
COVERINGS: VARIATIONS ON A RESULT OF ROGERS AND ON
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Abstract. We consider four problems. Rogers proved that for any convex body K,
we can cover Rd by translates of K of density very roughly d ln d. First, we extend this
result by showing that, if we are given a family of positive homothets of K of infinite
total volume, then we can find appropriate translation vectors for each given homothet
to cover Rd with the same (or, in certain cases, smaller) density.

Second, we extend Rogers’ result to multiple coverings of space by translates of a
convex body: we give a non-trivial upper bound on the density of the most economical
covering where each point is covered by at least a certain number of translates.

Third, we show that for any sufficiently large n, the sphere S2 can be covered by n
strips of width 20n/ lnn, where no point is covered too many times.

Finally, we give another proof of the previous result based on a combinatorial obser-
vation: an extension of the Epsilon-net Theorem of Haussler and Welzl. We show that
for a hypergraph of bounded Vapnik–Chervonenkis dimension, in which each edge is of
a certain measure, there is a not-too large transversal set which does not intersect any
edge too many times.

1. Introduction

For a convex body K we denote its translative covering density (the minimum density
of the covering of Rd by translates of K) by ϑ(K). We recall Rogers’ estimate [Rog57]:

(1) ϑ(K) ≤ d ln d+ d ln ln d+ 5d.

Our first result is an extension of (1). For a family F of sets in Rd, we say that F
permits a translative covering of a subset A of Rd with density ϑ, if we can select a
translation vector xF ∈ Rd for each member F of F such that A ⊆

⋃
F∈F

xF + F , and the

density of this covering is ϑ.

Theorem 1.1. Let K be a convex body in Rd, and let F = {λ1K,λ2K, . . . } (0 < λi) be
a family of its homothets with

∞∑
i=1

λdi =∞.

Let Λ := {λ1, λ2, . . .}.
(a) If Λ is bounded, and has a limit point other than zero, then F permits a covering

of space of density ϑ(K).
(b) If Λ is bounded, and has no limit point other than zero, then F permits a covering

of space of density one.
(c) If Λ is unbounded, then F permits a covering of space with maximum multiplicity

4d (that is, where no point is covered by more than 4d sets).
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In case (c), we will prove maximum multiplicity 2d in a special case which includes all
smooth bodies, see Theorem 2.5. The proofs are in Section 2.

In the proof of Theorem 1.1, we will use a result on covering K by homothets of K.

Theorem 1.2. Let K ⊆ Rd be a convex body of volume one, and let F be a family of
positive homothets of K with total volume at least{

(d3 · ln d · ϑ(K) + e)2d, if K = −K,
d3 · ln d · ϑ(K) ·

(
2d
d

)
+ e · 4d, in general.

Then F permits a translative covering of K.

This result is a strengthening of a result of [Nas10], which, in turn is a strengthening
of a result of Januszewski [Jan03]. We prove it in subsection 2.1. We learned that a
stronger bound was recently obtained by Livshyts and Tikhomirov [LT16].

Our second topic is multiple coverings of space. We denote the infimum of the densities
of k-fold coverings of Rd by translates of K by ϑ(k)(K). Apart from the estimate that
follows from (1) using the obvious fact ϑ(k)(K) ≤ kϑ(K), no general estimate has been
known. For the Euclidean ball Bd

2 in Rd, G. Fejes Tóth [FT76,FT79] gave the non-trivial
lower bound ϑ(k)(Bd

2) > cdk for some cd > 1, see more in the survey [FT04]. We prove

Theorem 1.3. Let K ⊆ Rd be a convex body and k ≤ d(ln d+ ln ln d). Then

ϑ(k)(K) ≤ 6ed(3 ln d+ ln ln d+ 15).

This shows that G. Fejes Tóth’s bound (up to a constant factor) is sharp if k = d ln d.
To prove Theorem 1.3, we present in Section 3 a more general statement, Theorem 3.3,

which extends [AAS13, Theorem 1.6] and [Nas14, Theorem 1.2].
Our third topic is covering the sphere S2 := {x ∈ R3 : |x| = 1} by strips. For a given

point x ∈ S2, and 0 ≤ w ≤ 1, we call {v ∈ S2 : |〈v, x〉| ≤ w} the strip centered at x, of
Euclidean half-width w.

Theorem 1.4. For any sufficiently large integer N , there is a covering of S2 by N strips
of Euclidean half-width 10 lnN

N
, with no point covered more than c lnN times, where c is a

universal constant.

Our study of this question was motivated by a problem at the 2015 Miklós Schweitzer
competition posed by András Bezdek, Ferenc Fodor, Viktor Vı́gh and Tamás Zarnócz
on covering the two-dimensional sphere by strips of a given width such that no point is
covered too many times.

