Experimental Confirmation of New Drug–Target Interactions Predicted by Drug Profile Matching

László Végner,†,# Ágnes Peragovics,†,# László Tombor,‡ Balázs Jelinek,§,∥ Pál Czobor,‡ Andreas Bender,‡ Zoltán Simon,§,∥ and András Málnási-Csizmadia*†,#

§ Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
∥ Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa Utca 6, H-1083 Budapest, Hungary
† Drugmotif Ltd., Szent Erzsébet Krt 11, H-2112 Veresegyház, Hungary
‡ Molecular Biophysics Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
∥ Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Supporting Information

ABSTRACT: We recently introduced drug profile matching (DPM), a novel affinity fingerprinting-based in silico drug repositioning approach. DPM is able to quantitatively predict the complete effect profiles of compounds via probability scores. In the present work, in order to investigate the predictive power of DPM, three effect categories, namely, angiotensin-converting enzyme inhibitor, cyclooxygenase inhibitor, and dopamine agent, were selected and predictions were verified by literature analysis as well as experimentally. A total of 72% of the newly predicted and tested dopaminergic compounds were confirmed by tests on D1 and D2 expressing cell cultures. 33% and 23% of the ACE and COX inhibitory predictions were confirmed by in vitro tests, respectively. Dose-dependent inhibition curves were measured for seven drugs, and their inhibitory constants (Kᵢ) were determined. Our study overall demonstrates that DPM is an effective approach to reveal novel drug–target pairs that may result in repositioning of these drugs.

INTRODUCTION

The high failure rate of drug candidates due to unexpected adverse reactions and lack of expected clinical efficacy have become fundamental problems of drug development. Despite the increasing efforts and resources spent on biomedical research, the number of new molecular entities stagnates. One result of this trend was the development of alternative strategies in pharmaceutical research, such as a turn from the discovery of new chemical entities toward drug repositioning or repurposing. Drug repositioning seeks new therapeutic applications of existing drugs and requires on average approximately 5–8 years from discovery to the market. While intellectually less novel, this process can also be considered a safer, cheaper, and faster way of drug development, given that compounds successfully passed clinical trials previously. However, drug repurposing also should not be oversimplified, since several aspects need to be considered before making decisions such as patent status, market characteristics, and whether the new indication represents an unmet medical need. Nevertheless, the developmental risk can be said to be smaller compared to the discovery of new chemical entities. One of the well-known examples of drug repositioning is imatinib (Gleevec) that was first approved for chronic myeloid leukemia but that was subsequently approved for gastrointestinal stromal tumors. As another example, zidovudine was developed in the 1960s as a potential anticancer agent but failed to show efficacy. However, in 1985 it was found to be effective against AIDS as a reverse transcriptase inhibitor and became the first approved anti-HIV drug. Finasteride was repositioned from the treatment of prostate enlargement to an antihandness agent after the discovery that its target, 5α-reductase, is involved in these biologically distinct (though both hormonally driven) processes. Thalidomide, which once caused severe fetal defects in pregnant women when used as an antiemetic agent, was successfully reintroduced as an antileprosy drug (with certain limitations on its usage). aspirin was repositioned as a platelet aggregation inhibitor approximately 90 years after its introduction in 1899 illustrating that the complete effect profiles, i.e., the whole therapeutic effect spectrum a compound exerts when administered to a human body, are often unknown even for the oldest drugs. Besides similarity in the molecular biology of diseases, drug repositioning is often driven by serendipity or SAR considerations. Therefore, there is a clear need for a systematic screening method that is able to predict the
complete effect profiles of compounds, quantitatively describing their probability of exhibiting a given effect.

Experimental pharmacological data can be a rich source of drug repositioning. For example, the BioPrint database by Cerep contains screening results of 2500 FDA drugs and reference molecules against 159 enzymes, receptors, ion channels, and transporters. Part of this database was used to develop "biospectra analysis" that applies a series of in vitro percent inhibition values handled as a compound descriptor that can then be used, for example, to retrieve compounds with a similar profile (and hence similar expected effects) from the database. Kauvar et al. developed affinity fingerprinting, a method for the characterization of compounds by their binding affinities to a set of proteins. The vector of the binding affinity values is considered as a descriptor and is used to predict the activity of a given compound against a target not included in the protein set. Affinity fingerprinting was successfully applied to find new cyclooxygenase (COX) inhibitors among a set of druglike compounds. When only 62 library compounds were tested, three structurally novel active compounds were discovered.

On the computational side, Koutsoukas et al. summarize several recently developed in silico pharmacology approaches that might offer candidates for off-target based drug repositioning. These techniques are in line with current thinking of polypharmacology that states that drugs more often than not act on multiple targets. In particular, each drug hits on average six known targets according to a recent analysis on interaction data.

One of the first approaches in the field of in silico pharmacology was PASS (prediction of activity spectra for substances), which applies a set of 2D descriptors to compounds that are then correlated with a set of bioactivities. Bender et al. developed a similarity approach called Bayes affinity fingerprint in which binding affinity information against a set of target proteins is used for virtual screening with retrieval rates higher than those of conventional fingerprints. Keiser et al. used ligand chemical similarity to obtain biologically relevant clusters of 246 enzymes and receptors. This method was used for biological activity prediction by calculating the chemical similarity values of the query set (one molecule or a set of compounds) to the 246 representative ligand sets for the studied activity classes.

In order to expand on the previously published approaches, our group recently developed drug profile matching (DPM), a pattern-based in silico drug repositioning method. This method enables the prediction of the effect profiles of small molecules on the basis of their docking scores against a panel of proteins and is therefore applicable in searching for drug repositioning candidates as well as in de novo drug development. Figure 1 represents the DPM method in graphical form.

In DPM, each FDA-approved small molecule drug is docked to the ligand binding sites of 149 nontarget proteins that were selected by suitability for docking. On the basis of the docking results, interaction patterns (IPs), i.e., vectors containing the calculated best docking scores of the compounds on the 149 members of the protein set, were formed. Additionally, the effect profiles (EPs) of the drugs were also generated that are validated via literature search or experimental testing.

