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13 ABSTRACT: We recently introduced drug profile matching (DPM), a novel affinity
14 fingerprinting-based in silico drug repositioning approach. DPM is able to
15 quantitatively predict the complete effect profiles of compounds via probability
16 scores. In the present work, in order to investigate the predictive power of DPM, three
17 effect categories, namely, angiotensin-converting enzyme inhibitor, cyclooxygenase
18 inhibitor, and dopamine agent, were selected and predictions were verified by
19 literature analysis as well as experimentally. A total of 72% of the newly predicted and
20 tested dopaminergic compounds were confirmed by tests on D1 and D2 expressing
21 cell cultures. 33% and 23% of the ACE and COX inhibitory predictions were
22 confirmed by in vitro tests, respectively. Dose-dependent inhibition curves were
23 measured for seven drugs, and their inhibitory constants (Ki) were determined. Our
24 study overall demonstrates that DPM is an effective approach to reveal novel drug−
25 target pairs that may result in repositioning of these drugs.

26 ■ INTRODUCTION

27 The high failure rate of drug candidates due to unexpected
28 adverse reactions and lack of expected clinical efficacy have
29 become fundamental problems of drug development. Despite
30 the increasing efforts and resources spent on biomedical
31 research, the number of new molecular entities stagnates.1

32 One result of this trend was the development of alternative
33 strategies in pharmaceutical research, such as a turn from the
34 discovery of new chemical entities toward drug repositioning or
35 repurposing. Drug repositioning seeks new therapeutic
36 applications of existing drugs and requires on average
37 approximately 5−8 years from discovery to the market.2

38 While intellectually less novel, this process can also be
39 considered a safer, cheaper, and faster way of drug develop-
40 ment, given that compounds successfully passed clinical trials
41 previously. However, drug repurposing also should not be
42 oversimplified, since several aspects need to be considered
43 before making decisions such as patent status, market
44 characteristics, and whether the new indication represents an
45 unmet medical need.2 Nevertheless, the developmental risk can
46 be said to be smaller,2 compared to the discovery of new
47 chemical entities. One of the well-known examples of drug
48 repositioning is imatinib (Gleevec) that was first approved for
49 chronic myeloid leukemia3 but that was subsequently approved

50for gastrointestinal stromal tumors.4 As another example,
51zidovudine was developed in the 1960s as a potential anticancer
52agent but failed to show efficacy. However, in 1985 it was found
53to be effective against AIDS as a reverse transcriptase inhibitor
54and became the first approved anti-HIV drug.2 Finasteride was
55repositioned from the treatment of prostate enlargement to an
56antibaldness agent after the discovery that its target, 5α-
57reductase, is involved in these biologically distinct (though both
58hormonally driven) processes.5 Thalidomide, which once
59caused severe fetal defects in pregnant women when used as
60an antiemetic agent, was successfully reintroduced as an
61antileprosy drug (with certain limitations on its usage).6

62Aspirin was repositioned as a platelet aggregation inhibitor
63approximately 90 years after its introduction in 1899,7,8

64illustrating that the complete effect profiles, i.e., the whole
65therapeutic effect spectrum a compound exerts when
66administered to a human body, are often unknown even for
67the oldest drugs. Besides similarity in the molecular biology of
68diseases, drug repositioning is often driven by serendipity or
69SAR considerations. Therefore, there is a clear need for a
70systematic screening method that is able to predict the
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71 complete effect profiles of compounds, quantitatively describing
72 their probability of exhibiting a given effect.
73 Experimental pharmacological data can be a rich source of
74 drug repositioning. For example, the BioPrint database by
75 Cerep contains screening results of 2500 FDA drugs and
76 reference molecules against 159 enzymes, receptors, ion
77 channels, and transporters.9 Part of this database was used to
78 develop “biospectra analysis” that applies a series of in vitro
79 percent inhibition values handled as a compound descrip-
80 tor10−12 that can then be used, for example, to retrieve
81 compounds with a similar profile (and hence similar expected
82 effects) from the database. Kauvar et al. developed affinity
83 fingerprinting, a method for the characterization of compounds
84 by their binding affinities to a set of proteins.13 The vector of
85 the binding affinity values is considered as a descriptor and is
86 used to predict the activity of a given compound against a target
87 not included in the protein set. Affinity fingerprinting was
88 successfully applied to find new cyclooxygenase (COX)
89 inhibitors among a set of druglike compounds.14 When only
90 62 library compounds were tested, three structurally novel
91 active compounds were discovered.
92 On the computational side, Koutsoukas et al. summarize
93 several recently developed in silico pharmacology approaches
94 that might offer candidates for off-target based drug
95 repositioning.15 These techniques are in line with current
96 thinking of polypharmacology that states that drugs more often
97 than not act on multiple targets.16−19 In particular, each drug
98 hits on average six known targets according to a recent analysis
99 on interaction data.20

100One of the first approaches in the field of in silico
101pharmacology was PASS (prediction of activity spectra for
102substances), which applies a set of 2D descriptors to
103compounds that are then correlated with a set of bioactivities.21

104Bender et al. developed a similarity approach called Bayes
105affinity fingerprint in which binding affinity information against
106a set of target proteins is used for virtual screening with retrieval
107rates higher than those of conventional fingerprints.22,23 Keiser
108et al. used ligand chemical similarity to obtain biologically
109relevant clusters of 246 enzymes and receptors.24 This method
110was used for biological activity prediction by calculating the
111chemical similarity values of the query set (one molecule or a
112set of compounds) to the 246 representative ligand sets for the
113studied activity classes.25

114In order to expand on the previously published approaches,
115our group recently developed drug profile matching (DPM), a
116pattern-based in silico drug repositioning method.26,27 This
117method enables the prediction of the effect profiles of small
118molecules on the basis of their docking scores against a panel of
119proteins and is therefore applicable in searching for drug
120repositioning candidates as well as in de novo drug develop-
121 f1ment. Figure 1 represents the DPM method in graphical form.
122In DPM, each FDA-approved small molecule drug is docked to
123the ligand binding sites of 149 nontarget proteins that were
124selected by suitability for docking. On the basis of the docking
125results, interaction patterns (IPs), i.e., vectors containing the
126calculated best docking scores of the compounds on the 149
127members of the protein set, were formed. Additionally, the
128effect profiles (EPs) of the drugs were also generated that are