We note the following dual version of Theorem 1.4, and leave it to the reader to convince
themselves that the two versions are equivalent: For any sufficiently large integer N ,
we can select N points of S2 such that each strip of Euclidean half-width 10 lnN

N
contains

at least one and at most c lnN points, where c is a universal constant.
In Section 4, we present a direct, probabilistic proof of Theorem 1.4.
Our third topic, presented in Section 5, is studying variants of the Epsilon-net theorem

of Haussler and Welzl [HW87].
A set X with a family H ⊆ 2X of some of its subsets is called a hypergraph, its Vapnik–

Chervonenkis dimesion (VC-dimension, for short) is defined in Section 5.

Theorem 1.5. Let X be a set, H ⊂ 2X a hypergraph on X of VC-dimension at most
d ≥ 2, and 0 < ε < 1. Let µ be a probability measure on X with µ(H) = ε for each
H ∈ H.
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a) If ε ≤ 1
d
, then one can choose

⌊
C d
ε

ln(1/ε)
⌋

elements of X (not necessarily distinct),

such that each edge of H contains at least one and at most C1d ln
(
1
ε

)
chosen points (with

multiplicity), where C and C1 are universal constants.
b) One can choose

⌊
C d
ε

ln
(
1
ε

+ 1
)⌋

elements of X (not necessarily distinct), such that

each edge of H contains at least one and at most C1d ln d ln
(
1
ε

+ 1
)

chosen points (with
multiplicity), where C and C1 are universal constants.

The dual (and equivalent) version of Theorem 1.4 clearly follows from Theorem 1.5,
since (using the uniform probability measure on S2) the measure of any strip of Euclidean
half-width w is w, and the VC-dimension of strips on S2 is bounded.

We also prove a similar result with essentially the same technique.

Theorem 1.6. Let X be a set, H ⊂ 2X a hypergraph on X of VC-dimension at most
d ≥ 2, and N ≥ 2 an integer. Let µ be a probability measure on X with µ(H) = 1/N for
each H ∈ H. Then one can find a multisubset of N elements of X (with multiplicity),
such that each edge of H contains at most Cd lnN

ln lnN
chosen points, where C is a universal

constant.

It was pointed out to us by Nabil Mustafa that Theorems 1.5 and 1.6 can be obtained
directly from results on epsilon approximations.

2. Covering space with given homothets – Proof of Theorem 1.1

Remark 2.1. Given a family F of compact sets in Rd. We want to cover the space
with translates of members of F . The minimum covering density that we can reach does
not change whether we require that we use every member of F , or we may use only a
subfamily. Indeed, once we have a desired covering using a sub-family, we can take a
zero-density arrangement of the rest of the members of F .

In case (a) of Theorem 1.1, there is a subfamily of F which consists of essentially
translates of K. The proof of case (a) now easily follows from Remark 2.1.

We make some preparations for the proof of case (b).

Definition 2.2. A collection V of Lebesgue-measurable subsets of Rd is a regular family
if there is a constant C for which diam(V )d ≤ C vol (V ) holds for every V ∈ V .

Definition 2.3. A collection V of subsets of Rd is a Vitali-covering of E ⊆ Rd, if for
every x ∈ E and δ > 0, there is an element U of V such that x ∈ U and 0 < diam(U) < δ.

We recall Vitali’s covering theorem [Vit08].

Theorem 2.4. Let E ⊂ Rd be a measurable set with finite Lebesgue-measure, and let V
be a regular family of closed subsets of Rd that is a Vitali covering for E. Then there is
a finite or countably infinite subcollection {Uj} ⊆ V of disjoint sets such that

vol

(
E \

⊔
j

Uj

)
= 0.

Proof of (b) of Theorem 1.1. We may assume that vol (K) = 1 and fix an ε0 > 0.
For a subcollection G of F we denote by Gε the subset of those elements of G in which

the ratio of homothety does not exceed ε.
Now, for every ε > 0, the total volume in Fε is infinite. A bit more is true: for any

subfamily G of F of infinite total volume, and for every ε > 0, the total volume in Gε is
infinite.
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We partition

Fε0 =
(⊔

i

Ai
)⊔(⊔

j

Bj
)

into countably many sub-collections, so that the total volume in each Ai and in each Bj
is infinite.

We will cover most of the cube [0, 1]d by a subfamily of A1, in which the sum of the
volumes is at most (1 + ε0 diam(K))d, and the rest of the cube by a subfamily of B1, in
which the sum of the volumes is at most ε0. If we can achieve this for any ε0 > 0, the
density bound for the whole space clearly follows.

Again, we partition

A1 =
⊔
j

Cj

into countably many subcollections, so that the total volume in each Cj is infinite.
Using Theorem 1.2 for every j ∈ N, we can cover the cube [0, 1]d by the translates of

the elements (Cj) 1
j
. Since we use homothets of a fixed convex body, K, the union (over

j) of these coverings is clearly a regular Vitali covering.
Therefore we can apply Theorem 2.4. There is a subcollection {Ul} of disjoint sets for

which

vol

(
[0, 1]d \

⊔
l

Ul

)
= vol (E) = 0.

