph may provide a good solution for the CNF minimization problem. The826

counterexample is based on a construction using finite projective spaces.827

Our analysis of Procedure 1 provides an approximation factor of min{dlog ne +828

1, dlog ke+ 2} for (C) and (BC). However, we do not know whether our analysis pro-829

vides the best bound in general. We actually believe that the proposed algorithm830
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(possibly with slight modifications) could be used to obtain a constant factor ap-831

proximation for (C) and (BC). Similarly, no example is known for which the solution832

provided by Procedure 2 attains the proved approximation bound tightly. A better833

analysis of these procedures possibly leading to a constant factor approximation or a834

better lower bound than the one given in Lemma 3.6 is subject of future research.835
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[22] P. Kučera, Hydras: Complexity on general graphs and a subclass of trees, Theoretical Com-886
puter Science, 658 (2017), pp. 399–416.887

This manuscript is for review purposes only.



APPROXIMATING MINIMUM REPRESENTATIONS OF KEY HORN FUNCTIONS 23

[23] D. Maier, Minimum covers in relational database model, Journal of the ACM (JACM), 27888
(1980), pp. 664–674.889

[24] D. Maier, The theory of relational databases, vol. 11, Computer Science Press, Rockville, 1983.890
[25] R. H. Sloan, D. Stasi, and G. Turán, Hydras: Directed hypergraphs and Horn formulas,891

Theoretical Computer Science, 658 (2017), pp. 417–428.892
[26] C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Applied Mathematics,893

8 (1984), pp. 85–89.894
[27] J. D. Ullman, Principles of database systems, Galgotia Publications, 1984.895
[28] C. Umans, Hardness of approximating/spl sigma//sub 2//sup p/minimization problems, in896

40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039),897
IEEE, 1999, pp. 465–474.898

[29] C. Umans, The minimum equivalent dnf problem and shortest implicants, Journal of Computer899
and System Sciences, 63 (2001), pp. 597–611.900

[30] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli, Complexity of two-level logic901
minimization, IEEE Transactions on Computer-Aided Design of Integrated Circuits and902
Systems, 25 (2006), pp. 1230–1246.903

This manuscript is for review purposes only.


	Introduction
	Preliminaries
	Lower bounds for the size of optimal solutions
	Approximability results for (TA), (C), (BC), and (L)
	Clause and body-clause minimum representations
	Literal minimum representations

	Hardness of computing L
	Clause minimization and strongly connected subgraphs
	Conclusions
	References