Figure 1. Graphical summary of the drug profile matching method. The interaction pattern (IP) matrix consists of the calculated binding free
energies for the 1177 drugs studied on the reference panel of 149 nontarget proteins (i.e., proteins that are not known to be involved in the
mechanism of action of the drugs). The effect profile (EP) matrix contains pharmacological effect information on the drug set in a binary form (blue
and white cells represent the presence and the absence of a given effect from the 177 categories, respectively). A two-step multidimensional analysis
(canonical correlation analysis, CCA, and linear discriminant analysis, LDA) was performed using the IP and EP matrices as inputs to calculate the
effect probability matrix. This matrix displays the probability values for each drug−effect pair. The darker is a given cell, the higher is the predicted
probability. Comparison of the same effect (i.e., same column) in both effect matrices reveals those predictions that are already known (marked as
valid) and highlights the predictions that need to be validated via literature search or experimental testing.
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129 binary presence/absence indicators of 177 physiological effects.
130 The effect database used in our study was extracted from
131 DrugBank and was revised manually. Each effect entry
132 contained at least 10 registered drugs (known actives) to
133 provide sufficient amount of information for classification.
134 Canonical correlation analysis (CCA) was applied between the
135 IP matrix and a given effect to produce highly correlating factor
136 pairs that were the inputs for linear discriminant analysis
137 (LDA) that was used for separating the two classes (active and
138 inactive molecules of a given effect). By use of this two-step
139 multidimensional analysis, classification functions were created
140 for each effect and probability values were assigned for each
141 drug−effect pair in our data set, which is hence both
142 reclassifying known drug−effect pairs and indicating novel
143 hypothetic associations between both domains. The prediction
144 accuracy of the DPM method was examined by receiver
145 operating characteristics (ROC) analysis. Area under the curve
146 (AUC) values were calculated for each effect to demonstrate
147 the reclassification performance (which is also a measure of
148 consistency within the effect class) of the method. To check the
149 validity of the DPM predictions, the commonly used 10-fold
150 cross-validation was performed and repeated 100 times.
151 The probabilities that were assigned for each drug−effect pair
152 predicted several unregistered effects with high probability for
153 many drugs. Besides the possibility that these “false positive”
154 hits can refer to incorrect classification functions, they can also
155 be considered as drug repositioning predictions (“putative true
156 positives”). In order to test these findings, in the current work
157 predictions by DPM were now verified by literature analysis as
158 well as experimentally for three selected effect categories,
159 namely, the in vitro inhibition of ACE (angiotensin-converting
160 enzyme) and COX enzymes as well as cell-based activity tests
161 on dopaminergic D1 and D2 receptors. For ACE and D1/D2
162 receptors, control sets containing compounds with low
163 predicted probability for the given effect were also tested.

164 ■ RESULTS AND DISCUSSION
165 The detailed description of DPM has been presented
166 recently.26 Our previous analysis showed that 84% of the 171
167 studied effects resulted in a reclassification AUC larger than
168 0.95, indicating sufficient performance on the data set used.
169 Robustness was determined by 10-fold cross-validation
170 producing the mean of the mean probability values (mean
171 MPV) for each effect (see Experimental Section). Mean MPVs
172 larger than 0.5 were calculated for 48.6% of the studied effects,
173 while a random data set would result in a mean MPV of 0.027.
174 Hence, we showed that significant differentiation of effects can
175 be obtained by DPM, compared to random sampling.
176 The following criteria were considered in the selection of the
177 experimentally tested effect categories: (1) robustness (mean
178 MPV calculated from 10-fold cross-validation) of classification
179 functions, (2) accuracy (reclassification AUC) of classification
180 functions, (3) the potential importance of therapeutic effects,
181 (4) availability of in vitro test kits or cell-based assays. The
182 dopamine agent, ACE, and COX inhibitory effect categories are
183 good representatives of the middle and the upper region of
184 classification robustness (mean MPV values of 0.548, 0.420,
185 and 0.693, respectively). All show high reclassification AUCs
186 (0.922, 0.999, and 0.989, respectively), and hence, they were
187 chosen in this study.
188 In Vitro Tests of ACE Inhibition. ACE inhibitors are
189 widespread antihypertensive agents also used for the treatment
190 of congestive heart failure and diabetic nephropathy.28,29 Their

191blood pressure lowering effect is due to the inhibition of
192angiotensin-converting enzyme, which has a dual result. First,
193the conversion of angiotensin I to the vasoconstrictor
194angiotensin II is not performed, and second, the degradation
195of the vasodilator bradykinin by ACE is inhibited.
196For ACE inhibitors, the DPM prediction acceptance
197threshold was set according to the level above which 14 out
198of the 15 originally registered ACE drugs were classified as
199positives. This threshold was exceeded by 15 drugs that are not
200registered as ACE inhibitors (“false positives” or predicted ACE
201 t1inhibitors) (see Table 1 and Supporting Information Tables 1

202and 4 for details on molecular structure and plasma
203concentrations). A retrospective literature analysis revealed
204that for three of the predicted compounds, i.e., candoxatril,
205carvedilol, and nebivolol, an effect on ACE inhibition was
206indeed described earlier and just not annotated in the data set
207because they are not FDA registered ACE inhibitors.30−33 The
208remaining 12 compounds were tested for ACE inhibition
209experimentally, and for L-proline, tipranavir, dasatinib,
210novobiocin, nelfinavir, and telmisartan activity was confirmed.
211These compounds exerted 46−97% inhibition of ACE at 500
212μM inhibitor concentrations except for tipranavir which was
213measured at 128 μM because of low solubility and produced
21431% inhibition. In order to select reasonably active molecules,
215hit criterion was set to 90% inhibition at 500 μM. Screening at
216high concentration certainly carries the risk of detecting false
217positives because some molecules can aggregate and act
218promiscuously.34 However, most drugs are not promiscuous,
219even at high screening concentrations.35 33% of the predictions
220were confirmed experimentally or by the literature, as two
221active molecules were discovered in the assay and three active
222molecules were confirmed by the literature out of the 15
223predictions.
224Dose−response ACE inhibition curves were determined for
225four molecules, namely, telmisartan, L-proline, novobiocin, and
226 f2dasatinib (see Figure 2). The most pronounced ACE inhibition
227(with a Ki of 6 μM) was observed for telmisartan, which is