Next, we will cover E by a subcollection of B1, in which the sum of the volumes is
at most ε0. We partition B1 =

⋃
lDl into countably many subcollection, each of infinite

total volume.
Since vol (E) = 0, for every ε′ > 0 there is collection E = {K1, K2, . . . , } of homothets

of K so that E ⊆
⋃
lKl and

∑
l vol (Kl) ≤ ε′.

Note that (Dl)ε is of infinite total volume for any ε > 0. Thus, using Theorem 1.2 for
each l, we can cover Kl by translates of members of a subfamily of Dl of total volume at
most C vol (Kl) for some constant C > 0. If ε′ is small enough, we obtain a covering of
E of total volume ε0, as promised. �

Case (c) of Theorem 1.1 clearly follows from the following statement.

Theorem 2.5. Let K be a convex body, and let F = {λ1K,λ2K, . . . } be a family of its
homothets so that the λi-s are not bounded. Then F permits a translative covering of Rd

so that every point is covered at most 4d times.
Moreover, if K is smooth at the points of intersection of K with supporting hyperplanes

that are parallel to one of the d coordinate hyperplanes, then F permits a translative
covering of Rd so that every point is covered at most 2d times.

Clearly, if an affine image of K has the special property that ’coordinate-hyperplane
touching points’ are smooth, then the 2d bound on the covering multiplicity also follows.

Proof of Theorem 2.5 in the second case. Fix ε > 0. We may assume that F has
an element µ0K so that Q0 = [−ε, ε]d ⊆ µ0K ⊆ [−1, 1]d. We present an al-
gorithm to produce the desired covering. We will define inductively a sequence of
cubes Qi (i ∈ N), which are centered at the origin and have side length at least
i, a sequence of translation vectors x11, x

2
1, . . . x

2d
1 , x

1
2, . . . , x

2d
2 , x

1
3, . . . , and a sequence

µ1
1K,µ

2
1K, . . . µ

2d
1 K,µ

1
2K, . . . , µ

2d
2 K,µ

1
3K, . . . of elements of F so that the following hold

with the convention xj0 = 0 and µj0 = µ0:

(1) Qk ⊆
⋃k
i=0

⋃2d
j=1 x

j
i + µjiK for k ∈ N
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Figure 1. The squares with bold edges are Q1, Q2 and Q3 (counting from
inside out).

(2)
(⋃k

i=0

⋃2d
j=1 x

j
i + µjiK

)
+B(0, ε) ⊆ Qk+1 for k ∈ N

(3)
(
xji + µjiK

)
∩
(
xj+di + µj+di K

)
= ∅ for 1 ≤ j ≤ d

(4)
(
xji + µjiK

)
∩ (xml + µml K) = ∅ if |i− l| ≥ 2.

Indeed, assume that we found the xji -s, µ
j
i -s and Qi-s for i ≤ k. Choose Qk+1 so that(

k⋃
i=0

2d⋃
j=1

xji + µjiK

)
+B(0, ε) ⊆ Qk+1.

Let Hi denote the support hyperplane of the i-th facet of Qk, and Hi,+ the half-space
bounded by Hi that does not contain Qk. Since the set of λi-s is unbounded, by the
smoothness of K at the touching points with the coordinate hyperplanes, we can choose
a so far unused element µik+1K of F , and a translation vector xik+1 such that

Qk+1 ∩Hi,+ ⊆ xik+1 + µik+1K

and

(xik+1 + µik+1K) ∩ (xjk−1 + µjk−1K) = ∅
for all j.

Also we have that if Hi (i ≤ d) and Hi+d support opposite sides of Qk+1 then

(xik+1 + µik+1K) ∩ (xi+dk+1 + µi+dk+1K) = ∅,

and

Qk+1 \Qk ⊆
2d⋃
i=1

xik+1 + µik+1K.

Hence we can find the desired Qi-s and translates.
Since Qi has side length at least i,

Rd =
∞⋃
i=1

2d⋃
j=1

xji + µjiK.

5



Property (3) ensures that, the subfamily
⋃2d
i=1 x

i
k + µikK covers every point at most d

times, and property (4) yields that every point of Rn is covered by at most two subfamilies⋃2d
i=1 x

i
k + µikK, which finishes the proof. �

Remark 2.6. At first, one may believe that, by some approximation argument, the
condition of smoothness can be dropped in Theorem 2.5. Unfortunately, this is not the
case, the standard argument does not work.

Let K be a convex body in Rd and F = {λ1K,λ2K, . . . } a family of its homothets,
such that the coefficients λi-s are not bounded. Let L be a convex body with smooth
boundary such that L ⊆ K ⊆ (1 + ε)L. Consider the family F ′ = {λ1L, λ2L, . . . }, and
follow the steps of the proof of the smooth case in Theorem 2.5 for F ′.

We obtain a covering xji + λjiL of Rd, where every point is covered at most 2d times.

