
ar
X

iv
:1

60
8.

01
29

2v
2 

 [
m

at
h.

C
O

] 
 8

 S
ep

 2
01

7

APPROXIMATING SET MULTI-COVERS

MÁRTON NASZÓDI AND ALEXANDR POLYANSKII

Abstract. Johnson and Lovász and Stein proved independently that any hypergraph
satisfies τ ≤ (1+ ln∆)τ∗, where τ is the transversal number, τ∗ is its fractional version,
and ∆ denotes the maximum degree. We prove τf ≤ 3.153τ∗max{ln∆, f} for the f -fold
transversal number τf . Similarly to Johnson, Lovász and Stein, we also show that this
bound can be achieved non-probabilistically, using a greedy algorithm.

As a combinatorial application, we prove an estimate on how fast τf/f converges to
τ∗. As a geometric application, we obtain an upper bound on the minimal density of an
f -fold covering of the d-dimensional Euclidean space by translates of any convex body.

1. Introduction and Preliminaries

A hypergraph is a pair (X,F), where X is a finite set and F ⊆ 2X is a family of some
subsets of X . We call the elements of X vertices, and the members of F edges of the
hypergraph. When a vertex is contained in an edge, we may say that ’the vertex covers
the edge’, or that ’the edge covers the vertex’.

Let f be a positive integer. An f -fold transversal of (X,F) is a multiset A of X
such that each member of F contains at least f elements (with multiplicity). The f -fold
transversal number τf of (X,F) is the minimum cardinality (with multiplicity) of an
f -fold transversal. A 1-transversal is called a transversal, and the 1-transversal number
is called the transversal number, and is denoted by τ = τ1.

A fractional transversal is a function w : X −→ [0, 1] with
∑

x:x∈F w(x) ≥ 1 for all
F ∈ F . The fractional transversal number of (X,F) is

τ ∗ = τ ∗(F) := inf

{

∑

x:x∈X

w(x) : w is a fractional transversal

}

.

Clearly, τ ∗ ≤ τ . In the opposite direction, Johnson [Joh74], Lovász [Lov75] and Stein
[Ste74] independently proved that

(1) τ ≤ (1 + ln∆)τ ∗,

where ∆ denotes the maximum degree of (X,F), that is, the maximum number of edges
a vertex is contained in. They showed that the greedy algorithm, that is, picking vertices
of X one by one, in such a way that we always pick one that is contained in the largest
number of uncovered edges, yields a transversal set whose cardinality does not exceed the
right hand side in (1). For more background, see Füredi’s survey [Für88].

Our main result is an extension of this theorem to f -fold transversals.
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Theorem 1.1. Let λ ∈ (0, 1) and let f be a positive integer. Then, with the above

notation,

(2) τf ≤
1− λf

1− λ
τ ∗(1 + ln∆− (f − 1) lnλ),

moreover, for rational λ, the greedy algorithm using appropriate weights, yields an f -fold
transversal of cardinality not exceeding the right hand side of (2).

Substituting λ = 0.287643 (which is a bit less than 1/e), we obtain

Corollary 1.2. With the above notation, we have

(3) τf ≤ 3.153τ ∗max{ln∆, f}.

This result may be interpreted in two ways. First, it gives an algorithm that approx-
imates the integer programming (IP) problem of finding τf , with a better bound on the
output of the algorithm than the obvious estimate τf ≤ fτ ≤ fτ ∗(1 + ln∆).

A similar result was obtained by Rajagopalan and Vazirani in [RV98] (an improvement
of [Dob82]), where, the (multi)-set (multi)-cover problem is considered, that is, the goal is
to cover vertices by sets. This is simply the combinatorial dual (and therefore, equivalent)
formulation of our problem. In [RV98], each set can be chosen at most once. They present
generalizations of the greedy algorithm of [Joh74], [Lov75] and [Ste74], and prove that it
finds an approximation of the (multi)-set (multi)-cover problem within an ln∆ factor of
the optimal solution of the corresponding linear programming (LP) problem. Moreover,
they give parallelized versions of the algorithms.

The main difference between [RV98] and the present paper is that there, the optimal
solution of an IP problem is compared to the optimal solution of the LP-relaxation of the
same IP problem, whereas here, we compare τf with τ ∗, where the latter is the optimal
solution of a weaker LP problem: the problem with f = 1.