Table 1. Predicted ACE Inhibitors in Decreasing Order of
Prediction Probabilitya

drug name predicted probability % inhibition at 500 μM

1. telmisartan 1.000 + (97 ± 0.5)
2. paclitaxel 0.419 −
3. latamoxef 0.410 −
4. L-proline 0.384 + (93 ± 0.2)
5. maraviroc 0.369 −
6. tipranavirb 0.293 + (31 ± 9.2)
7. dasatinib 0.175 + (46 ± 1.6)
8. novobiocin 0.157 + (75 ± 1.7)
9. nelf inavir 0.101 + (48 ± 4.6)
10. ambenonium 0.076 −
11. candoxatril30 0.066 +
12. carvedilol31 0.060 +
13. nitrofurantoin 0.049 −
14. clavulanate 0.036 −
15. nebivolol32,33 0.029 +

aActive compounds in the assay (inhibition of >90%) are in boldface
along with predictions confirmed by the literature (references are
included). Italic entries indicate those molecules that produced
significant inhibition in the assay but failed to reach the limit of
90%. bTipranavir was measured at 128 μM because of low solubility.
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228 registered as an angiotensin II receptor antagonist, while its
229 ACE inhibitory activities have not been previously reported.
230 Interestingly, telmisartan is well tolerated in patients where
231 ACE inhibitors are contraindicated.36 Nevertheless, telmisartan
232 could not substitute angiotensin-converting enzyme inhibitors
233 in patients intolerant to ACE inhibitor therapy.36 This finding
234 clearly highlights the difficulty of transferring in vitro results to
235 in vivo effects.
236 L-Proline also showed an inhibitory activity of ACE with a Ki
237 of 86 μM. Visual inspection of the chemical structures of the
238 common ACE inhibitors such as captopril reveals that they
239 contain a proline moiety; however, there is no published
240 evidence that would support the importance of this particular
241 moiety in their pharmacologic actions (except for contributing
242 to binding via nonspecific interactions achieved by being
243 positioned in a lipophilic pocket). According to the measured
244 ACE inhibitory activity of L-proline itself, we suspect that it is a
245 key moiety in the mode of action of ACE inhibitors.
246 Nevertheless, as expected, we measured a much stronger
247 affinity for captopril (Ki = 2 nM), which was used as a positive
248 control in our tests.
249 Novobiocin, an aminocoumarin antibiotic, possessed a
250 moderate ACE inhibitory activity (with a Ki of 167 μM) that
251 is commensurable to the plasma concentration of the drug
252 reported in the literature.37

253 Low ACE inhibitory activity (with a Ki of 715 μM) was
254 measured for dasatinib, an anticancer agent, which however
255 does not appear to be relevant at the therapeutic plasma
256 concentration of the drug.38

257 A random set of eight compounds that has very low
258 predicted probabilities for ACE inhibition (below 0.003; see
259 Supporting Information Table 8) was also selected for testing
260 under the same conditions. The aim was to establish whether
261 the percentage values calculated for the false positive
262 compounds are meaningful. Although 15−67% inhibition effect
263 was detected for them, the estimated Ki values for these

264compounds are considerably weaker than those of the false
265positives (Supporting Information Table 8). Known drugs do
266not typically possess Ki values above 50−100 μM, but higher Ki
267data may also be biologically relevant as indicated by the
268previously presented case of novobiocin. Thus, a limit of Ki =
269200 mM was applied in the comparison studies of the low and
270high probability compounds throughout our work. If we apply
271this limit, three molecules remain that were all predicted with
272high probability (telmisartan, L-proline, novobiocin). On the
273basis of this analysis, we conclude that a definite enrichment
274can be observed on the top of the DPM prediction list
275regarding Ki data in the case of the ACE inhibitory effect.
276In Vitro Tests of COX Inhibition. COX inhibitors are
277nonsteroidal anti-inflammatory drugs (NSAIDs) and are used
278worldwide.8 Their mechanism of action is based on the
279inhibition of two COX isoforms (termed COX-1 and COX-2),
280thereby inhibiting the conversion of arachidonic acid into
281prostaglandin H2, which is part of an inflammation pathway
282relevant in a variety of diseases.39 COX-1 is a constitutively
283expressed isoform in most cells, and its inhibition leads to
284positive anti-inflammatory effects; however, a number of side
285effects are also coupled with this action that include diarrhea,
286gastric ulcer, interstitial nephritis, and acute renal failure due to
287the high level of COX-1 expression in the gastric mucosa and
288the kidneys.40 COX-2 is an inducible enzyme, expressed only in
289case of inflammation. Therefore, selective COX-2 inhibitors
290such as celecoxib, rofecoxib, and valdecoxib have reduced
291gastrointestinal and renal adverse effects. On the other hand, an
292increased probability of cardiovascular side effects including
293thrombosis and myocardial infarction was reported in
294connection with the administration of some COX-2 inhibitors,
295leading to the withdrawal of rofecoxib and valdecoxib.41,42

296The DPM method was also applied for predicting COX
297inhibitors. The prediction threshold was set to a level above
298which 90% of the registered COX inhibitors appeared as
299positives (33 out of 37), giving rise to 54 putative “false

Figure 2. In vitro ACE inhibition curves for telmisartan (a) , L-proline (b) , novobiocin (c), and dasatinib (d). All compounds show dose dependent
response with resulting Ki values ranging from 6 to 715 μM.
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300 positive” predictions. Eleven drugs were excluded from the

301 analysis because of limited practical importance or lack of

302 commercial availability (see Materials), resulting in 43

t2 303 compounds that were studied further (see Table 2 and

304 Supporting Information Tables 2 and 5 for details on molecular

305 structure and plasma concentrations). Out of the compounds

306 investigated the COX inhibitory properties for valproic acid, α-

307 linolenic acid, oxybenzone, and ciclopirox were confirmed by

308 the literature.43−47 Two other compounds, ticlopidine and

309 azathioprine, were tested for COX inhibition earlier, but activity
310 could not be detected for them.48,49