Then xji + (1 + ε)λjiL is also a covering. However, it may happen that xji + (1 + ε)λjiL

covers every point infinitely many times: If λki is sufficiently large, then xji + (1 + ε)λjiK
may contain B(0, i) for all i.

Proof of Theorem 2.5 in the general case. We leave the proof of the following Lemma to
the reader as an exercise.

Lemma 2.7. Let K ⊆ Rd be a convex body. Then there exist j ≤ 2d points {x1, x2, . . . xj}
on the boundary of K, so that K is smooth in xi (1 ≤ i ≤ j) and

⋂
iHi+ = L is a bounded

convex set with non-empty interior, where Hi+ is the half-space that contains K, bounded
by the tangent hyperplane Hi at xi.

Let L be the polytope obtained in Lemma 2.7. We may assume that L contains the
origin. Let ε > 0 be fixed. We may also assume that F has an element µ0K so that
−L0 = −εL =⊆ µ0K ⊆ −L.

Similarly to the proof of the smooth case, we can inductively de-
fine a sequence −α1L,−α2L, . . . of homothets of −L, a sequence
of translation vectors x11, x

2
1, . . . x

2d
1 , x

1
2, . . . , x

2d
2 , x

1
3, . . . and a sequence

µ1
1K,µ

2
1K, . . . µ

2d
1 K,µ

1
2K, . . . , µ

2d
2 K,µ

1
3K, . . . of members of F , so that αi ≥ i and

the following hold:

(1) −Lk ⊆
⋃k
i=0

⋃2d
j=1 x

j
i + µjiK for k ∈ N

(2)
(⋃k

i=0

⋃2d
j=1 x

j
i + µjiK

)
+B(0, ε) ⊆ −Lk+1 for k ∈ N

(3)
(
xji + µjiK

)
∩ (xml + µml K) = ∅ if |i− l| ≥ 2.

Now, the general case of Theorem 2.5 easily follows. �

2.1. Covering K by its homothets.

Theorem 2.8. For any ε > 0, dimension d and any convex body K of volume one in Rd

with o ∈ intK, if a family F of positive homothets of K has total volume at least

d2
⌈
− log ε

log 1 + ε

⌉
ϑ(K)

vol (K −K)

vol (K)
+
(

1 +
ε

2

)d
2d

vol (K)

vol (K ∩K)
.

then F permits a translative covering of K.

Theorem 1.2 clearly follows from this result. Indeed, we choose ε = 1
d
, and recall two

facts. First, that there is a point x ∈ K such that vol (K ∩ (2x−K)) ≥ 1
2d

vol (K). And

second, that by [RS57], vol (K −K) ≤
(
2d
d

)
vol (K).

Proof of Theorem 2.8. First, we restate [Nas10, Theorem 1.3] in a slightly more general
form than the original, which is easily obtained from the proof therein. The proof there
easily yields this form.
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Theorem 2.9. Let K and L be convex bodies in Rd with o ∈ intK, and F =
{λ1K,λ2K, . . .} be a family of its homothets with 0 < λi ≤ λ1 < 1. Assume that

∞∑
i=1

λdi ≥ 2d
vol
(
L+ λ1

K∩(−K)
2

)
vol (K ∩ (−K))

.

Then F permits a translative covering of L.

We fix ε > 0. Now, we are given F = {λ1K,λ2K, . . .} with 0 < λi < 1 for all i. First,
we consider the case when there is a subfamily F ′ = {µ1K,µ2K, . . . } of F in which

(1 + ε)−1 ≤ µdi
µdj
≤ (1 + ε)

for all i and j, and
∞∑
i=1

µdi ≥ ϑ(K)(1 + ε)
vol (K −K)

vol (K)
.

In this case, F ′ has at least 1
µd1(1+ε)

ϑ(K)(1 + ε)vol(K−K)
vol(K)

= 1
µd1
ϑ(K)vol(K−K)

vol(K)
members.

We may assume that µ1 is the smallest homothety ratio in F ′. By the main result of

[RZ97], we can cover K by at most vol(K−µ1K)·ϑ(K)
vol(µ1K)

translates of µ1K. The statement of

the Theorem in this case easily follows.
Next, we assume that there is no such subfamily F ′. Consider the intervals

(εd, εd(1 + ε)], (εd(1 + ε), εd(1 + ε)2], . . . , (εd(1 + ε)c(ε)−1, εd(1 + ε)c(ε)],

where c(ε) = d
⌈
− log ε
log 1+ε

⌉
. Since εd(1 + ε)c(ε) ≥ 1, we have∑

λiK∈F ,λdi>εd
λdi < c(ε)d(1 + ε)ϑ(K)

vol (K −K)

vol (K)
.

This implies that there exists a subfamily F ′ = {µ1K,µ2K, . . . }, in which

µdi ≤ εd

and
∞∑
i=1

µdi ≥
(

1 +
ε

2

)d
2d

vol (K)

vol (K ∩ (−K))
.