We note that, using the fact that fτ ∗ ≤ τf , (3) also implies that the performance ratio

(that is, the ratio of the value obtained by the algorithm to the optimal value, in the worst
case) of our algorithm is constant when ln∆ ≤ f . Compare this with [BDS04, Lemma 1
in Section 3.1], where it is shown that, even for large f , the standard greedy algorithm
yields a performance ratio of Ω(lnm), where m is the number of sets in the hypergraph.
Further recent results on the performance ratio of another modified greedy algorithm for
variants of the set cover problem can be found in [FK06]. See also Chapter 2 of the book
[Vaz01] by Vazirani.

The second interpretation of our result is the following. It is easy to see that
τf
f

converges to τ ∗ as f tends to infinity. Now, (3) quantifies the speed of this convergence
in some sense. In particular, it yields that for f = ln∆ we have

τf
f
≤ 3.153τ ∗. We have

better approximation for larger f .

Corollary 1.3. For every 0 < ε ≤ 1, if we set f :=
⌈

2(1+ln∆)
ε(1−λ)

⌉

, where 0 < λ < 1 is such

that − lnλ/(1 − λ) ≤ 1 + ε/2, then the f -fold transversal constructed in Theorem 1.1

yields a fractional transversal which gives

τ ∗ ≤
τf
f

≤ τ ∗(1 + ε).

We prove Theorem 1.1 and Corollary 1.3 in Section 2, where, at the end, we discuss
the running time of our algorithm.
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1.1. A geometric application. Next, we turn to a classical geometric covering problem.
Rogers [Rog57] showed that for any convex body K in R

d, there is a covering of Rd with
translates of K of density at most

(4) d ln d+ d ln ln d+ 5d.

For the definition of density cf. [PA95]. G. Fejes Tóth [FT76,FT79] gave the non-trivial
lower bound cdf for the density of an f -fold covering of Rd by Euclidean unit balls (with
some cd > 1). For more information on multiple coverings in geometry, see the survey
[FT04]. As an application of Theorem 1.1, we give a similar estimate for f -fold coverings.

Theorem 1.4. Let K ⊆ R
d be a convex body and f ≥ 1 an integer. Then there is an

arrangement of translates of K with density at most

(1 + o(1)) · 3.153max {d ln d, f} ,

where every point of Rd is covered at least f times.

The key in proving Theorem 1.4 is a general statement, Theorem 3.1, presented in
Section 3. Both theorems are proved the same way as corresponding results in [Nas14],
where the case f = 1 is considered.

Earlier versions of Theorems 1.4 and 3.1 were proved in [FNN16]. There, in place
of the main result of the present paper, a probabilistic argument is used which yields
quantitatively weaker bounds. The quantitative gain here comes from the fact that in
the probabilistic bound on τf presented in [FNN16], one has the size of the edge set F
as opposed to the maximum degree ∆, which is what we have in (3).

2. Proof of Theorem 1.1

2.1. The algorithm. First, we imagine that each member of F has f bank notes, the
denominations are $1, $λ, . . . , $λf−1, where λ < 1 is fixed. We pick vertices one by one.
At each step, we pick a vertex, and each edge that contains it pays the largest bank note
that it has. So, each edge pays $1 for the first vertex selected from it, then $λ for the
second, etc., and finally, $λf−1 for the f -th vertex that it contains. Later on, it does
not pay for any additional selected vertex that it contains. Now, we follow the greedy
algorithm: at each step, we pick the vertex that yields the largest payout at that step.
We finish once each edge is covered at least f times, that is, when we collected all the
money.

2.2. Notation. Given a positive integer f , we define the truncated exponential function

denoted by kλ as follows: for any λ > 0, and any 0 ≤ k < f , let kλ = λk, and let kλ = 0
for any k ≥ f . Note that the value of f is implicitly present in any formula involving the
truncated exponential function.

For each F ∈ F , let k(F ) denote the number of chosen vertices (with multiplicity)
contained in F . We call the function k : F → Z

≥0 the current state, where Z
≥0 is the set

of non-negative integers. At the start, k is identically zero.
Given a function k : F → Z

≥0, we define the value of a vertex x ∈ X with respect to
k as

vk(x) :=
∑

F :x∈F∈F

k(F )λ.

The total remaining value of k is defined as

v(k) :=
∑

F :F∈F

f
∑

i=k(F )

iλ,

3



which is the total pay out that will be earned in the subsequent steps.

2.3. Fractional matchings. A fractional matching of the hypergraph (X,F) is a func-
tion w : F −→ [0, 1] with

∑

F :x∈F∈F w(F ) ≤ 1 for all x ∈ X . The fractional matching

number of (X,F) is

ν∗ = ν∗(F) := sup

{

∑

F :F∈F

w(F ) : w is a fractional matching

}

.