311The remaining 37 drugs, as well as α-linolenic acid, were
312tested experimentally for COX inhibition activity of COX-1 and
313COX-2, and COX-1 or COX-2 inhibitions were found in 17
314cases. Seven compounds reached the applied criterion of 90%
315inhibitior concentration, resulting in a confirmation rate of 23%
316(10 actives including literature hits out of 43 compounds, Table
3172). In this experiment, nitroxoline, α-linolenic acid, nitro-
318furazone, flutamide, and nilutamide were found to be the
319strongest inhibitors of COX.
320Dose−response COX inhibition curves of captopril (COX-1
321and COX-2), nitroxoline (COX-2), and α-linolenic acid (COX-
322 f31) were also determined, shown in Figure 3. The inhibitory

Table 2. Predicted COX Inhibitors in Decreasing Order of Prediction Probabilitya

% inhibition at 500 μM

drug name predicted probability COX1 COX2

1. biotin 1.000 − −
2. aminosalicylic acid 1.000 − + (33 ± 8.9)
3. flutamide 0.999 + (100 ± 0) + (100 ± 0)
4. nitrofurazone 0.999 + (91 ± 8.9) + (98 ± 1.0)
5. valproic acid44 0.998 − +
6. lipoic acid 0.998 + (95 ± 5.1) + (76 ± 23)
7. monobenzone 0.997 + (86 ± 1.2) + (54 ± 3.9)
8. gemfibrozil 0.996 − −
9. benzyl benzoate 0.981 − + (41 ± 5.8)
10. furosemide 0.967 + (36 ± 3.6) −
11. flucytosine 0.966 − −
12. penicillin G 0.965 − −
13. chlormezanone 0.947 − −
14. furazolidone 0.940 − −
15. ticarcillin 0.932 − −
16.nitroxoline 0.922 + (97 ± 0.4) + (99 ± 0.8)
17. tinidazole 0.900 − −
18. lomustine 0.837 − −
19. ticlopidine49 0.820 − −
20. oxybenzone45 0.792 + +
21. nilutamide 0.771 + (99 ± 0.5) + (98 ± 0.6)
22. milrinone 0.744 − −
23. ciclopirox43 0.742 + +
24. α-linolenic acid46,47 0.738 + (100 ± 0) + (96 ± 2.3)
25. chlorambucil 0.694 − −
26. phenazopyridine 0.646 + (23 ± 3.5) + (67 ± 28)
27. penicillin V 0.644 − −
28. azithromycin 0.582 + (68 ± 5.4) + (99 ± 0.3)
29. estrone sulfate 0.577 − −
30. ethacrynic acid 0.567 − −
31. carbenicillin 0.565 − −
32. metronidazole 0.558 − + (17 ± 1.2)
33. nateglinide 0.541 − −
34. L-carnitine 0.510 − −
35. acitretin 0.508 − −
36. nalidixic acid 0.504 + (34 ± 3.5) + (88 ± 6.9)
37. L-proline 0.476 − −
38. azathioprine48 0.441 − −
39. pyridoxal phosphate 0.436 − −
40. nitrofurantoin 0.424 + (66 ± 7.6) + (41 ± 7.1)
41. captopril 0.422 + (48 ± 0.7) + (61 ± 12)
42. chlorphenesin 0.418 − + (47 ± 34)
43. aspartame 0.402 − −

aCompounds possessing >90% inhibition and predictions confirmed by the literature (references are provided) are in boldface. These molecules are
considered active in the evaluation. Italic entries indicate molecules that produced significant inhibition in the assay but failed to achieve the limit of
90% inhibition.
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323 effect of captopril for COX-1 increased gradually with
324 increasing concentrations as expected; however, reduced effect
325 was measured at 300 μM. Its Ki values were 17 and 12 μM for
326 the COX-1 and COX-2 isoenzymes, respectively. These
327 inhibitory constants are moderately stronger than that of
328 acetylsalicylic acid, which is one of the most common COX
329 inhibitors (Ki,COX‑1 = 62 μM and Ki,COX‑2 = 52 μM). However,
330 the reported plasma level of captopril does not indicate the
331 biological relevance of this finding.50

332α-Linolenic acid showed a Ki of 4 μM for COX-1, and taking

333into account the inhibition results measured at 500 μM for

334COX-2, this compound appears to show a strong, nonselective

335COX inhibition that is in accordance with the results obtained

336by Ren and Chung.46,47 Here, the authors demonstrated that

337this compound has an anti-inflammatory effect through

338different mechanisms, including COX-2 inhibition, while effects
339on COX-1 were not mentioned. Our results therefore extend

Figure 3. COX-1 and COX-2 inhibition curves for captopril (panels a and b, respectively), COX-1 inhibition curve for α-linolenic acid (c), and
COX-2 inhibition curve for nitroxoline (d). All compounds show dose dependent response, and the determined Ki values range from 1 to 17 μM.

Table 3. Examined Dopaminergic Candidates in Decreasing Order of Predicted Probabilitya

dopamine D1 receptor dopamine D2long receptor

drug name
predicted
probability

agonist mode (%) (100
μM)

antagonist mode (%) (100
μM)

agonist mode (%) (100
μM)

antagonist mode (%) (50
μM)

celecoxibb 0.995 1.8 ± 5.7 95 ± 2.8 175 ± 7.6 96 ± 0.11†

doxazosin 0.991 −4.7 ± 1.7 102 ± 4.5 2.4 ± 1.9 −13 ± 18
cyclobenzaprine 0.977 −4.7 ± 2.1 98 ± 4.8 1 ± 1.7 95 ± 1.5
mitoxantrone 0.976 66 ± 4.7 29 ± 43 −0.4 ± 1.3 81 ± 0.32
flavoxate 0.971
promethazine 0.966 −7.4 ± 3.2 84 ± 7.4 3.5 ± 0.67 95 ± 1.3
imipramine 0.952
desipramine 0.951
desogestrel 0.936 2.8 ± 3.1 79 ± 0.26 7.1 ± 3.3 88 ± 2.6†