Figure 1. Graphical summary of the drug profile matching method. The interaction pattern (IP) matrix consists of the calculated binding free energies for the 1177 drugs studied on the reference panel of 149 nontarget proteins (i.e., proteins that are not known to be involved in the mechanism of action of the drugs). The effect profile (EP) matrix contains pharmacological effect information on the drug set in a binary form (blue and white cells represent the presence and the absence of a given effect from the 177 categories, respectively). A two-step multidimensional analysis (canonical correlation analysis, CCA, and linear discriminant analysis, LDA) was performed using the IP and EP matrices as inputs to calculate the effect probability matrix. This matrix displays the probability values for each drug–effect pair. The darker is a given cell, the higher is the predicted probability. Comparison of the same effect (i.e., same column) in both effect matrices reveals those predictions that are already known (marked as valid) and highlights the predictions that need to be validated via literature search or experimental testing.

dx.doi.org/10.1021/jm400813y | J. Med. Chem. XXXX, XXX, XXX--XXX
The effect database used in our study was extracted from DrugBank and was revised manually. Each effect entry contained at least 10 registered drugs (known actives) to provide sufficient amount of information for classification. Canonical correlation analysis (CCA) was applied between the IP matrix and a given effect to produce highly correlating factor pairs that were the inputs for linear discriminant analysis (LDA) that was used for separating the two classes (active and inactive molecules of a given effect). By use of this two-step multidimensional analysis, classification functions were created for each effect and probability values were assigned for each drug–effect pair in our data set, which is hence both reclassifying known drug–effect pairs and indicating novel hypothetic associations between both domains. The prediction accuracy of the DPM method was examined by receiver operating characteristics (ROC) analysis. Area under the curve (AUC) values were calculated for each effect to demonstrate the reclassification performance (which is also a measure of consistency within the effect class) of the method. To check the validity of the DPM predictions, the commonly used 10-fold cross-validation was performed and repeated 100 times.

The probabilities that were assigned for each drug–effect pair predicted several unregistered effects with high probability for many drugs. Besides the possibility that these “false positive” hits can refer to incorrect classification functions, they can also be considered as drug repositioning predictions (“putative true positives”). In order to test these findings, in the current work predictions by DPM were now verified by literature analysis as well as experimentally for three selected effect categories, namely, the in vitro inhibition of ACE (angiotensin-converting enzyme) and COX enzymes as well as cell-based activity tests on dopaminergic D1 and D2 receptors. For ACE and D1/D2 receptors, control sets containing compounds with low predicted probability for the given effect were also tested.

RESULTS AND DISCUSSION

The detailed description of DPM has been presented recently. Our previous analysis showed that 84% of the 171 studied effects resulted in a reclassification AUC larger than 0.95, indicating sufficient performance on the data set used. Robustness was determined by 10-fold cross-validation producing the mean of the mean probability values (mean MPV) for each effect (see Experimental Section). Mean MPVs larger than 0.5 were calculated for 48.6% of the studied effects, while a random data set would result in a mean MPV of 0.027. Hence, we showed that significant differentiation of effects can be obtained by DPM, compared to random sampling.

The following criteria were considered in the selection of the experimentally tested effect categories: (1) robustness (mean MPV calculated from 10-fold cross-validation) of classification functions, (2) accuracy (reclassification AUC) of classification functions, (3) the potential importance of therapeutic effects, (4) availability of in vitro test kits or cell-based assays. The dopamine agent, ACE, and COX inhibitory effect categories are good representatives of the middle and the upper region of classification robustness (mean MPV values of 0.548, 0.420, and 0.693, respectively). All show high reclassification AUCs (0.922, 0.999, and 0.989, respectively), and hence, they were chosen in this study.

In Vitro Tests of ACE Inhibition. ACE inhibitors are widespread antihypertensive agents also used for the treatment of congestive heart failure and diabetic nephropathy. Their blood pressure lowering effect is due to the inhibition of angiotensin-converting enzyme, which has a dual result. First, the conversion of angiotensin I to the vasoconstrictor angiotensin II is not performed, and second, the degradation of the vasodilator bradykinin by ACE is inhibited.

For ACE inhibitors, the DPM prediction acceptance threshold was set according to the level above which 14 out of the 15 originally registered ACE drugs were classified as positives. This threshold was exceeded by 15 drugs that are not registered as ACE inhibitors (“false positives” or predicted ACE inhibitors) (see Table 1 and Supporting Information Tables 1 and 2).

Table 1. Predicted ACE Inhibitors in Decreasing Order of Prediction Probability

<table>
<thead>
<tr>
<th>drug name</th>
<th>predicted probability</th>
<th>% inhibition at 500 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. telmisartan</td>
<td>1.000</td>
<td>+ (97 ± 0.5)</td>
</tr>
<tr>
<td>2. paclitaxel</td>
<td>0.419</td>
<td>–</td>
</tr>
<tr>
<td>3. latamoxef</td>
<td>0.410</td>
<td>–</td>
</tr>
<tr>
<td>4. L-proline</td>
<td>0.384</td>
<td>+ (93 ± 0.2)</td>
</tr>
<tr>
<td>5. maraviroc</td>
<td>0.369</td>
<td>–</td>
</tr>
<tr>
<td>6. tipranavir</td>
<td>0.293</td>
<td>+ (31 ± 9.2)</td>
</tr>
<tr>
<td>7. dasatinib</td>
<td>0.175</td>
<td>+ (46 ± 1.6)</td>
</tr>
<tr>
<td>8. novobiocin</td>
<td>0.157</td>
<td>+ (75 ± 1.7)</td>
</tr>
<tr>
<td>9. nelfinavir</td>
<td>0.101</td>
<td>+ (48 ± 4.6)</td>
</tr>
<tr>
<td>10. ambeneronium</td>
<td>0.076</td>
<td>–</td>
</tr>
<tr>
<td>11. candesartan</td>
<td>0.066</td>
<td>+</td>
</tr>
<tr>
<td>12. carvedilol</td>
<td>0.060</td>
<td>+</td>
</tr>
<tr>
<td>13. nitrofurantoin</td>
<td>0.049</td>
<td>–</td>
</tr>
<tr>
<td>14. clavulanate</td>
<td>0.036</td>
<td>–</td>
</tr>
<tr>
<td>15. nebulivolt32,33</td>
<td>0.029</td>
<td>+</td>
</tr>
</tbody>
</table>

“Active compounds in the assay (inhibition of >90%) are in boldface along with predictions confirmed by the literature (references are included). Italic entries indicate those molecules that produced significant inhibition in the assay but failed to reach the limit of 90%.” Tipranavir was measured at 128 μM because of low solubility.
Figure 2. In vitro ACE inhibition curves for telmisartan (a), L-proline (b), novobiocin (c), and dasatinib (d). All compounds show dose dependent response with resulting K_i values ranging from 6 to 715 μM.

registered as an angiotensin II receptor antagonist, while its ACE inhibitory activities have not been previously reported. Interestingly, telmisartan is well tolerated in patients where ACE inhibitors are contraindicated. Nevertheless, telmisartan could not substitute angiotensin-converting enzyme inhibitors in patients intolerant to ACE inhibitor therapy. This finding clearly highlights the difficulty of transferring in vitro results to in vivo effects.