Then, by Theorem 2.9, F ′ permits a translative covering of K. �

3. Multiple covering – Proof of Theorem 1.3

Definition 3.1. Let F be a family of subsets of a base set X, and k ∈ Z+. The k-fold
covering number of F , denoted by τk(F), is the minimum cardinality of a multi-subfmaily
of F such that each point of X is contained in at least k (with multiplicity) members of
the subfamily.

We recall that a fractional covering of X by F is a mapping w from F to R+ with∑
x∈F∈F w(F ) ≥ 1 for all x ∈ X. The total weight of a fractional covering is denoted by

w(F) :=
∑

F∈F w(F ), and its infimum is the fractional covering number of F :

τ ∗(X,F) := inf{w(F) : w : F → R+ is a fractional-covering of X}.
For more on (fractional) coverings, cf. [Für88] in the abstract (combinatorial) setting and
[PA95] and [Mat02] in the geometric setting.

We will use the following simple combinatorial statement.
7



Lemma 3.2. Let F be a family of subsets of a base set X of fractional covering number
τ ∗ := τ ∗(F), and k ∈ Z+. Then

τk ≤
⌈
τ ∗
(
k +

3

2
ln |X|+ 3

2

√
(4k + ln |X|) ln |X|

)⌉
≤ d6τ ∗max{ln |X|, k}e.

The proof is a standard probabilistic argument.

Proof. Let w be a fractional covering of X by F of total weight τ ∗ := τ ∗(F), and let

m =
⌈
τ ∗
(
k + 3

2
ln |X|+ 3

2

√
(4k + ln |X|) ln |X|

)⌉
.

We pick m members of F randomly, independently with the same distribution: at
each draw, each member F of F is picked with probabilty w(F )/w(F). For a fixed
x ∈ X, the probability that x is not covered at least k times by the selected fam-
ily is at most P(ξ < k), where ξ = ξ1 + . . . + ξm, with independent random Bernouli
(ie., 0/1–valued) variables ξ1, . . . , ξm, each of expectation 1/τ ∗. By Chernoff’s inequal-

ity, P(ξ < k) ≤ exp
(
− (m−kτ∗)2

3mτ∗

)
. Thus, P(there is an x ∈ X which is not covered) ≤

|X| exp
(
− (m−kτ∗)2

3mτ∗

)
. The lemma now clearly follows. �

For two sets K and L in Rd, we define Nk(L,K), the k-fold covering number of K by
L as the minimum number of translates of L that cover K k-fold. Note that Nk(L,K) =
τk(F), where F = {(x+K)∩L : x ∈ Rd}. We also define the fractional covering number
of K by L as N∗(L,K) = τ ∗(F).

By [AAS13, Theorem 1.7], we have .

(2) max

{
vol (L)

vol (K)
, 1

}
≤ N∗(L,K) ≤ vol (L−K)

vol (K)

for any Borel measurable sets, K and L is Rd.
The same proof as [AAS13, Theorem 1.6] (or, [Nas14, Theorem 1.2]) yields

Theorem 3.3. Let K, L and T be bounded Borel measurable sets in Rd and let Λ ⊂ Rd

be a finite set with L ⊆ Λ + T . Then

Nk(L,K) ≤ d6N∗(L− T,K ∼ T ) max{ln |Λ|, k}e.
If Λ ⊂ K, then we have

Nk(L,K) ≤ d6N∗(L,K ∼ T ) max{ln |Λ|, k}e.

Proof of Theorem 1.3. We may assume that

B(0, 1) ⊆ K ⊆ [−d, d]d .

Let C =
[
−a

2
, a
2

]d
be a cube of edge length a, where we will set a later.

Let δ > 0 be fixed and let Λ ⊆ Rd be a finite set such that λ + δ
2
(K ∩ (−K)) is

a saturated (ie. maximal) packing of δ
2
(K ∩ (−K)) in C − δ

2
(K ∩ (−K)). Thus C ⊆

Λ + δK ⊆ λ+ δ(K ∩ (−K)) ⊆ Λ + δK. By considering volume, we have that

|Λ| ≤
vol
(
C − δ

2
(K ∩ (−K))

)
vol
(
δ
2
(K ∩ (−K))

) ≤
(
a+ δd

2

)d
2d

vol (B(0, 1))
(
δ
2

)d .
Equation (2) yields that

(3)

N∗(C − δ(K ∩ (−K)), K ∼ δ(K ∩ (−K))) ≤

N∗(C − δK, (1− δ)K) ≤ vol (C −K)

vol ((1− δ)K)
≤ (a+ d)d

(1− δ)d vol (K)
.

8



From Theorem 3.3 we have now

(4)

Nk(C,K) ≤

⌈
6

(a+ d)d

(1− δ)d vol (K)
ln

( (
a+ δd

2

)d
2d

vol (B(0, 1))
(
δ
2

)d
)⌉
≤

6
(a+ d)d

(1− δ)d vol (K)
ln

( (
a+ δd

2

)d
2d

vol (B(0, 1))
(
δ
2

)d
)

+ 1.