epinastine 0.916 −1 ± 2.7 96 ± 2.7 −0.33 ± 0.7 5.5 ± 12
clomipramine 0.907 −4.5 ± 1.1 99 ± 3.9 13 ± 2.4 92 ± 1.5†

olopatadine 0.881 −1.7 ± 2 20 ± 2.7 −0.14 ± 1.5 52 ± 2.5
thioguanine 0.878 0.2 ± 3.1 2.3 ± 2.1 0.61 ± 0.88 21 ± 4.6
rimantadine 0.864 −0.8 ± 1.5 −0.4 ± 1.7 3.6 ± 7.1 41 ± 5.6
mefloquine 0.854 0.6 ± 2.1 82 ± 1.1 45 ± 4 90 ± 2†

etodolac 0.796 −1.9 ± 2.2 −1.4 ± 2.9 0.96 ± 1.9 13 ± 1.3
raloxifene 0.796 −7.2 ± 2.5 97 ± 6.9 4.7 ± 2.1 88 ± 1.8
fosfomycin 0.761 −1.2 ± 2.6 −1.3 ± 2.7 0.09 ± 2.3 29 ± 3.2

aBoldface font represents an activity value over 80%, while italic cells refer to activity between 40% and 80%. Celexocib, desogestrel, mefloquine, and
clomipramine showed activation during preincubation for D2long antagonist tests; therefore, their respective values are overestimated (marked with
†). Flavoxate, imipramine, and desipramine were not tested, but their dopaminergic effects were confirmed by the literature (see Results and
Discussion for details). bCelecoxib was measured at 8 μM because of its low solubility.
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340 the knowledge about the multitarget anti-inflammatory proper-
341 ties of α-linolenic acid.
342 The antibiotic nitroxoline showed a Ki of 1 μM for COX-2,
343 and according to our results measured at 500 μM for COX-1
344 (97% inhibition), it also seems to be a reasonably potent
345 nonselective COX inhibitor. This newly discovered COX
346 inhibitory property of nitroxoline might have significance in its
347 original antibiotic and recently described anticancer effects.51,52

348 Cell-Based Tests of Dopaminergic Activity. We also
349 investigated the prediction power of DPM on the dopamine
350 agent effect category. The experimental confirmations of the
351 predictions were performed in an independent laboratory that
352 has large experience in receptor tests. Dopamine receptors are
353 G-protein-coupled receptors that have five subtypes. The D1-
354 like family contains subtypes D1 and D5, while the D2-like
355 family consists of three members: D2, D3, and D4. Dopamine
356 receptors, associated with cognitive processes, learning,
357 memory, motor control, and motivation, are important targets
358 of a series of psychiatric drugs, e.g., antipsychotic agents.53

359 Since the investigated category did not specify which receptor
360 subtypes will be affected by the drugs and in order to gain
361 insights for both families, the D1 and D2 receptors were
362 selected for testing as representatives of both groups. Predicted
363 compounds were analyzed by a team of medical doctors, and
364 the most promising 18 compounds were selected for a
365 comprehensive literature survey and experimental testing for
366 agonist and antagonist effects on these receptor subtypes, based
367 on their prediction probabilities, clinical importance, and
368 commercial availability. Thus, in contrast to the ACE and
369 COX measurements, compounds were subjected to an

t3 370 additional prescreening process. Table 3 shows the measured
371 activity values and standard deviations, applying 100 μM
372 compound concentration except for the measurements of D2
373 antagonism where 50 μM was used. Celecoxib was measured at
374 8 μM in all tests because of solubility issues. For details on
375 molecular structure, plasma concentrations, and known activity
376 of true positives, see Supporting Information Tables 3, 6, and 7.
377 Measurements were not performed for three compounds
378 because their dopaminergic effect was confirmed by the
379 literature.
380 Celecoxib, a selective COX-2 inhibitor, was predicted to have
381 dopaminergic effects with the highest probability (0.995),
382 which has been confirmed experimentally for D1 receptor
383 antagonism (95% activity at the concentration studied; note
384 that agonist activity values are expressed as the percentage of
385 the activity of the reference agonist at EC100 concentration
386 while antagonist activity level is expressed as the percentage of
387 decrease of the reference agonist activity at EC80 concen-
388 tration). In the case of the D2 receptor, 96% antagonist activity
389 was measured for celecoxib but the compound possessed
390 activation during the preincubation, leading to the over-
391 estimation of antagonist activity. Interestingly, for the D2
392 receptor, very high agonist activity was measured: 175% of the
393 activity of the reference agonist quinpirol. Considering the
394 applied concentration of celecoxib (8 μM), we can conclude
395 that the drug possesses a definite D1/D2 dopaminergic effect at
396 a submicromolar Ki. The literature survey revealed that
397 celecoxib was found to reduce the lipopolysaccharide induced
398 dopamine transporter (DAT) expression.54 Nevertheless, to
399 our knowledge, exact interaction between DAT and celecoxib
400 was not reported for this drug. However, it has been suggested
401 for the treatment of psychiatric disorders, e.g., schizophrenia
402 and major depression, in which the dysfunction of the

403dopaminergic system might be a key factor.55,56 The reason
404for its effectiveness we are proposing here is the inhibition of
405COX-2, based on numerous observations that support an
406inflammation theory of schizophrenia.57−60 Celecoxib proved
407to be efficient as an adjunctive therapy for schizophrenia in
408randomized controlled clinical trials when coadministered with
409risperidone61,62 or amisulpride,58 while other randomized
410controlled clinical trials confirmed the therapeutic efficacy of
411celecoxib as an add-on therapy in major depressive
412disorder.55,63 In our study, we show that celecoxib might
413have a direct effect on the dopaminergic system, which could be
414at least partially responsible for its efficacy observed in the
415aforementioned clinical trials. However, the connection
416between the observed dopamine receptor agonist activity and
417the presence of the psychiatric benefits remains unclear.
418We measured strong antagonistic effects of mefloquine on
419D1 and D2 (82% and 90%, respectively), while only a moderate
420agonistic effect was observed on the D2 receptor (45%) and no
421agonist effect was detected on the D1 receptor. Antimalarial
422drugs like mefloquine are known to induce psychosis.64,65 The
423underlying mechanism is unknown; however, it is hypothesized
424that several neurotransmitter systems might be involved,
425including the dopaminergic system which would be in
426agreement with our findings.66