By the duality of linear programming, ν∗ = τ ∗.
We will need the following simple observation.

Lemma 2.1. Let z > 0, and ℓ : F → Z
≥0 be such that vℓ(x) ≤ z for any x ∈ X. Then

we have
v(ℓ)

z
≤ (1 + λ+ . . .+ λf−1)ν∗(F) =

1− λf

1− λ
ν∗(F).

Proof of Lemma 2.1. Let

w(F ) :=

f
∑

i=ℓ(F )

iλ

z(1 + λ+ . . .+ λf−1)
, for any F ∈ F .

First, we show that w is a fractional matching. Indeed, fix an x ∈ X .

∑

F :x∈F∈F

w(F ) =
1

z

∑

F :x∈F∈F

f
∑

i=ℓ(F )

iλ

1 + λ+ . . .+ λf−1
≤

≤
1

z

∑

F :x∈F∈F

ℓ(F )λ =
vℓ(x)

z
≤ 1.

Second, the total weight is

∑

F :F∈F

w(F ) =
1

z(1 + λ+ . . .+ λf−1)

∑

F :F∈F

f
∑

i=ℓ(F )

iλ =
v(ℓ)

z(1 + λ+ . . .+ λf−1)
,

finishing the proof of the Lemma. �

2.4. Finally, we count the steps of the algorithm. We may assume that λ = p/q ∈
(0, 1) with p, q ∈ Z

+. If λ is irrational, then the statement of Theorem 1.1 follows by
continuity. Clearly, qf−1 is a common denominator for the pay outs at each step.

At the start, k0(F ) := k(F ) = 0 for all F ∈ F . We group the steps according to the
$-amount (that is, vk(x)) that we get at each.

In the first t1 steps, each vertex x that we pick has value vk(x) = ∆ =: z1, where, we
recall, ∆ is the maximum degree in the hypergraph. Let k1 : F → Z

≥0 denote the current
state after the first t1 steps.

Then, in the second group of steps, we make t2 steps, at each picking a vertex x ∈ V
of value vk(x) = ∆− q1−f =: z2, where k changes at each step. Let k2 : F → Z

≥0 denote
the current state after the first t1 + t2 steps.

In the j-th group of steps, we make tj steps, at each picking a vertex x ∈ V of value
vk(x) = ∆− (j − 1)q1−f =: zj . Let kj : F → Z

≥0 denote the current state after the first
t1 + . . .+ tj steps.

Obviously, tj ≥ 0, moreover some tj may be zero. For instance (the reader may check as
an exercise), if f > 1, then t2 = 0. For the last group, we have j = qf−1∆−pf−1+1 =: N .
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Notice that vkj (x) ≤ zj+1 for any x ∈ V . Therefore, by Lemma 2.1, we have

(5)
v(kj)

zj+1
≤

1− λf

1− λ
ν∗(F).

Clearly,

(6) v(kj) =
N
∑

i=j+1

tizi, for 0 ≤ j ≤ N − 1.

In total, we choose t1+t2+· · ·+tN vertices (that is the cardinality of A with multiplicity),
and they form an f -fold transversal of (X,F). Thus, by (6) and (5), we obtain

τf ≤ t1 + t2 + · · ·+ tN =

=

(

v(k0)

z1
+

N−1
∑

j=1

v(kj)

(

1

zj+1

−
1

zj

)

)

=
v(k0)

z1
+

N−1
∑

j=1

v(kj)q
1−f

zj+1zj
≤

≤
1− λf

1− λ
ν∗(F)

(

1 +
N−1
∑

j=1

q1−f

zj

)

=
1− λf

1− λ
τ ∗(F)



1 +

qf−1∆
∑

k=pf−1+1

1

k



 ≤

≤
1− λf

1− λ
τ ∗(F)(1 + ln∆− (f − 1) lnλ),

which completes the proof of Theorem 1.1.

2.5. Proof of Corollary 1.3. An f -fold transversal A ⊂ X (A is a multiset) easily yields

a fractional transversal: one sets the weight w(x) = |{x:x∈A}|
f

(cardinality counted with

multiplicity) for any vertex x ∈ X . The total weight that we get from our construction
in Theorem 1.1 is then

τ ∗(F) ≤
∑

x:x∈V

w(x) ≤ τ ∗(F)
1 + ln∆− (f − 1) lnλ

f(1− λ)
≤ τ ∗(F)(1 + ε).