On the other hand
(5)

ϑ(k)(K) ≤ Nk(C,K)
vol (K)

vol (C)
≤ 6

(a+ d)d

(1− δ)d
ln

( (
a+ δd

2

)d
2d

vol (B(0, 1))
(
δ
2

)d
)

(vol (C))−1 +
vol (K)

vol (C)
.

Choose now δ = 1
2d ln d

, a = d2, and estimate vol (B(0, 1)) by the volume of the cube of

side length 1
2
√
d
, which is contained in B(0, 1).

(6)

ϑ(k) ≤ 6

(
d2 + d

d2

)d(
1− 1

2d ln d

)−1 (
d ln

(
4d3 ln d+ d+ 2 + 2d

1
2

))
+ 1 ≤

6d

(
1 +

1

d

)d
exp

(
1

ln d

)
ln
(
8d3 ln d

)
≤

6d

(
1 +

2

ln d

)
(3 ln d+ ln ln d+ ln 8) ≤ 6ed(3 ln d+ ln ln d+ 15)

yields the desired bound. �

4. Covering the sphere by strips – A Direct Proof of Theorem 1.4

In this section, we present a direct, probabilistic proof of Theorem 1.4. We use the
uniform probability measure on the sphere S2, and recall that the measure of any strip
of Euclidean half-width w is w.

Let r = lnN
N

. By a standard saturated packing argument, we may fix a set of points
v1, . . . , vN2 on S2 such that the caps around vi of radius r cover the sphere.

Let Xi (i = 1, . . . , N) be independent random variables distributed uniformly on S2.
We prove that with positive probability, the points Xi will satisfy the conditions of the
theorem.

First consider the following probability:
Q1 = P(∃v ∈ S2 : |〈v,Xj〉| ≥ 10 lnN

N
, for all j = 1, . . . , N).

Let
Pi = P(∃v ∈ S2 : |v − vi| ≤ r, |〈v,Xj〉| ≥ 10 lnN

N
, for all j = 1, . . . , N), where i =

1, . . . , N2.
The union of the events corresponding to Pi covers the event corresponding to Q1,

because the caps around vi with radius r cover the sphere. On the other hand, clearly,
Pi does not depend on i. We obtain that N2P1 ≥ Q1.

Assume that |v − vi| ≤ r.

|〈v,Xj〉| − |〈v − vi, Xj〉| ≤ |〈vi, Xj〉| ,
thus,

|〈v,Xj〉| − r ≤ |〈vi, Xj〉| .
Hence, we can estimate from above P1 as

9



P1 ≤ P(|〈v1, Xj〉| ≥ 9r, j = 1, . . . , N) = (1− 9r)N =

(
1− 9

lnN

N

)N
,

thus,

P1 ≤ e−9 lnn = N−9,

which yields Q1 ≤ 1
N7 <

1
2
.

Next, for any unit vector v, we denote the number of points in the strip |〈v,Xj〉| ≤ 10r
from the setX1, . . . , XN by kv, and denote the number of points in the strip |〈v,Xj〉| ≤ 11r
from the set X1, . . . , XN by hv. We will bound from above the probability Q2 = P(∃v ∈
S2|kv ≥ c lnN), where we will fix c later.

Let Ri = P(∃v ∈ S2| |v − vi| ≤ r, kv ≥ c lnN) where i = 1, . . . , N2.
Clearly, Ri does not depend on i, and N2R1 ≥ Q2. So, we will estimate R1 from above.
Assume that |v − v1| ≤ r.

|〈v,Xj〉|+ |〈v − v1, Xj〉| ≥ |〈v1, Xj〉| ,
thus,

|〈v,Xj〉|+ r ≥ |〈v1, Xj〉| .
We denote the floor of c lnN by t, and let z = 11 lnN .

R1 ≤ P (hvi ≥ c lnN) ≤
( z
N

)t(N
t

)
By Stirling’s formula we easily get that there exists a universal constant D such that(

N
t

)
≤ DNN

tt(N−t)(N−t) . Thus,

R1 ≤
Dzt ·NN

N t · tt(N − t)(N−t)
≤ D(ez)t

tt
.

If c ≥ 100 then t ≥ e2z , so we have R1 ≤ D
et
≤ 1

N3 , if N is large enough. It follows that

(7) Q2 ≤ N2R1 ≤
1

2
.

Overall, we obtained that Q1 + Q2 < 1, which means that if N is large enough, then
with positive probability the points Xi will satisfy the the conditions of the theorem, with
the constant c = 100. This completes the proof of Theorem 1.4.

Following the proof of Theorem 1.4, with a very little modification in the calculation,
one can easily get the following theorem:

Theorem 4.1. There are N points xi (i = 1, . . . , N) on S2, such that for any unit vector
v, there are at most c lnN

ln lnN
chosen points in the strip |〈v, x〉| ≤ 1

N
, where c is a universal

constant.

