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GAFA Geometric And Functional Analysis

TWISTED L-FUNCTIONS OVER NUMBER FIELDS AND
HILBERT’S ELEVENTH PROBLEM

Valentin Blomer and Gergely Harcos

Abstract. Let K be a totally real number field, π an irreducible cuspidal represen-
tation of GL2(K)\GL2(AK) with unitary central character, and χ a Hecke character
of conductor q. Then L(1/2, π ⊗ χ) � (Nq)

1
2− 1

8 (1−2θ)+ε, where 0 � θ � 1/2 is any
exponent towards the Ramanujan–Petersson conjecture (θ = 1/9 is admissible). The
proof is based on a spectral decomposition of shifted convolution sums and a gener-
alized Kuznetsov formula.

1 Introduction

In a recent article [BlH2] the authors developed a new technique to study shifted
convolution sums in Hecke eigenvalues of the type∑

n−m=q

λπ1(n)λπ2(m)W1(n/Y )W2(m/Y ) (1)

for two irreducible cuspidal representations π1, π2 of GL2(Q)\GL2(AQ) with conduc-
tor 1, reasonably regular weight functions W1,W2, a large number Y > 0, and q �= 0.
Such sums play an important role in the theory of automorphic forms, in particular
in the study of automorphic L-functions, as they constitute a typical off-diagonal
term of the second moment. In this paper we generalize the method of [BlH2]
to (congruence subgroups of) the Hilbert modular group of a totally real number
field K, and we give applications to subconvexity of twisted L-functions over K.
Before stating our main result, we note that the subconvexity problem for GL2 over
any fixed number field was recently solved by Michel and Venkatesh in a beautiful
preprint [MV], where the reader can also find detailed references to previous work
done in the subject. Yet, as the authors of [MV] remark, their emphasis was not on
obtaining best exponents but rather finding some nontrivial exponent that works in
all cases. The aim of the present paper is to demonstrate that a relatively strong
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Burgess-type subconvexity bound in the conductor aspect can be achieved for the
family at hand, and once the background on automorphic forms has been set up,
the proof requires comparatively little effort (cf. section 3.1).

More precisely, let π be an irreducible cuspidal representation of GL2(K)\GL2(AK)
with unitary central character, and let χ be a Hecke character of conductor q. Let
L(s, π ⊗ χ) denote the twisted L-function. Let 0 � θ � 1/2 be an approximation
towards the Ramanujan–Petersson conjecture. Currently θ = 1/9 is known by the
work of Kim and Shahidi [KiS], while the Ramanujan–Petersson conjecture predicts
θ = 0.
Theorem 1. For any ε > 0 one has L(1/2, π ⊗ χ) �π,χ∞,K,ε (N q)

1
2
− 1

8
(1−2θ)+ε.

Remark 1. This result contains a bound for all values L(1/2 + it, π ⊗ χ) on the
critical line, because replacing 1/2 by 1/2 + it has the same effect as replacing χ by
χ ⊗ | · |it.
Remark 2. The convexity bound in this context is (N q)

1
2
+ε. The first subconvex

bound over totally real number fields is a result by Cogdell, Piatetski-Shapiro and
Sarnak [CoPS], [Co], in which they obtained for π induced by a holomorphic Hilbert
cusp form

L(1/2, π ⊗ χ) � (N q)
1
2
− 1−2θ

14+4θ
+ε.

(In this bound and in the next one we tried to optimize parameters, the original
statements are somewhat weaker.) They used a very effective spectral method based
on bounds for triple products [S1,2]. As an application of an ingenious and flexi-
ble geometric method, Venkatesh [V2, Th. 6.1] proved a subconvex bound over all
number fields and for all irreducible cuspidal representations

L(1/2, π ⊗ χ) � (N q)
1
2
− (1−2θ)2

14−12θ
+ε.

Our method is quite different from both of these works, and Theorem 1 super-
sedes both results. It may be noted that although most applications of subconvex-
ity require only any nontrivial saving in the exponent, there are situations where
the quality of the subconvex exponent is critical, an example being [ChCU] where
L(1/2, π ⊗ χ) � (cond χ)

1
2
− 1

16
+ε or an equivalent bound for metaplectic Fourier

coefficients (over Q) is needed.

Remark 3. An inspection of the proof shows that with somewhat more precise
estimates the implied constant in Theorem 1 turns out to be polynomial in the
analytic conductor of π and the archimedean parameters of χ with an exponent
depending on ε.