L-Proline also showed an inhibitory activity of ACE with a K_i of 86 μM. Visual inspection of the chemical structures of the common ACE inhibitors such as captopril reveals that they contain a proline moiety; however, there is no published evidence that would support the importance of this particular moiety in their pharmacologic actions (except for contributing to binding via nonspecific interactions achieved by being positioned in a lipophilic pocket). According to the measured ACE inhibitory activity of L-proline itself, we suspect that it is a key moiety in the mode of action of ACE inhibitors. Nevertheless, as expected, we measured a much stronger affinity for captopril ($K_i = 2$ nM), which was used as a positive control in our tests.

Novobiocin, an aminocoumarin antibiotic, possessed a moderate ACE inhibitory activity (with a K_i of 167 μM) that is commensurable to the plasma concentration of the drug reported in the literature.

Low ACE inhibitory activity (with a K_i of 715 μM) was measured for dasatinib, an anticancer agent, which however does not appear to be relevant at the therapeutic plasma concentration of the drug.

A random set of eight compounds that has very low predicted probabilities for ACE inhibition (below 0.003; see Supporting Information Table 8) was also selected for testing under the same conditions. The aim was to establish whether the percentage values calculated for the false positive compounds are meaningful. Although 15–67% inhibition effect was detected for them, the estimated K_i values for these compounds are considerably weaker than those of the false positives (Supporting Information Table 8). Known drugs do not typically possess K_i values above 50–100 μM, but higher K_i data may also be biologically relevant as indicated by the previously presented case of novobiocin. Thus, a limit of $K_i = 268$ 200 μM was applied in the comparison studies of the low and high probability compounds throughout our work. If we apply this limit, three molecules remain that were all predicted with high probability (telmisartan, L-proline, novobiocin). On the basis of this analysis, we conclude that a definite enrichment can be observed on the top of the DPM prediction list regarding K_i data in the case of the ACE inhibitory effect.

In Vitro Tests of COX Inhibition. COX inhibitors are nonsteroidal anti-inflammatory drugs (NSAIDs) and are used worldwide. Their mechanism of action is based on the inhibition of two COX isoforms (termed COX-1 and COX-2), thereby inhibiting the conversion of arachidonic acid into prostaglandin H2, which is part of an inflammation pathway relevant in a variety of diseases. COX-1 is a constitutively expressed isoform in most cells, and its inhibition leads to positive anti-inflammatory effects; however, a number of side effects are also coupled with this action that include diarrhea, gastric ulcer, interstitial nephritis, and acute renal failure due to the high level of COX-1 expression in the gastric mucosa and the kidneys. COX-2 is an inducible enzyme, expressed only in case of inflammation. Therefore, selective COX-2 inhibitors such as celecoxib, rofecoxib, and valdecoxib have reduced gastrointestinal and renal adverse effects. On the other hand, an increased probability of cardiovascular side effects including thrombosis and myocardial infarction was reported in connection with the administration of some COX-2 inhibitors, leading to the withdrawal of rofecoxib and valdecoxib.

The DPM method was also applied for predicting COX inhibitors. The prediction threshold was set to a level above K_i positives (33 out of 37), giving rise to 54 putative “false
300 positive predictions. Eleven drugs were excluded from the
301 analysis because of limited practical importance or lack of
302 commercial availability (see Materials), resulting in 43
303 compounds that were studied further (see Table 2 and
304 Supporting Information Tables 2 and 5 for details on molecular
305 structure and plasma concentrations). Out of the compounds
306 investigated the COX inhibitory properties for valproic acid,
307 α-linolenic acid, oxybenzone, and ciclopirox were con
308 firmmed by the literature.43−47 Two other compounds, ticlopidine and
309 azathioprine, were tested for COX inhibition earlier, but activity
310 could not be detected for them.48,49