427The selective estrogen receptor modulator raloxifene
428produced strong antagonistic effect on both dopamine receptor
429subtypes (of 97% and 88% on the D1 and D2 receptors,
430respectively), and the effect of steroids possessing estrogen-like
431activity on the dopamine system has been widely discussed in
432the literature. Gender differences in the epidemiology and
433course of schizophrenia (e.g., illness onset, symptom severity
434during the reproductive versus postmenopausal age, etc.) are
435hypothesized to be at least partially attributed to the influence
436of estrogens on the dopaminergic system. Randomized
437controlled clinical trials using estrogen as an add-on therapy
438to antipsychotics resulted in a significantly rapid reduction of
439symptom severity in patients receiving combined therapy
440compared to the reference group in both male and female
441persons with schizophrenia,67−71 an observation not directly
442linked to the dopamine receptorial effect. Recent data also show
443that raloxifene had a good therapeutic effect as an adjunctive
444therapy to antipsychotics in postmenopausal women.72

445According to our in vitro measurements and the presented
446literature data, we may rationalize these effects by a direct
447dopaminergic effect of raloxifene.
448The antispasmatic agent cyclobenzaprine possessed high
449antagonist activities on D1 and D2 receptors (over 90%).
450Literature data supported the interaction of cyclobenzaprine
451with the D2 receptor in vitro.73 However, no indication was
452found that this effect might be relevant for efficacy or side
453effects.
454The antihistamine epinastine proved to be a selective D1
455antagonist (96% and 5.5% activities on D1 and D2,
456respectively). Roeder et al. found that epinastine has a strong
457antagonist effect on insect neuronal octopamine receptors with
458high affinity and specificity, thus influencing insect behavior74

459and visual learning.75−77 We found that the α adrenergic
460antagonist doxazosin is even more selective for the D1 receptor
461than epinastine (with 102% and 0% inhibition on D1 and D2,
462respectively). On the other hand, desogestrel, an estrogen-type
463contraceptive, has a slightly higher affinity for D2 than D1 (88%
464and 79% on D2 and D1, respectively). Relevant literature was
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465 not found for these drugs that would support a phenotypically
466 relevant effect on the dopaminergic system.
467 Other compounds were found to have lower activities on the
468 dopamine receptors, of likely insignificant effect in physiological
469 systems. Olopatadine, an antihistamine agent, and the antiviral
470 rimantadine produced moderate antagonistic effect on D2
471 (52% and 41%, respectively) while not affecting D1. Similarly,
472 the NSAID etodolac, the antimicrobial fosfomycin, and the
473 antimetabolite thioguanine produced low antagonistic activity
474 on D2 (13%, 29%, and 21%, respectively). Etodolac was
475 proposed as an anti-inflammatory adjuvant to investigate its
476 neuroprotective effect in a model of Parkinson’s disease, but no
477 effect was observed.78

478 Only three compounds possessed dopamine agonist activity
479 in the assays, namely, mitoxantrone, celecoxib, and mefloquine.
480 The last two compounds were mentioned before; they act
481 selectively on D2 receptor (175% and 45%, respectively), while
482 mitoxantrone acts on the D1 receptor (with an activity of 66%).
483 Moreover, mitoxantrone produced antagonistic effect on the
484 D2 receptor as well (81% inhibition).
485 The predictions for three tricyclic antidepressants, i.e.,
486 imipramine, desipramine, and the experimentally tested
487 clomipramine, were confirmed by the literature. Imipramine
488 and desipramine have very similar receptor profiles; they
489 produce dopamine supersensitivity, a phenomenon related to
490 strong D2 antagonism.79−82 In our study, high dopamine
491 antagonist activities were measured on both subtypes (over
492 90%) for clomipramine. A similar effect was determined for the
493 first-generation antihistamine promethazine and confirmed by
494 the literature.83

495 From a different structural class, flavoxate is a spasmolytic
496 agent with a suggested anticholinergic mechanism of action.
497 Oka et al. demonstrated the D2 affinity of this compound at
498 micromolar concentrations, determined by radioligand assay.84

499 Flavoxate obtained high prediction probability by DPM in
500 accordance with the literature.
501 In summary, 67% of the tested dopaminergic predictions
502 proved to be highly active (10 out of 15; activity of >80%)
503 while 81% showed at least 40% activity (12 out of 15). 72% of
504 the 18 predictions were confirmed experimentally on the
505 receptor level (10 compounds) or by the literature (3
506 compounds).
507 Similarly as it was presented for ACE inhibition, a random
508 set of 10 compounds was also selected for testing that has very
509 low predicted probabilities for dopaminergic effect (below
510 0.015; see Supporting Information Tables 9 and 10). Molecules
511 were tested for D1 and D2 antagonism, applying 100 and 50
512 μM concentrations, respectively. From the results obtained on
513 the single concentrations, Ki values were estimated (Supporting
514 Information Table 9 and 10.). In the case of D1 antagonism,
515 applying the previously introduced limit of Ki < 200 μM
516 resulted in nine molecules that were predicted with high
517 probability while only one compound, natamycin, could fulfill
518 this criterion from the low-probability molecules. Thus, we
519 conclude that the results presented for the top of the list are
520 valid here. In the case of D2 antagonism, there are 18 molecules
521 below the limit of Ki = 200 μM, from which 12 molecules
522 possess high probability value while 6 compounds have low
523 probability. Among the strongest 9 molecules (Ki < 10 μM),
524 only 2 have low probability; therefore, an enrichment can be
525 observed here as well, but the experimental results point to the
526 weakness of the classification function applied to calculate
527 probability values for dopaminergic effects.