The proof of Theorem 1 builds on the ideas of several earlier works, most notably
of [DFI], [CoPS], [V1,2], [BlH2]. Applying an approximate functional equation,
a typical off-diagonal term in the amplified second moment is essentially of the
form (1) with a slightly more general summation condition �1n − �2m = q for any
nonzero q ∈ q. Often the estimation of such expressions rests on some variant of the
circle method (see e.g. [DFI], [BlHM]) in order to detect the summation condition.
However, this seems difficult to implement over number fields with a nontrivial unit
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and class group, in contrast to the more structural approach in [BlH2] which we will
follow here. The proof is written in an interesting mixture of classical and modern
language: on the one hand, we use an adelic setup to treat the number field situation
appropriately. On the other hand, at the heart of the amplification is Iwaniec’s idea
of playing off various subgroups against each other, and so we need to keep track
carefully of the various levels occurring in the course of the argument.

Perhaps the most appealing application of Theorem 1 is to combine it with the
formula of Waldspurger [W2] and its extensions by Shimura [Sh2], Khuri-Makdisi [K],
Kojima [Koj], Baruch–Mao [BaM] and others in order to bound the Fourier coef-
ficients of half-integral weight Hilbert modular forms. For K = Q, the original
breakthrough was achieved by Iwaniec [I1], and the currently strongest bounds are
given in [BlH1]. For a totally real number field K other than Q, there does not seem
to be an explicit reference in the literature.
Corollary 1. Let (π̃, Vπ̃) be an irreducible cuspidal representation of

S̃L2(K)\S̃L2(AK), orthogonal to one-dimensional theta series, and let r ∈ o be a
nonzero squarefree integer. Define the r-th normalized Fourier coefficient ρφ̃(r) of a

pure tensor φ̃ = ⊗vφ̃v ∈ Vπ̃ by the left-hand side of (90) below. Then√
|N r|ρφ̃(r) �φ̃,K,ε |N r| 14− 1

16
(1−2θ)+ε.

Remark 4. The “trivial” bound in this context is |N r| 14+ε on the right-hand side,
while the Ramanujan conjecture (implied by the Lindelöf hypothesis for twisted
L-functions) states the bound |N r|ε.

One particular situation where such bounds are needed, are asymptotic formulae
for the number of representations of integers by positive ternary quadratic forms,
see [Bl] for an overview of this topic over Q. Hilbert’s eleventh problem asks more
generally which integers are integrally represented by a given n-ary quadratic form
Q over a number field K. If Q is a binary form, it corresponds to some element in
the class group of a quadratic extension of K (see [Cox] for a nice account over Q).
If Q is indefinite at some archimedean place, Siegel [Si2] for n � 4 and Kneser
[Kn] and Hsia [Hs] for n = 3 proved a local-to-global principle, so Siegel’s mass
formula [Si1] tells us exactly which integers are represented by Q. If Q is positive
definite at every archimedean place and n � 4, again Siegel’s mass formula [Si1]
and bounds for Fourier coefficients of Hilbert modular forms give a complete answer
(some care has to be taken in the case n = 4). The only remaining case of Q positive
definite and n = 3 was solved by Duke and Schulze-Pillot [DS] for K = Q. For
arbitrary totally real K, the result was established by Cogdell, Piatetski-Shapiro
and Sarnak [CoPS]; an account of the key ideas appeared in [Co]. In fact, the
systematic study of subconvexity over number fields was initiated by [CoPS] about
a decade ago motivated by this striking application. The relevant subconvex bound
was subsequently generalized over arbitrary number fields by Venkatesh [V2], while
our Corollary 1 allows a better approximation for the number of representations.
Corollary 2. Let K be a totally real number field and let Q be a positive in-
tegral ternary quadratic form over K. Then there is an ineffective constant c > 0
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such that every totally positive squarefree integer r ∈ o with N r � c is repre-
sented integrally by Q if and only if it is integrally represented over every com-
pletion of K. More precisely, the number of representations for such r equals

(N r)
1
2
+o(1) + O((N r)

7
16

+ θ
8
+o(1)), where the main term is the product of local densi-

ties given by Siegel’s mass formula.

Remark 5. This result, with a slightly weaker error term, was originally proved
in [CoPS]. The representation of non-squarefree integers is quite subtle, but in
principle can again be characterized by more involved local considerations, cf. [Sch].

Another application of Theorem 1 can be found in [Coh, Th. 1.2] and [Z, Th. 3.2]
(cf. also [V2, §1.1]) that generalizes work of Duke [D]: under the assumption of
a subconvex bound as above it is proved that a certain family of Heegner points
and certain d-dimensional subvarieties are equidistributed on the Hilbert modular
surface SL2(oK)\Hd.