We pose the following open questions:

Conjecture 4.2. There is a function f on the positive integers tending to infinity such
that, for any N points on S2, there is a unit vector v, for which the strip |〈v, x〉| ≤ 1

N

contains at least f(N) of the given points.

Conjecture 4.3. There is a function g on the positive integers tending to infinity such
that for any N points in the unit disk on the plane, there is a strip of width 1

N
containing

at least g(N) of the given points.
10



Conjecture 4.4. There is a function h on the positive integers tending to infinity such
that for any N points on S2 and any width w > 0, there is a unit vector v, for which
there are at least h(N) given points in the strip |〈v, x〉| ≤ w, or there is no chosen point
in the strip |〈v, x >| ≤ w.

Note that Conjecture 4.2 would imply Conjecture 4.4 with h = f . This is because if
w ≥ 1

N
then the definition of f guarantees that, and if w ≤ 1

N
, then computing the sum

of the areas of the dual strips associated to the points xi , i = 1, . . . , N , they cannot
cover the sphere, so in that case there exists a unit vector v such that there is no chosen
point in the strip |〈v, x〉| ≤ w.

5. Some analogues of the Epsilon-net Theorem

In this section, we prove Theorems 1.5 and 1.6. Both proofs closely follow the double-
sampling technique of Haussler and Welzl from [HW87].

We recall some basics notions from the theory of hypergraphs, for details, we refer to
[Mat02].

Definition 5.1. The shatter function of a hypergraph H on the set X is πH(m) =
max

A⊂X,|A|=m
|H|A|. The Vapnik–Chervonenkis dimension (VC-dimension, in short) of H

is the maximal m for which π(m) = 2m (if there is no maximum, th VC-dimension is
infinite).

We recall the Sauer–Shelah Lemma [Sau72,She72].

Lemma 5.2. Let H be a hypergraph of VC-dimension d. Then for any non-negative
integer m, π(m) ≤

(
m
0

)
+
(
m
1

)
+ . . .+

(
m
d

)
≤ 2md.

In the proof of Theorem 1.5 and Theorem 1.6 we assume that the measure of every
singleton is 0, but this is not a restriction, because we can replace every singleton with
measure greater than 0 with an interval having the same measure.

Proof of Theorem 1.5. We will assume, that the measure of every singleton of X is 0, to
ensure that in a random sample the probability of having some element more than once
is zero. The general case will follow in the following way. If A := {p1, p2, . . .} is the
set of elements of X that, as singletons, are of positive measure, then we replace each
element, say pi, of A by a ’labeled’ interval pi× [0, 1]. This way, we obtain the set X̂ from

X. We define the measure of µ̂ on X̂ in such a way that the measure µ(pi) is uniformly

distributed on the labeled interval pi × [0, 1]. The set family F̂ on X̂ is essentially F ,

where if F ∈ F contains pi, then the corresponding F̂ ∈ F̂ contains the entire labeled
interval pi × [0, 1].

Next, with this assumption of having no positive-measure singletons, let X1, . . . , X2N

be independent random variables according to µ taking values in X, where N :=⌊
C d
ε

ln(1/ε)
⌋
. Set Q0 := {X1, . . . , XN}, Q1 := {XN+1, . . . , X2N} and Q := Q0 ∪Q1.

The Epsilon-net theorem yields that the probability that Q0 is a transversal to H (that
is, that each edge H ∈ H intersects Q0) is greater than 1

2
, if C is sufficiently large.

For a given H ∈ H, let EH
0 be the event that |Q0 ∩H| > C1d ln

(
1
ε

)
, where C1 > 0 is

to be chosen later. Let EH
1 be the event that EH

0 holds and |Q1 ∩H| ≤ 2εN .
Let E0 be the union of the events EH

0 for all H ∈ H, that is, E0 is the event that, for
some H ∈ H, we have |Q0 ∩H| > C1d ln

(
1
ε

)
. Let E1 be the union of the events EH

1 for
all H ∈ H.

We claim that P(E0) ≤ 2P(E1).
11



Indeed,
P(E1)

P(E0)
= P(E1|E0) ≥ min

H∈H
P(EH

1 |EH
0 ) > 1/2,

by Markov’s inequality.
Thus, it is sufficient to show that P(E1) <

1
4

to obtain the theorem.
Next, we sample in a different way. We permute the indices of the variables X1, . . . , X2N

with a random permutation (taking each permutation with equal probability), and denote
the resulting variables as Y1, . . . , Y2N . They are again independent. We estimate the
probability of the event E1 for these variables.

We fix a 2N -element subset R of X, and let L := H ∩R. We estimate the probability
of the event EH

1 under the condition that Q = R. By Lemma 5.2, there are at most
2(2N)d possibilities for L, so we have

(8) P(E1|Q = R) ≤ 2(2N)d max
H∈H

P(EH
1 |Q = R).