Table 2. Predicted COX Inhibitors in Decreasing Order of Prediction Probabilitya

<table>
<thead>
<tr>
<th>drug name</th>
<th>predicted probability</th>
<th>% inhibition at 500 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COX1</td>
</tr>
<tr>
<td>1. biotin</td>
<td>1.000</td>
<td>−</td>
</tr>
<tr>
<td>2. aminosalicylic acid</td>
<td>1.000</td>
<td>+ (100 ± 0)</td>
</tr>
<tr>
<td>3. flutamide</td>
<td>0.999</td>
<td>+ (91 ± 8.9)</td>
</tr>
<tr>
<td>4. nitrofurazone</td>
<td>0.999</td>
<td>+ (95 ± 5.1)</td>
</tr>
<tr>
<td>5. valproic acid44</td>
<td>0.998</td>
<td>+ (86 ± 1.2)</td>
</tr>
<tr>
<td>6. lipoic acid</td>
<td>0.998</td>
<td>−</td>
</tr>
<tr>
<td>7. monobenzone</td>
<td>0.997</td>
<td>−</td>
</tr>
<tr>
<td>8. gemfibrozil</td>
<td>0.996</td>
<td>−</td>
</tr>
<tr>
<td>9. benzyl benzate</td>
<td>0.981</td>
<td>−</td>
</tr>
<tr>
<td>10. furosemide</td>
<td>0.967</td>
<td>+ (100 ± 0)</td>
</tr>
<tr>
<td>11. flucytosine</td>
<td>0.966</td>
<td>−</td>
</tr>
<tr>
<td>12. penicillin G</td>
<td>0.965</td>
<td>−</td>
</tr>
<tr>
<td>13. chloromezanone</td>
<td>0.947</td>
<td>−</td>
</tr>
<tr>
<td>14. furazolidone</td>
<td>0.940</td>
<td>−</td>
</tr>
<tr>
<td>15. ticarcillin</td>
<td>0.932</td>
<td>−</td>
</tr>
<tr>
<td>16. nitroxoline</td>
<td>0.922</td>
<td>+ (97 ± 0.4)</td>
</tr>
<tr>
<td>17. tinidazole</td>
<td>0.900</td>
<td>−</td>
</tr>
<tr>
<td>18. lomustine</td>
<td>0.837</td>
<td>−</td>
</tr>
<tr>
<td>19. ticlopidine49</td>
<td>0.820</td>
<td>−</td>
</tr>
<tr>
<td>20. oxybenzone45</td>
<td>0.792</td>
<td>+</td>
</tr>
<tr>
<td>21. nilutamide</td>
<td>0.771</td>
<td>+ (99 ± 0.5)</td>
</tr>
<tr>
<td>22. milrinone</td>
<td>0.744</td>
<td>−</td>
</tr>
<tr>
<td>23. ciclopirox43</td>
<td>0.742</td>
<td>+</td>
</tr>
<tr>
<td>24. α-linolenic acid</td>
<td>0.738</td>
<td>+ (100 ± 0)</td>
</tr>
<tr>
<td>25. chlorambucil</td>
<td>0.694</td>
<td>−</td>
</tr>
<tr>
<td>26. phenazopyridine</td>
<td>0.646</td>
<td>+ (23 ± 3.5)</td>
</tr>
<tr>
<td>27. penicillin V</td>
<td>0.644</td>
<td>−</td>
</tr>
<tr>
<td>28. azithromycin</td>
<td>0.582</td>
<td>+ (68 ± 5.4)</td>
</tr>
<tr>
<td>29. estrone sulfate</td>
<td>0.577</td>
<td>−</td>
</tr>
<tr>
<td>30. ethacrynic acid</td>
<td>0.567</td>
<td>−</td>
</tr>
<tr>
<td>31. carbencillin</td>
<td>0.565</td>
<td>−</td>
</tr>
<tr>
<td>32. metronidazole</td>
<td>0.558</td>
<td>−</td>
</tr>
<tr>
<td>33. nateglinide</td>
<td>0.541</td>
<td>−</td>
</tr>
<tr>
<td>34. L-carnitine</td>
<td>0.510</td>
<td>−</td>
</tr>
<tr>
<td>35. acitretin</td>
<td>0.508</td>
<td>−</td>
</tr>
<tr>
<td>36. nalidixic acid</td>
<td>0.504</td>
<td>+ (34 ± 3.5)</td>
</tr>
<tr>
<td>37. L-proline</td>
<td>0.476</td>
<td>−</td>
</tr>
<tr>
<td>38. azathioprine48</td>
<td>0.441</td>
<td>−</td>
</tr>
<tr>
<td>39. pyridoxal phosphate</td>
<td>0.436</td>
<td>−</td>
</tr>
<tr>
<td>40. nitrofurantoin</td>
<td>0.424</td>
<td>+ (66 ± 7.6)</td>
</tr>
<tr>
<td>41. captopril</td>
<td>0.422</td>
<td>+ (48 ± 0.7)</td>
</tr>
<tr>
<td>42. chlorphenesin</td>
<td>0.418</td>
<td>−</td>
</tr>
<tr>
<td>43. aspartame</td>
<td>0.402</td>
<td>−</td>
</tr>
</tbody>
</table>

aCompounds possessing >90% inhibition and predictions confirmed by the literature (references are provided) are in boldface. These molecules are considered active in the evaluation. Italic entries indicate molecules that produced significant inhibition in the assay but failed to achieve the limit of 90% inhibition.

The remaining 37 drugs, as well as α-linolenic acid, were tested experimentally for COX inhibition activity of COX-1 and COX-2, and COX-1 or COX-2 inhibitions were found in 17 cases. Seven compounds reached the applied criterion of 90% inhibitiion concentration, resulting in a confirmation rate of 23% (10 actives including literature hits out of 43 compounds, Table 2). In this experiment, nitroxoline, α-linolenic acid, nitrofurazone, flutamide, and nilutamide were found to be the strongest inhibitors of COX.

Dose−response COX inhibition curves of captopril (COX-1 and COX-2), nitroxoline (COX-2), and α-linolenic acid (COX-1) were also determined, shown in Figure 3. The inhibitory
Figure 3. COX-1 and COX-2 inhibition curves for captopril (panels a and b, respectively), COX-1 inhibition curve for α-linolenic acid (c), and COX-2 inhibition curve for nitroxoline (d). All compounds show dose dependent response, and the determined K_i values range from 1 to 17 μM.

Table 3. Examined Dopaminergic Candidates in Decreasing Order of Predicted Probability

<table>
<thead>
<tr>
<th>drug name</th>
<th>predicted probability</th>
<th>dopamine D1 receptor</th>
<th>dopamine D2<sub>long</sub> receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>agonist mode (%)</td>
<td>antagonist mode (%)</td>
</tr>
<tr>
<td>celecoxib<sup>b</sup></td>
<td>0.995</td>
<td>1.8 ± 5.7</td>
<td>95 ± 2.8</td>
</tr>
<tr>
<td>doxazosin</td>
<td>0.991</td>
<td>−4.7 ± 1.7</td>
<td>102 ± 4.5</td>
</tr>
<tr>
<td>cyclobenzaprine</td>
<td>0.977</td>
<td>−4.7 ± 2.1</td>
<td>98 ± 4.8</td>
</tr>
<tr>
<td>mitoxantrone</td>
<td>0.976</td>
<td>66 ± 4.7</td>
<td>29 ± 43</td>
</tr>
<tr>
<td>flavoxate</td>
<td>0.971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>promethazine</td>
<td>0.966</td>
<td>−7.4 ± 3.2</td>
<td>84 ± 7.4</td>
</tr>
<tr>
<td>imipramine</td>
<td>0.952</td>
<td></td>
<td></td>
</tr>
<tr>
<td>desipramine</td>
<td>0.951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>desogestrel</td>
<td>0.936</td>
<td>2.8 ± 3.1</td>
<td>79 ± 0.26</td>
</tr>
<tr>
<td>epinastine</td>
<td>0.916</td>
<td>−1 ± 2.7</td>
<td>96 ± 2.7</td>
</tr>
<tr>
<td>clomipramine</td>
<td>0.907</td>
<td>−4.5 ± 1.1</td>
<td>99 ± 3.9</td>
</tr>
<tr>
<td>olopatadine</td>
<td>0.881</td>
<td>−1.7 ± 2</td>
<td>20 ± 2.7</td>
</tr>
<tr>
<td>thioguanine</td>
<td>0.878</td>
<td>0.2 ± 3.1</td>
<td>2.3 ± 2.1</td>
</tr>
<tr>
<td>rimantadine</td>
<td>0.864</td>
<td>−0.8 ± 1.5</td>
<td>−0.4 ± 1.7</td>
</tr>
<tr>
<td>melfloquine</td>
<td>0.854</td>
<td>0.6 ± 2.1</td>
<td>82 ± 1.1</td>
</tr>
<tr>
<td>etodolac</td>
<td>0.796</td>
<td>−1.9 ± 2.2</td>
<td>−1.4 ± 2.9</td>
</tr>
<tr>
<td>raloxifene</td>
<td>0.796</td>
<td>−7.2 ± 2.5</td>
<td>97 ± 6.9</td>
</tr>
<tr>
<td>fosfomycin</td>
<td>0.761</td>
<td>−1.2 ± 2.6</td>
<td>−1.3 ± 2.7</td>
</tr>
</tbody>
</table>