The core of Theorem 1, from which it will follow in a fairly straightforward
procedure, is the spectral decomposition of smooth shifted convolution sums which
implies strong upper bounds for these sums. This is stated as Theorem 2 in section
3.2 after the necessary notation is developed. We give another application of this
result in Theorem 3 of section 3.4: we prove the analytic continuation and spectral
decomposition of the Dirichlet series associated to shifted convolution sums with
polynomial growth on vertical lines. This problem goes back to Selberg [Se].

Section 2 contains the necessary background on automorphic forms. This sec-
tion turned out to be very long; although much of the material presented there is
essentially known, many of the results and computations in the number field case do
not seem to be explicit in the literature. Therefore we felt that it makes the paper
more useful (also a reference for future work in this subject) and readable if we give
rather complete details.

Acknowledgements. This paper would not exist without the insight and guid-
ance of Peter Sarnak who suggested Gergely Harcos in 2000 to work on this project;
we are grateful for his support over the years. Important parts of this paper were
written during a visit of Valentin Blomer to Rényi Institute of Mathematics in Octo-
ber 2008, and during the workshop “Analytic Theory of GL(3) Automorphic Forms
and Applications” at the American Institute of Mathematics in November 2008. We
thank both institutions for their hospitality and financial support, and the orga-
nizers of the workshop for their kind invitation. Finally we thank Jim Arthur for
valuable discussions related to this work.

2 Part I: Background on Automorphic Forms

2.1 Basic Notation.

2.1.1 Number fields and adele rings. Let K be a totally real number field
over Q of degree d, discriminant DK , different d and ring of integers o. Throughout
the paper we regard K as fixed and all constants may depend on K, even if not
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stated explicitly, and they may also depend on ε which denotes an arbitrarily small
positive number, not necessarily the same on each occurrence. We embed K as a
Q-algebra into K∞ := Rd using the d real field embeddings r �→ (rσ1 , . . . , rσd). We
denote by K×

∞,+ := Rd
>0 the set of totally positive elements of K∞, and we put

Kdiag
∞,+ :=

{
(x, . . . , x) | x ∈ R>0

} ⊆ K×
∞,+ .

For r ∈ K we write

sgn(r) :=
(
sgn(rσ1), . . . , sgn(rσd)

) ∈ {±1}d,

and we write r >> 0 for a totally positive integer r ∈ o. We denote by U+ ⊆ U the
group of totally positive units and the group of units of o, respectively.

Let A be the adele ring of K, with K being embedded diagonally (this defines
in particular a multiplication K × A → A). We shall often write A = K∞ × Afin.
We shall label the archimedean places with elements of {1, . . . , d} and the non-
archimedean places with prime ideals p of K in an obvious way. As usual, we shall
denote the module of an idele x ∈ A× by |x| := |x∞||xfin|, where |x∞| :=

∏d
j=1 |xj|

and |xfin| :=
∏

p |xp|. We denote by ψ : A → S1 the unique continuous additive
character which is trivial on K, agrees with x �→ e(x1 + · · · + xd) on K∞, and
on Kp it is trivial on d−1

p but nontrivial on p−1d−1
p . Here and later a subscript p

indicates completion with respect to the corresponding valuation vp. If Ω :=
∏

p o×p
is the unique maximal compact subgroup of A×fin, then Ω\A×fin is isomorphic in a
natural way to the multiplicative group I(K) of nonzero fractional ideals of K. We
shall occasionally identify an idele in A×fin with its image under the corresponding
surjective homomorphism A×fin → I(K). This homomorphism also gives rise to a
natural action of A×fin on I(K). We write ∼ for equivalence in the ideal class group

C(K) := K×\I(K) ∼= K×Ω\A×fin
∼= K×K×

∞Ω\A×.

We write h := #C(K) for the class number of K. Let N : K → Q be the norm,
which we extend to an R-multilinear map K∞ → R; the norm of a fractional ideal
m ∈ I(K) will also be denoted by Nm. Note that the norm of an infinite idele
y ∈ K×∞ is |y|, but the norm of the fractional ideal (y) = yo ∈ I(K) corresponding
to a finite idele y ∈ Afin is |y|−1.

We denote by μ(a), ϕ(a) and τ(a) the obvious generalizations of the Möbius, the
Euler, and the divisor functions to nonzero ideals a ⊆ o. We will often use the basic
estimates #{m ⊆ o | Nm � x} 
K x for x � 1 and τ(m) �K,ε (Nm)ε for any ε > 0.