528■ CONCLUSIONS
529In this study, we prospectively validated the drug profile
530matching algorithm for three selected effect categories by
531systematically testing the highest-ranked predictions, i.e., those
532compounds that gained highest probability for exerting the
533studied effect. In the case of the inhibition of ACE and COX
534enzymes, 33% and 23% confirmation rates were obtained,
535respectively. DPM predictions for dopaminergic effect were
536confirmed by cell-based tests, and 67% of the tested
537compounds proved to be active. Several interesting bioactivities
538were discovered such as the ACE inhibition property of the
539angiotensin II receptor antagonist telmisartan and the
540interaction of the selective COX-2 inhibitor celecoxib with
541the dopaminergic system. The latter could be linked to clinical
542observations. On the basis of the presented tests, the
543performance of DPM is comparable to that of other state-of-
544the-art ligand−target prediction methods.25 Our results
545demonstrate the applicability of DPM in identifying unknown
546bioactivities of already approved drugs and hence its possible
547use in drug repositioning.

548■ EXPERIMENTAL SECTION
549Drug repositioning predictions were created using drug profile
550matching as outlined in detail in previous work.26 Three effect
551categories were prospectively validated in the current study, namely,
552angiotensin-converting enzyme inhibition, cyclooxygenase inhibition,
553and dopaminergic agonistic and antagonistic activity. In vitro ACE and
554COX tests were carried out at Eötvös Lorańd University (Hungary)
555using a laboratory robotic system and commercially available test kits.
556Dopaminergic predictions were performed at EuroScreen SA
557(Belgium) using recombinant cell lines expressing human recombinant
558dopaminergic receptors D1 and D2long.
559Drug Profile Matching. The drug profile matching (DPM)
560method was used as described earlier.26,85 A total of 1226 FDA-
561approved drug molecules were extracted from DrugBank database86 as
562of June 2009. The DOVIS 2.0 software (docking-based virtual
563screening),87 AutoDock4 docking engine,88 Lamarckian genetic
564algorithm, and X-SCORE89 scoring function were applied for docking
565preparations and calculations. The docking box was centered at the
566geometrical center of the original ligand of the protein. Twenty-five
567docking runs were performed for each job. Each drug was docked to
568each protein (1226 × 149 = 182 674 dockings, repeated 25 times).
569The calculated best docking scores were imported to the IP data
570matrix.
571Physiological effect information on the 1226 FDA-approved small-
572molecule drug set was extracted from the DrugBank database.86 Effects
573containing at least 10 registered drugs were considered in this study.
574The presence or absence of the studied 177 effects for each drug is
575then stored in a binary matrix, i.e., the effect profile (EP) matrix.
576Canonical correlation analyses were performed in order to match
577the IP and EP matrices and find highly correlated factor pairs that are
578the linear combinations of the variables of the starting data sets.
579Subsequently, linear discriminant analysis was applied to determine a
580classification function that calculates the probability value for each
581drug−effect pair. The prediction accuracy of the DPM method was
582examined by receiver operating characteristics (ROC) analysis, i.e.,
583determining the true positive rate (TPR) and the false positive rate
584(FPR) for every effect using a sliding cutoff parameter for the
585predicted probabilities. TPR and FPR values for each possible cutoff
586are plotted on a two-dimensional graph called the ROC curve. The
587area under the ROC curve, i.e., the AUC value, can be used to
588characterize the reclassification accuracy. In order to check the validity
589of the DPM predictions, the commonly used 10-fold cross-validation
590was performed and repeated 100 times. Robustness was determined
591for each effect by a measure called “mean of the mean probability
592values (mean MPVs)”, which is related to the robustness of the
593method against the information loss occurring when a portion of the
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594 input information is removed. The closer the mean MPV is to 1, the
595 more cohesive the group of active molecules is based on their
596 interaction patterns.
597 The Statistical Analysis System for Windows (version 9.2; SAS
598 Institute, Cary, NC) was used for the implementation of all statistical
599 analyses.
600 ACE Inhibition Assay. In vitro tests were performed on a
601 Hamilton Starlet liquid handling workstation (Hamilton Robotics,
602 Bonaduz, Switzerland). Spectroscopic measurements were carried out
603 on BMG FluoStar Optima (Offenburg, Germany). The robot was
604 programmed according to the manufacturer’s instructions. The
605 selected drugs were initially tested at 500 μM, and certain drugs
606 were further tested to determine Ki values. Each data point is an
607 average of two independent measurements.
608 ACE inhibition was tested using the ACE Kit-WST from Dojindo
609 Molecular Technologies, Inc. (Kumamoto, Japan, catalog no. A502-
610 10). The ACE kit of Dojindo was presented in research papers.90,91

611 3-Hydroxybutyril-glycil-glycil-glycine is utilized as a substrate in this
612 kit, and under the actions of ACE and aminoacylase it is converted
613 into 3-hydroxybutyric acid. In the development step it is further
614 oxidized into acetoacetate by the action of 3-hydroxybutyrate
615 dehydrogenase. At the same time, the cofactor NAD+ is converted
616 into the reduced form NADH. During the oxidation of NADH to
617 NAD+ a water-soluble tetrazolium salt is reduced coupled with an
618 electron mediator and generates a yellow formazan. Tested drugs were
619 incubated at the given concentrations with enzyme working solution
620 and the substrate for 60 min at 37 °C. In the next step indicator
621 working solution was added to the reactions and the plate was
622 incubated at room temperature for 10 min and read at 450 nm.
623 Captopril was used as a positive control in this assay.
624 COX Inhibition Assay. Experiments were carried out using the
625 same equipment described in the previous section. Screening was
626 performed in duplicate at a final compound concentration of 500 μM.
627 For certain compounds, Ki values were determined by applying
628 decreasing concentrations.
629 COX inhibition was investigated using the COX inhibitor screening
630 assay kit from Cayman Chemical Co. (Cayman Europe, Tallinn,
631 Estonia; catalog no. 560131). The COX kit of Cayman Chemicals was
632 used in several reserch projects published in scientific journals.92,93