^aBoldface font represents an activity value over 80%, while italic cells refer to activity between 40% and 80%. Celecoxib, desogestrel, melfloquine, and clomipramine showed activation during preincubation for D2_{long} antagonist tests; therefore, their respective values are overestimated (marked with †). Flavoxate, imipramine, and desipramine were not tested, but their dopaminergic effects were confirmed by the literature (see Results and Discussion for details).^bCelecoxib was measured at 8 μM because of its low solubility.

α-Linolenic acid showed a K_i of 4 μM for COX-1, and taking into account the inhibition results measured at 500 μM for COX-2, this compound appears to show a strong, nonselective COX inhibition that is in accordance with the results obtained by Ren and Chung^{46,47}. Here, the authors demonstrated that this compound has an anti-inflammatory effect through different mechanisms, including COX-2 inhibition, while effects on COX-1 were not mentioned. Our results therefore extend...
the knowledge about the multitarget anti-inflammatory properties of \(\alpha\)-linolenic acid.

The antibiotic nitroxoline showed a \(K_i\) of 1 \(\mu\)M for COX-2, and according to our results measured at 500 \(\mu\)M for COX-1 (97% inhibition), it also seems to be a reasonably potent nonselective COX inhibitor. This newly discovered COX inhibitory property of nitroxoline might have significance in its original antibiotic and recently described anticancer effects.51,52

Cell-Based Tests of Dopaminergic Activity. We also investigated the prediction power of DPM on the dopamine agent effect category. The experimental confirmations of the predictions were performed in an independent laboratory that has large experience in receptor tests. Dopamine receptors are G-protein-coupled receptors that have five subtypes. The D1-like family contains subtypes D1 and D5, while the D2-like family consists of three members: D2, D3, and D4. Dopamine receptors, associated with cognitive processes, learning, memory, motor control, and motivation, are important targets of a series of psychiatric drugs, e.g., antipsychotic agents.53 Since the investigated category did not specify which receptor subtypes will be affected by the drugs and in order to gain insights for both families, the D1 and D2 receptors were selected for testing as representatives of both groups. Predicted compounds were analyzed by a team of medical doctors, and the most promising 18 compounds were selected for a comprehensive literature survey and experimental testing for agonist and antagonist effects on these receptor subtypes, based on their prediction probabilities, clinical importance, and commercial availability. Thus, in contrast to the ACE and COX measurements, compounds were subjected to an additional prescreening process. Table 3 shows the measured activity values and standard deviations, applying 100 \(\mu\)M compound concentration except for the measurements of D2 antagonist where 50 \(\mu\)M was used. Celecoxib was measured at 8 \(\mu\)M in all tests because of solubility issues. For details on molecular structure, plasma concentrations, and known activity of true positives, see Supporting Information Tables 3, 6, and 7. Measurements were not performed for three compounds because their dopaminergic effect was confirmed by the literature.

Celecoxib, a selective COX-2 inhibitor, was predicted to have dopaminergic effects with the highest probability (0.995), which has been confirmed experimentally for D1 receptor antagonism (95% activity at the concentration studied; note that agonist activity values are expressed as the percentage of the activity of the reference agonist at EC\(_{100}\) concentration while antagonist activity level is expressed as the percentage of decrease of the reference agonist activity at EC\(_{50}\) concentration). In the case of the D2 receptor, 96% antagonistic activity was measured for celecoxib but the compound possessed activation during the preincubation, leading to the overestimation of antagonist activity. Interestingly, for the D2 receptor, very high agonist activity was measured: 175% of the activity of the reference agonist quinpirol. Considering the applied concentration of celecoxib (8 \(\mu\)M), we can conclude that the drug possesses a definite D1/D2 dopaminergic effect at a submicromolar \(K_i\). The literature survey revealed that celecoxib was found to reduce the lipopolysaccharide induced dopamine transporter (DAT) expression.34 Nevertheless, to our knowledge, exact interaction between DAT and celecoxib was not reported for this drug. However, it has been suggested for the treatment of psychiatric disorders, e.g., schizophrenia and major depression, in which the dysfunction of the dopaminergic system might be a key factor.55,56 The reason for its effectiveness we are proposing here is the inhibition of COX-2, based on numerous observations that support an inflammation theory of schizophrenia.37-60 Celecoxib proved to be efficient as an adjunctive therapy for schizophrenia in randomized controlled clinical trials when coadministered with risperidone61,62 or amisulpride,58 while other randomized controlled clinical trials confirmed the therapeutic efficacy of celecoxib as an add-on therapy in major depressive disorder.55,63 In our study, we show that celecoxib might have a direct effect on the dopaminergic system, which could be at least partially responsible for its efficacy observed in the aforementioned clinical trials. However, the connection between the observed dopamine receptor agonist activity and the presence of the psychiatric benefits remains unclear.