2.1.2 Matrix groups. For any ring R we define the following important
subgroups of GL2(R):

Z(R) :=
{(

a 0
0 a

) ∣∣∣∣ a ∈ R×
}

and P (R) :=
{(

a b
0 d

) ∣∣∣∣ a, d ∈ R×, b ∈ R

}
.

For ϑ ∈ (R/2πZ)d we write

k(ϑ) :=
(

cos ϑ sin ϑ
− sin ϑ cos ϑ

)
∈ SO2(K∞) .
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For nonzero ideals y, c ⊆ op we define

K(y, c) :=
{(

a b
c d

)
∈ GL2(Kp)

∣∣∣∣ a, d ∈ op, b ∈ (ydp)−1, c ∈ ydpc, ad − bc ∈ o×p

}
.

If y = op, we just write K(c) instead of K(op, c). For nonzero ideals y, c ⊆ o we define

K(c) :=
∏
p

K(cp) ⊆ GL2(Afin) , K := SO2(K∞) ×K(o) ⊆ GL2(A) ,

and
Γ(y, c) :=

{
g∞ ∈ GL2(K∞)

∣∣∣ g∞gfin ∈ GL2(K) for some gfin ∈
∏
p

K(yp, cp)
}

. (2)

The definition of K(c) is by no means the only way of specifying a subgroup of
“level c”. We are following [Mi], [Sh1], [K] here. In [BrMP], [V1], for instance, the
different d is not included in the definition of K(c), and the reader will easily see
that all proofs in this paper would go through with very minor modifications, had
we chosen a different definition of K(c).

2.1.3 Measures. On K∞ we use the normalized Lebesgue measure
|DK |−1/2dx1 · · · dxd. On Kp we normalize the Haar measure so that op has mea-
sure 1. On A we use the Haar measure dx which is the product of these measures,
this induces the Haar probability measure on K\A. On K×∞ we use the Haar mea-
sure (dy1/|y1|) · · · (dyd/|yd|). On K×

p we normalize the Haar measure so that o×p
has measure 1. On A× we use the Haar measure d×y which is the product of these
measures, this induces some Haar measure on K×\A×. On K and its factors we
use the Haar probability measures. On Z(K∞)\GL2(K∞) we use the Haar measure
which satisfies∫

Z(K∞)\GL2(K∞)
f(g)dg =

∫
K×∞

∫
K∞

∫
SO2(K∞)

f

((
y x
0 1

)
k

)
dk dx

d×y

|y| .

On GL2(Kp) we normalize the Haar measure so that K(op) has measure 1. On
Z(K∞)\GL2(A) we use the product of these measures, this induces the Haar mea-
sure on Z(A)\GL2(A) satisfying (cf. [GJ, (3.10)])∫

Z(A)\GL2(A)
f(g)dg =

∫
A×

∫
A

∫
K

f

((
y x
0 1

)
k

)
dk dx

d×y

|y| .

2.2 Spectral decomposition and Eisenstein series. Let ω : K×\A× → S1

be a Hecke character, regarded also as a character of Z(K)\Z(A). Without loss of
generality we shall assume that ω, viewed as a character of A×, is trivial on Kdiag

∞,+.
(Note that in Theorem 1 replacing π by π ⊗ |det |it and χ by χ⊗ | · |−it leaves π ⊗χ
unchanged. In fact for the proof of Theorem 1 we only need the results of this section
for trivial ω.) The group GL2(A) acts by right translation on the Hilbert space

L2(GL2(K)\GL2(A), ω
)

of measurable functions φ : GL2(A) → C satisfying
φ(γzg) = ω(z)φ(g) , γ ∈ GL2(K) , z ∈ Z(A) , g ∈ GL2(A) ,

〈φ, φ〉 :=
∫

GL2(K)Z(A)\GL2(A)
|φ(g)|2dg < ∞ .
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A function φ ∈ L2(GL2(K)\GL2(A), ω) is called cuspidal if∫
K\A

φ

((
1 x
0 1

)
g

)
dx = 0 for almost all g ∈ GL2(A) .

We have a GL2(A)-invariant decomposition

L2(GL2(K)\GL2(A), ω
)

= Lcusp ⊕ L⊥cusp

into the space of cuspidal functions and its orthogonal complement. The cuspi-
dal space decomposes into a Hilbert space direct sum of irreducible automorphic
representations (here and later we do not indicate closure for notational simplicity):

Lcusp =
⊕
π∈Cω

Vπ .