We fix H ∈ H. If t := |L| < C1d ln
(
1
ε

)
, then EH

1 does not hold. We consider the case

when t ≥ C1d ln
(
1
ε

)
.

In order to bound P(EH
1 |Q = R), we first note the following simple combinatorial fact.

Let V be a subset of L with 0 ≤ m := |V | ≤ t. Then,

P(Q1 ∩H = V |Q = R) =

(
2N − t
N −m

)
/

(
2N

N

)
≤
(

2N − t
N − bt/2c

)
/

(
2N

N

)
DN3

2t
,

where D is a universal constant. Since, for any 0 ≤ m ≤ t, we have
(
t
m

)
ways to choose

an m-element subset of L. Thus,

P(EH
1 |Q = R) ≤ D ·

((
t

0

)
+

(
t

1

)
+ . . .+

(
t

b2εNc

))
2−tN3 ≤ 3DεN

(
t

b2εNc

)
2−tN3,

using t > 4εN if C1 is large enough compared to C. By Stirling’s approximation, with
the notations l := DN3, k := b2εNc and r := t/k, if C1 is large enough compared to C,
then r > 10, and the right hand side is less than

3lεN

2t
· tt

kk(t− k)t−k
≤ 2lkrk

2rk
·
(

r

r − 1

)(r−1)k

<

(
3

4

)(r−1)k

· l <
(

3

4

)C1d ln( 1
ε)

2

· l,

if C1 (and hence, r) is sufficiently large. So, by (8), it is sufficient to show, that if C1 is
large enough, then

2(2N)d
(

3

4

)C1d ln( 1
ε)

2

·DN3 < 1/4.

Clearly, it follows from

D(4C
d

ε
ln(1/ε))d+3

(
3

4

)C1d ln( 1
ε)

2

< 1/4.

The latter holds by the restriction ε ≤ 1/d, if C1 is large enough, because:

√
D(4Cd)d+3

(
3

4

)C1d ln( 1
ε)

4

<
1

4
,
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and

√
D

(
ln(1/ε)

ε

)d+3(
3

4

)C1d ln( 1
ε)

4

< 1.

Thus, by (8), we have that P(E1|Q = R) < 1/4. Since R was arbitrary, we obtain
P(E1) < 1/4 completing the proof of the first part of Theorem 1.5. The second part
follows by the same calculation and the inequality

D

(
4C

d

ε
ln

(
1

ε
+ 1

))d+3(
3

4

) d ln d ln( 1
ε+1)

2

< 1/4.

�

Proof of Theorem 1.6. Similarly to the proof of Theorem 1.5, we will assume, that the
measure of every singleton of X is 0.

Let X1, . . . , XN(lnN+1) be independent random variables according to µ taking values
in X. Set Q0 := {X1, . . . , XN}, Q1 := {XN+1, . . . , XN(lnN+1)} and Q := Q0 ∪Q1. Denote

by r = Cd lnN
ln lnN

, where C is to be chosen later.
For a given H ∈ H, let EH

0 be the event that |Q0 ∩H| > r. Let EH
1 be the event that

EH
0 holds and |Q1 ∩H| = ∅.
Let E0 be the union of the events EH

0 for all H ∈ H, that is, E0 is the event that, for
some H ∈ H, we have |Q0 ∩H| > r. Let E1 be the union of the events EH

1 for all H ∈ H.
We claim that P(E0) ≤ N2P(E1).
Indeed,

P(E1)

P(E0)
= P(E1|E0) ≥ min

H∈H
P(EH

1 |EH
0 ) >

(
N − 1

N

)N lnN

≥ 1

N2
,

where, in the last inequality we used the fact that (1− x/2) ≥ e−x for 0 < x < 1.59.
Thus, it is sufficient to show that P(E1) <

1
N2 to obtain the theorem.

Next, we sample in a different way. We permute the indices of the variables
X1, . . . , XN(lnN+1) with a random permutation (taking each permutation with equal prob-
ability), and let the resulting variables be Y1, . . . , YN(lnN+1). They are again independent
random variables. We will estimate the probability of the event E1 for these variables.

We fix a subset R of X of N(lnN + 1) elements, and let L := H ∩R. We estimate the
probability of the event EH

1 under the condition that Q = R. By Lemma 5.2, there are
at most 2(N lnN)d possibilities for L = H ∩R, so we have

(9) P(E1|Q = R) ≤ 2(N lnN)d max
H∈H

P(EH
1 |Q = R).

We fix H ∈ H. If t := |L| ≤ r, then EH
1 does not hold.

If t > r, then

P(EH
1 |Q = R) ≤

(
N
t

)(
N(lnN+1)

t

) ≤ ( N

N lnN

)t
≤
(

1

lnN

)r
= N−Cd.

If C is large enough, then by (9), P(E1|Q = R) < 1/N2. Since this bound does not
depend on the choice of R, we have P(E1) < 1/N2 finishing the proof of Theorem 1.6. �
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[Mat02] J. Matoušek, Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-

Verlag, New York, 2002.
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