We measured strong antagonistic effects of melflufen on D1 and D2 (82% and 90%, respectively), while only a moderate agonistic effect was observed on the D2 receptor (45%) and no agonist effect was detected on the D1 receptor. Antimalarial drugs like melflufen are known to induce psychosis.64,65 The underlying mechanism is unknown; however, it is hypothesized that several neurotransmitter systems might be involved, including the dopaminergic system which would be in agreement with our findings.66

The selective estrogen receptor modulator raloxifene produced strong antagonistic effect on both dopamine receptor subtypes (of 97% and 88% on the D1 and D2 receptors, respectively), and the effect of steroids possessing estrogen-like activity on the dopamine system has been widely discussed in the literature. Gender differences in the epidemiology and course of schizophrenia (e.g., illness onset, symptom severity during the reproductive versus postmenopausal age, etc.) are hypothesized to be at least partially attributed to the influence of estrogens on the dopaminergic system. Randomized controlled clinical trials using estrogen as an add-on therapy to antipsychotics resulted in a significantly rapid reduction of symptom severity in patients receiving combined therapy compared to the reference group in both male and female persons with schizophrenia,67-71 an observation not directly linked to the dopamine receptorial effect. Recent data also show that raloxifene had a good therapeutic effect as an adjunctive therapy to antipsychotics in postmenopausal women.72

According to our in vitro measurements and the presented literature data, we may rationalize these effects by a direct dopaminergic effect of raloxifene.47

The antispasmodic agent cyclobenzaprine possessed high antagonist activities on D1 and D2 receptors (over 90%). Literature data supported the interaction of cyclobenzaprine with the D2 receptor in vitro.73 However, no indication was found that this effect might be relevant for efficacy or side effects.

The antihistamine epinastine proved to be a selective D1 antagonist (96% and 5.5% activities on D1 and D2, respectively). Roeder et al. found that epinastine has a strong antagonist effect on insect neuronal octopamine receptors with high affinity and specificity, thus influencing insect behavior74 and visual learning.76-77 We found that the \(\alpha\) adrenergic antagonist doxazosin is even more selective for the D1 receptor than epinastine (with 102% and 0% inhibition on D1 and D2, respectively). On the other hand, desogestrel, an estrogen-type contraceptive, has a slightly higher affinity for D2 than D1 (88% and 79% on D2 and D1, respectively). Relevant literature was 46,

Journal of Medicinal Chemistry

dx.doi:10.1021/jm400813y J. Med. Chem. XXXX, XXX, XXX--XXX
not found for these drugs that would support a phenotypically relevant effect on the dopaminergic system.

Other compounds were found to have lower activities on the dopamine receptors, of likely insignificant effect in physiological systems. Olopatadine, an antihistamine agent, and the antiviral rimantadine produced moderate antagonistic effect on D2 (52% and 41%, respectively) while not affecting D1. Similarly, the NSAID etodolac, the antimicrobial fosomycin, and the antimetabolite thioguanine produced low antagonistic activity on D2 (13%, 29%, and 21%, respectively). Etodolac was proposed as an anti-inflammatory adjuvant to investigate its neuroprotective effect in a model of Parkinson’s disease, but no effect was observed.78

Only three compounds possessed dopamine agonist activity in the assays, namely, mitoxantrone, celecoxib, and melqofose.

The last two compounds were mentioned before; they act selectively on D2 receptor (175% and 45%, respectively), while mitoxantrone acts on the D1 receptor (with an activity of 66%). Moreover, mitoxantrone produced antagonistic effect on the D2 receptor as well (81% inhibition).

The predictions for three tricyclic antidepressants, i.e., imipramine, desipramine, and the experimentally tested clomipramine, were confirmed by the literature. Imipramine and desipramine have very similar receptor profiles; they produce dopamine supersensitivity, a phenomenon related to strong D2 antagonism.79–82 In our study, high dopamine antagonist activities were measured on both subtypes (over 90%) for clomipramine. A similar effect was determined for the first-generation antihistamine promethazine and confirmed by the literature.83

From a different structural class, flavoxate is a spasmolytic agent with a suggested anticholinergic mechanism of action. Oka et al. demonstrated the D2 affinity of this compound at micromolar concentrations, determined by radioligand assay.84

Flavoxate obtained high prediction probability by DPM in accordance with the literature.

In summary, 67% of the tested dopaminergic predictions proved to be highly active (10 out of 15); activity of >80% while 81% showed at least 40% activity (12 out of 15). 72% of the 18 predictions were confirmed experimentally on the receptor level (10 compounds) or by the literature (3 compounds).

Similarly as it was presented for ACE inhibition, a random set of 10 compounds was also selected for testing that has very low predicted probabilities for dopaminergic effect (below 0.015; see Supporting Information Tables 9 and 10). Molecules were tested for D1 and D2 antagonism, applying 100 and 50 µM concentrations, respectively. From the results obtained on the single concentrations, Ki values were estimated (Supporting Information Table 9 and 10). In the case of D1 antagonism, applying the previously introduced limit of Ki < 200 µM resulted in nine molecules that were predicted with high probability while only one compound, natamycin, could fulfill this criterion from the low-probability molecules. Thus, we conclude that the results presented for the top of the list are valid here. In the case of D2 antagonism, there are 18 molecules below the limit of Ki = 200 µM, from which 12 molecules possess high probability value while 6 compounds have low probability. Among the strongest 9 molecules (Ki < 10 µM), only 2 have low probability; therefore, an enrichment can be observed here as well, but the experimental results point to the weakness of the classification function applied to calculate probability values for dopaminergic effects.

CONCLUSIONS

In this study, we prospectively validated the drug profile matching algorithm for three selected effect categories by systematically testing the highest-ranked predictions, i.e., those compounds that gained highest probability for exerting the studied effect. In the case of the inhibition of ACE and COX enzymes, 33% and 23% confirmation rates were obtained, respectively. DPM predictions for dopaminergic effect were confirmed by cell-based tests, and 67% of the tested compounds proved to be active. Several interesting bioactivities were discovered such as the ACE inhibition property of the angiotensin II receptor antagonist telmisartan and the interaction of the selective COX-2 inhibitor celecoxib with the dopaminergic system. The latter could be linked to clinical observations. On the basis of the presented tests, the performance of DPM is comparable to that of other state-of-the-art ligand–target prediction methods.25 Our results demonstrate the applicability of DPM in identifying unknown bioactivities of already approved drugs and hence its possible use in drug repositioning.

EXPERIMENTAL SECTION

Drug repositioning predictions were created using drug profile matching as outlined in detail in previous work.26 Three effect categories were prospectively validated in the current study, namely, angiotensin-converting enzyme inhibition, cyclooxygenase inhibition, and dopaminergic agonistic and antagonistic activity. In vitro ACE and COX tests were carried out at Eötvös Loránd University (Hungary) using a laboratory robotic system and commercially available test kits.55 Dopaminergic predictions were performed at EuroScreen SA (Belgium) using recombinant cell lines expressing human recombinant dopaminergic receptors D1 and D2180.