633 This enzyme immunoassay kit quantifies the inhibition of COX-1
634 and COX-2 activities by measuring the formation of prostanoid
635 products from the substrate arachidonic acid. Tested drugs were
636 preincubated at the given concentrations with enzymes COX-1 and
637 COX-2 for 10 min at 37 °C. Reactions were started by adding the
638 substrate and then incubating the mixture for 2 min at 37 °C and were
639 stopped by 1 M HCl. Prostaglandin screening was performed on a 96-
640 well microplate coated with mouse anti-rabbit IgG. COX reaction
641 samples were mixed with an AChE-linked tracer, and the antiserum
642 was then incubated for 18 h at room temperature. The washed plate
643 was developed by Ellman’s reagent for 60 min and read at 400 nm.
644 Acetylsalicylic acid was used as a positive control in the assay.
645 Dopaminergic Agonist and Antagonist Assays. Dopamine
646 receptor D1 and D2long tests were carried out at Euroscreen SA,
647 Brussels, Belgium. For more information on the company, see http://
648 www.euroscreen.com/.
649 Compounds were dissolved at 20 mM in 90% DMSO and sent to
650 EuroScreen SA where they were stored at room temperature prior to
651 the test. In the cases of celecoxib, desogestrel, mitoxantrone, raloxifene,
652 and doxazosin precipitation occurred. 400 μM stock solutions were
653 prepared for testing.
654 For D1 agonist and antagonist tests, cAMP-HTRF functional assays
655 were used (CHO-K1 recombinant cell line, human recombinant
656 dopamine receptor D1, catalog no. FAST-0100C). Reference
657 compounds were SKF81297 and SCH23390 in agonist and antagonist
658 modes, respectively. Compounds were screened in triplicate at a final
659 concentration of 100 μM. CHO-K1 cells expressing human D1
660 recombinant receptor grown in antibiotic-free media were detached by
661 gentle flushing with PBS-EDTA (5 mM EDTA), centrifugated, and
662 resuspended in assay buffer containing 5 mM KCl, 1.25 mM MgSO4,
663 1.24 mM NaCl, 25 mM HEPES, 13.3 mM glucose, 1.25 mM KH2PO4,

6641.45 mM CaCl2, and 0.5 g/L BSA. In agonist tests, 12 μL of cells was
665mixed with 6 μL of assay buffer and 6 μL of test compound solution,
666respectively. After 30 min of incubation at room temperature, lysis
667buffer was added. After 1 h of incubation, cAMP concentration was
668measured with the HTRF kit according to the manufacturer’s
669specification. In antagonist tests, 12 μL of cells was mixed with 6 μL
670of test compound and incubated for 10 min. After that, 6 μL of
671reference agonist solution was added at a final concentration
672corresponding to EC80. After 30 min of incubation, lysis buffer was
673added. The concentration of cAMP was measured after 1 h of
674incubation in the same way as described before.
675For the long isoform of D2 receptor, an aequorin-based functional
676assay was used (CHO-K1 recombinant cell line, human recombinant
677dopamine receptor D2long, FAST-0101A) with reference compounds
678quinpirol and haloperidol for agonist and antagonist tests, respectively.
679Compound screening was performed in triplicate at a final
680concentration of 100 and 50 μM in agonist and antagonist modes,
681respectively. Cells coexpressing mitochondrial apoaequorin and
682recombinant human D2long receptor were grown in antibiotic-free
683culture media, detached with PDB−EDTA, centrifuged, and
684resuspended in assay buffer at a concentration of 1 × 106 cells/mL.
685Prior to the tests, cells were incubated at room temperature with
686coelenterazine for at least 4 h. In agonist tests, 50 μL of cell suspension
687was mixed with 50 μL of test compound solution and the resulting
688light emission was detected using a functional drug screening system
689model 6000 luminometer (Hamamatsu). In antagonist tests, 100 μL of
690the reference agonist was added to the mix of cells and test compound,
691at a final concentration corresponding to EC80, 15 min after the first
692injection. Signal detection was performed as described before. We note
693that the antagonist activity level can be overestimated because of the
694nature of the aquorin-based tests if the tested compound activates the
695system during the preincubation period. Such activation was observed
696in the cases of celexocib, desogestrel, mefloquine, and clomipramine.
697For both tests (i.e., D1 and D2long), agonist activity of the tested
698compounds is expressed as the percentage of the activity of the
699reference agonist at EC100 concentration. Antagonist activity is
700expressed as the percentage of the inhibition of the reference agonist
701activity, applying EC80 concentration.
702Materials. Aminosalicylic acid, furosemide, monobenzone, nitro-
703furazone, and nitroxoline were purchased from Aldrich. Maraviroc was
704from AvaChem. Chlorambucil, clavulanate, ethacrynic acid, flucyto-
705sine, furazolidone, latamoxef (moxalactam), lipoic acid, nitrofurantoin,
706novobiocin, paclitaxel, penicillin V, phenazopyridine, and tinidazole
707were from Fluka. Carbenicillin was from Merck. Chlormezanone and
708chlorphenesin were from MP Biomedicals, dasatinib and tipranavir
709from Santa Cruz Biotechnology, acetylsalicylic acid, acitretin, adefovir
710dipivoxil, adenine, α-linolenic acid, amlexanox, aspartame, atovaquone,
711azithromycin, captopril, cefuroxime, chloramphenicol, cimetidine,
712creatine, estrone-sulfate, fluocinonide, flutamide, gemfibrozil, lamivu-
713dine, lamotrigine, L-carnitine, lomustine, L-proline, metronidazole,
714milrinone, nalidixic acid, natamycin, nateglinide, nelfinavir, nilutamide,
715penicillin G, pentoxyfiline, pyridoxal phosphate, rosiglitazone,
716sulpiride, salsalate, telmisartan, ticarcillin, and valproic acid from
717Sigma, and benzyl benzoate and biotin from Sigma-Aldrich.
718Ambenonium was from Tocris Bioscience. All tested dopaminergic
719candidates were purchased from Sigma-Aldrich.
720Predicted ACE inhibitors pentosan polysulfate, polystyrene
721sulfonate, and udenafil were commercially not available at the time
722of testing. Astemizole was omitted from testing because it was
723withdrawn from the market in most countries.
724Predicted COX inhibitors aminohippurate, amlexanox, bexarotene,
725phenprocoumon, procarbazine, rosoxacin, stepronin, tolcapone, and
726valrubicin were commercially not available at the time of testing.
727Gentian violet and sodium lauryl sulfate were excluded from testing
728because of their limited clinical applicability.
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