2.6. Running time. Let n denote the number of vertices and m be the number of edges
of the hypergraph. The adjacency matrix and f are the inputs of the algorithm. As
preprocessing, for each vertex, we create a list of edges that contain it (at most ∆),
which takes nm operations. We keep track of the current state in an array k of length m.

At each step, the following operations are performed. Computing the value of a vertex
takes the addition of at most ∆ numbers. Thus, finding the vertex of maximal value is
n∆ operations. Picking that vertex means decreasing at most ∆ entries of the array k

by one. We make at most 1−λf

1−λ
τ ∗(F)(1 + ln∆− (f − 1) lnλ) steps.

With the λ = 0.287643 substitution, in total, the number of operations is at most

nm+O(τ ∗max{ln∆, f} ·∆n) ≤ O(max{ln∆, f} ·∆nm).

3. Multiple covering of space – Proof of Theorem 1.4

We denote by K ∼ T := {x ∈ R
d : T + x ⊆ K} the Minkowski difference of two

sets K and T in R
d. For K,L ⊂ R

d, and f ≥ 1 integer, we denote the f -fold translative

covering number of L by K, that is, the minimum number of translates of K such that
each point of L is contained in at least f , by Nf (L,K). We denote the fractional covering
number of L by K by N∗(L,K) := τ ∗(F), where F := {x−K : x ∈ L} is a hypergraph
with base set Rd, see details in [Nas14], or [AAS15].
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Theorem 3.1. Let K, L and T be bounded Borel measurable sets in R
d and let Λ ⊂ R

d

be a finite set with L ⊆ Λ+ T . Then

(7)

Nf (L,K) ≤

⌈

3.153N∗(L− T,K ∼ T )max

{

ln

(

max
x∈L−K

|(x+ (K ∼ T )) ∩ Λ|

)

, f

}⌉

.

If Λ ⊂ L, then we have

(8) Nf (L,K) ≤

⌈

3.153N∗(L,K ∼ T )max

{

ln

(

max
x∈L−K

|(x+ (K ∼ T )) ∩ Λ|

)

, f

}⌉

.

Theorem 3.1 is the f -fold analogue of [Nas14, Theorem 1.2], where the case f = 1 is
considered. For completeness, we give an outline the proof.

Proof of Theorem 3.1. To prove (7), consider the hypergraph with base set R
d and hy-

peredges of the form u− (K ∼ T ), where u ∈ Λ. An f -fold transversal of this hypergraph
clearly yields an f -fold covering of L by translates of K. A substitution into (3) yields
the desired bound. We omit the proof of (8), which is very similar. �

Using this result, one may prove Theorem 1.4 following [Nas14, proof of Theorem 2.1],
which is the proof of Rogers’ density bound (4). We give an outline of this proof.

Proof of Theorem 1.4. Let C denote the cube C = [−a, a]d, where a > 0 is large. Our
goal is to cover C by translates of K economically. We only consider the case when
K = −K, as treating the general case would add only minor technicalities.

Let δ > 0 be fixed (to be chosen later) and let Λ ⊂ R
d be a finite set such that Λ+ δ

2
K

is a saturated (ie. maximal) packing of δ
2
K in C− δ

2
K. By the maximality of the packing,

we have that Λ + δK ⊇ C. By considering volume, for any x ∈ R
d we have

(9) |Λ ∩ (x+ (1− δ)K)| ≤
vol
(

(1− δ)K + δ
2
K
)

vol
(

δ
2
K
) ≤

(

2

δ

)d

.

Let ε > 0 be fixed. Clearly, if a is sufficiently large, then

(10) N∗(C − δK, (1− δ)K) ≤ (1 + ε)
vol (C)

(1− δ)d vol (K)
.

By (7), (9) and (10) we have

Nf (C,K) ≤

⌈

3.153
1 + ε

(1− δ)d
vol (C)

vol (K)
max

{

d ln

(

2

δ

)

, f

}⌉

.

Thus, we obtain an f -fold covering of C. We repeat this covering periodically for all
translates of C in a tiling of Rd by translates of C, which yields an f -fold covering of Rd.
The density of this covering is at most

Nf(C,K) vol (K) / vol (C) ≤

⌈

3.153
1 + ε

(1− δ)d
max

{

d ln

(

2

δ

)

, f

}⌉

.

We choose δ = 2
d ln d

, and a standard computation yields the desired result. �
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