Drug Profile Matching. The drug profile matching (DPM) method was used as described elsewhere.25,28 A total of 1226 FDA-approved drug molecules were extracted from DrugBank database66 as of June 2009. The DOVIS 2.0 software (docking-based virtual screening),85 AutoDock4 docking engine,86 Lamarcian genetic algorithm, and X-SCORE89 scoring function were applied for docking preparations and calculations. The docking box was centered at the geometrical centre of the original ligand of the protein. Twenty-five docking runs were performed for each job. Each drug was docked to each protein (1226 × 149 = 182,674 dockings, repeated 25 times). The calculated best docking scores were imported to the IP data matrix.

Physiological effect information on the 1226 FDA-approved small-molecule drug set was extracted from the DrugBank database.46 Effects containing at least 10 registered drugs were considered in this study.57 The presence or absence of the studied 177 effects for each drug is then stored in a binary matrix, i.e., the effect profile (EP) matrix.

Canonical correlation analyses were performed in order to match the IP and EP matrices and find highly correlated factor pairs that are the linear combinations of the variables of the starting data sets.58 Subsequently, linear discriminant analysis was applied to determine a classification function that calculates the probability value for each drug–effect pair. The prediction accuracy of the DPM method was examined by receiver operating characteristics (ROC) analysis, i.e., determining the true positive rate (TPR) and the false positive rate (FPR) for every effect using a sliding cutoff parameter for the predicted probabilities. TPR and FPR values for each possible cutoff are plotted on a two-dimensional graph called the ROC curve. The area under the ROC curve, i.e., the AUC value, can be used to characterize the reclassification accuracy. In order to check the validity of the DPM predictions, the commonly used 10-fold cross-validation was performed and repeated 100 times. Robustness was determined for each effect by a measure called “mean of the mean probability values (mean MPVs),” which is related to the robustness of the method against the information loss occurring when a portion of the
698 interaction patterns.
699
700 The Statistical Analysis System for Windows (version 9.2; SAS
701 Institute, Cary, NC) was used for the implementation of all statistical
702 analyses.
703
704 ACE Inhibition Assay. In vitro tests were performed on a
705 Hamilton Starlet liquid handling workstation (Hamilton Robotics,
706 Bonaduz, Switzerland). Spectroscopic measurements were carried out
707 on BMG Fluostar Optima (Offenburg, Germany). The robot was
708 programmed according to the manufacturer’s instructions. The
709 selected drugs were initially tested at 500 μM, and certain drugs
710 were further tested to determine Ki values. Each data point is an
711 average of two independent measurements.
712
713 ACE inhibition was tested using the ACE Kit-WST from Dojindo
714 Molecular Technologies, Inc. (Kumamoto, Japan, catalog no. A502-
715 10). The ACE kit of Dojindo was presented in research papers.90,91
716
717 3-Hydroxybutyryl-glycil-glycil-glycin is utilized as a substrate in this
718 test, and under the actions of ACE and aminooxyacidase it is converted
719 into 3-hydroxybutyrylic acid. In the development step it is further
720 oxidized into acetooctetate by the action of 3-hydroxybutyrate
721 dehydrogenase. At the same time, the cofactor NAD⁺ is converted
722 into the reduced form NADH. During the oxidation of NADH to
723 NAD⁺ a water-soluble tetrazolium salt is reduced coupled with an
724 electron mediator and generates a yellow formazan. Tested drugs were
725 incubated at the given concentrations with enzyme working solution
726 and the substrate for 60 min at 37 °C. In the next step indicator
727 working solution was added to the reactions and the plate was
728 incubated at room temperature for 10 min and read at 450 nm.
729 Captopril was used as a positive control in this assay.
730
731 COX Inhibition Assay. Experiments were carried out using the
732 same equipment described in the previous section. Screening was
733 performed in duplicate at a final compound concentration of 500 μM.
734 For certain compounds, Ki values were determined by applying
735 decreasing concentrations.
736
737 COX inhibition was investigated using the COX inhibitor screening
738 assay kit from Cayman Chemical Co. (Cayman Europe, Tallinn,
739 Estonia; catalog no. 560131). The COX kit of Cayman Chemicals was
739 used in several research projects published in scientific journals.92,93
740
741 This enzyme immunoassy kit quantifies the inhibition of COX-1
742 and COX-2 activities by measuring the formation of prostanoid
743 products from the substrate arachidonic acid. Tested drugs were
744 preincubated at the given concentrations with enzymes COX-1 and
745 COX-2 for 10 min at 37 °C. Reactions were started by adding the
746 substrate and then incubating the mixture for 2 min at 37 °C and were
747 stopped by 1 M HCl. Prostaglandin screening was performed on a 96-
748 well microplate coated with mouse anti-rabbit IgG. COX reaction
749 samples were mixed with an AChE-linked tracer, and the antiserum
750 was then incubated for 18 h at room temperature. The washed plate
751 was developed by Ellman’s reagent for 60 min and read at 400 nm.
752 Acetylsalicylic acid was used as a positive control in the assay.
753
754 Dömapinergic Agonist and Antagonist Assays. Dömapine
755 receptor D1 and D2 long tests were carried out at Euroscreen SA,
756 Brussels, Belgium. For more information on the company, see http://
757 www.euroscreen.com/.
758
759 Compounds were dissolved at 20 mM in 90% DMSO and sent to
760 EuroScreen SA where they were stored at room temperature prior to
761 the test. In the cases of celecoxib, desogestrel, mitoxantrone, raxifene,
762 and doxazosin precipitation occurred. 400 μM stock solutions were
763 prepared for testing.
764
765 For D1 agonist and antagonist tests, cAMP-HTRF functional assays
766 were used (CHO-K1 recombinant cell line, human recombinant
767 dopamine receptor D1, catalog no. FAST-0100C). Reference
768 compounds were SKF81297 and SCH23390 in agonist and antagonist
769 modes, respectively. Compounds were screened in triplicate at a final
770 concentration of 100 μM. CHO-K1 cells expressing human D1
771 recombinant receptor grown in antibiotic-free media were detached by
772 gentle flushing with PBS-EDTA (5 mM EDTA), centrifugated, and
773 resuspended in assay buffer containing 5 mM KCl, 1.25 mM MgSO₄
774 1.24 mM NaCl, 25 mM HEPES, 13.3 mM glucose, 1.25 mM KH₂PO₄
775 and 1.45 mM CaCl₂, and 0.5 g/L BSA. In agonist tests, 12 μL of cells was
776 mixed with 6 μL of assay buffer and 6 μL of test compound solution,
777 respectively. After 30 min of incubation at room temperature, lysis
778 buffer was added. After 1 h of incubation, cAMP concentration was
779 measured with the HTRF kit according to the manufacturer’s specifi-
780 cation. In antagonist tests, 12 μL of cells was mixed with 6 μL of
test compound and incubated for 10 min. After that, 6 μL of
781 reference agonist solution was added at a final concentration of
782 100 μM. After 30 min of incubation, lysis buffer was
783 added. The concentration of cAMP was measured after 1 h of
784 incubation in the same way as described before.
785
786 For the long isoform of D2 receptor, an aequorin-based functional
787 assay was used (CHO-K1 recombinant cell line, human recombinant
788 dopamine receptor D2long FAST-0101A) with reference compounds
789 quinpirol and haloperidol for agonist and antagonist tests, respectively.
789 Compound screening was performed in triplicate at a final
790 concentration of 100 and 50 μM in agonist and antagonist modes.
791 Cells coexpressing mitochondrial apoaquorin and
792 recombinant human D2long receptor were grown in antibiotic-free
793 culture media, detached with PDB–EDTA, centrifuged, and
794 resuspended in assay buffer at a concentration of 1 × 10⁶ cells/mL.
796 Prior to the tests, cells were incubated at room temperature with
797 coelenterazine for at least 4 h. In agonist tests, 50 μL of cell suspension
798 was mixed with 50 μL of test compound solution and the resulting
799 light emission was detected using a functional drug screening system
800 model 6000 luminometer (Hamamatsu). In antagonist tests, 100 μL of
801 the reference agonist was added to the mix of cells and test compound,
802 at a final concentration corresponding to EC₅₀, 15 min after the
803 first injection. Signal detection was performed as described before. We
804 note that the antagonist activity level can be overestimated because of the
805 nature of the aequorin-based tests if the tested compound activates the
806 system during the preincubation period. Such activation was observed
807 in the cases of celecoxib, desogestrel, melloxifen, and clomipramine.
808
809 For both tests (i.e., D1 and D2long), agonist activity of the tested
810 compounds is expressed as the percentage of the activity of the
811 reference agonist at EC₅₀ concentration. Antagonist activity is
812 expressed as the percentage of the inhibition of the reference
813 agonist activity, applying EC₅₀ concentration.
814
815 Materials. Aminosalicylic acid, furosemide, monobenzene, nitro-
816 furazone, and nitroxoline were purchased from Aldrich. Maraviroc
817 was from AvaChem. Chlorambucil, clavulanate, ethacrynic acid, flucytosine,
818 furazolidone, lantamox (moxalactam), lipic acid, nitrofurantoin,
819 novobiocin, paclitaxel, penicillin V, phenazopyridine, and tinidazole
820 were from Fluka. Carbimicil was from Merck. Chloromazine and
821 chlorphesin were from MP Biomedicals, dasatinib and tipranavir
822 from Santa Cruz Biotechnology, acetyllysalicid acid, acetitrem, adefovir
823 dipivoxil, adenos, β-linolenic acid, ameloxan, aspartame, atovacoumen,
824 azithromycin, captofril, cefuroxime, chloramphenicol, cimetidine,
825 creatine, estrone-sulfate, fluconorine, flutamide, gemfibrozil, lami
826 dine, lamotrigine, 1-carminit, lomustine, 1-proline, metronidazole,
827 milrinone, naldixid acid, natamycin, nateglinide, nelfinavir, nitumadine,
828 penicilin G, pentoxyfine, pyridoxal phosphate, rosiglitazone,
829 sulpiride, salsalate, telmisartan, ticaricin, and valproic acid from
830 Sigma, and benzyl benzoate and biotin from Sigma-Aldrich. 17
831 Ambenon was from Tocris Bioscience. All tested dopaminergic
832 candidates were purchased from Sigma-Aldrich.
833
834 Predicted ACE inhibitors pentosan polysulfate, polystyrene
835 sulfonate, and uenadil were commercially not available at the time of
836 testing. Astemizole was omitted from testing because it was
837 withdrawn from the market in most countries.
838 Predicted COX inhibitors aminophiphrurate, amlexanox, beatoxone,
839 phenprocoumon, procabazine, rosoxacin, stepronin, tolcapone, and
840 valubicin were commercially not available at the time of testing. Gentian
841 violet and sodium lauryl sulfate were excluded from testing because of
842 their limited clinical applicability.
ASSOCIATED CONTENT

Supporting Information

Chemical structures and plasma concentrations of the studied drugs and activity and inhibition data for compounds predicted with low DPM probability. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Mailing address: Department of Biochemistry, Eötvös Loránd University, Pázmány Péter Stny 1/C, H-1117, Budapest, Hungary. Phone: +36 1 372 2500, extension 8780. Fax: +36 1 381 2172. E-mail: malna@elte.hu.

Author Contributions

L.V. and Á.P. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been supported by the National Development Agency (Grant NTP TECH_08_A1/2-2008-0106). The work has also been supported by the European Union and the European Social Fund under the Grant TAMOP 4.2.1./B-09/ KMR-2010-0003. The European Research Council has provided financial support under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant 208319. A.B. thanks Unilever for funding. The authors thank Ildikó Brandhuber for her help in collecting plasma concentration data for several compounds.

ABBREVIATIONS USED

ACE, angiotensin-converting enzyme; ADMET, absorption, distribution, metabolism, elimination, and toxicity; AUC, area under the curve; COX, cyclooxygenase; DPM, drug profile matching; EP, effect profile; FDA, Food and Drug Administration; FPR, false positive rate; IP, interaction pattern; ROC, receiver operating characteristic; SAR, structure–activity relationship; TPR, true positive rate

REFERENCES

Effect of oxybenzone on PGE2-production in vitro and on plaque and eicosanoids via cyclooxygenase-1 and -2 in rat brain. I. Valproic acid down-regulates the conversion of arachidonic acid to Bextra).

cyclooxygenase inhibition.

phase I clinical trial of novobiocin, a modulator of alkylating agent randomised controlled trial.