The orthogonal complement L⊥cusp is described in detail in [GJ, §3-5], see also [Bu,
§3.7]: For any Hecke character χ satisfying χ2 = ω (which is necessarily trivial on
Kdiag
∞,+) let Vχ be the subspace generated by the function g �→ χ(det g), then we have

a GL2(A)-invariant (orthogonal) decomposition

L⊥cusp = Lsp ⊕ Lcont , Lsp :=
⊕
χ2=ω

Vχ ,

where Lcont can be described as follows.
For two Hecke quasicharacters χ1, χ2 : K×\A× → C× with χ1χ2 = ω let

H(χ1, χ2) denote the space of functions ϕ : GL2(A) → C satisfying∫
K
|ϕ(k)|2dk < ∞

and

ϕ

((
a x
0 b

)
g

)
= χ1(a)χ2(b)

∣∣∣a
b

∣∣∣1/2
ϕ(g) , x ∈ A , a, b ∈ A×. (3)

We can regard this as the space of functions ϕ ∈ L2(K) satisfying

ϕ

((
a x
0 b

)
k

)
= χ1(a)χ2(b)ϕ(k) ,

(
a x
0 b

)
∈ K . (4)

There is a unique s ∈ C such that χ1(a) = |a|s and χ2(a) = |a|−s for all a ∈ Kdiag
∞,+.

Accordingly, for s ∈ C we introduce

H(s) :=
⊕

χ1χ2=ω

χ1χ−1
2 = | · |2s on Kdiag

∞,+

H(χ1, χ2) , (5)

and we view the space H :=
∫

C H(s)ds as a holomorphic fibre bundle with base C.
(Note that on [GJ, p. 224], μ ◦ ν−1(a) = |a|s should read μ ◦ ν−1(a) = |a|2s, cf.
[GJ, (3.11)].) For a section ϕ ∈ H we use the obvious notation ϕ(s) ∈ H(s) and
ϕ(s, g) ∈ C. The bundle H is trivial, because any ϕ(s0) ∈ H(s0) extends uniquely
to a section ϕ ∈ H. There is a GL2(A)-equivariant isomorphism

S : Lcont → L′cont :=
∫ ∞

0
H(iy)dy ,
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given explicitly by [GJ, (4.23)] on a dense subspace. If we equip L′cont with the inner
product

〈ϕ1, ϕ2〉 :=
2
π

∫ ∞

0

〈
ϕ1(iy), ϕ2(iy)

〉
dy =

2
π

∫ ∞

0

∫
K

ϕ1(iy, k)ϕ̄2(iy, k)dk dy ,

then this map is an isometry by [GJ, §4, Part D]; in combination with the theory of
Eisenstein series [GJ, §5] it yields a spectral decomposition of Lcont. For a section
ϕ ∈ H and for g ∈ GL2(A) we define the Eisenstein series

E
(
ϕ(s), g

)
:=

∑
γ∈P (K)\GL2(K)

ϕ(s, γg) , �s > 1/2 . (6)

This is a holomorphic function which extends meromorphically to s ∈ C with no
poles on �s = 0. Moreover, for any s �= 0 which is not a pole of E(ϕ(s), g), we
can extract ϕ(s) ∈ H(s) from the meromorphic continuation of the constant term
as given by [GJ, (5.3)]. The above discussion suggests that for y ∈ R× we consider
the complex vector space

V (iy) :=
{
E(ϕ(iy)) | ϕ(iy) ∈ H(iy)

}
equipped with the inner product〈

E(ϕ1(iy)), E(ϕ2(iy))
〉

:=
〈
ϕ1(iy), ϕ2(iy)

〉
. (7)

By (5) we have a GL2(A)-invariant (orthogonal) decomposition

V (iy) =
⊕

χ1χ2=ω

χ1χ−1
2 =|·|2iy on Kdiag

∞,+

Vχ1,χ2 ,

where
Vχ1,χ2 :=

{
E(ϕ(iy)) | ϕ(iy) ∈ H(χ1, χ2)

}
.

We note that Vχ1,χ2 = Vχ2,χ1, in particular V (iy) = V (−iy), by [GJ, (4.3), (4.24),
(5.15)]. Now we have a GL2(A)-invariant decomposition

Lcont =
∫ ∞

0
V (iy)dy =

∫ ∞

0

⊕
χ1χ2=ω

χ1χ−1
2 =|·|2iy on Kdiag

∞,+

Vχ1,χ2dy .

More precisely, by [GJ, (4.24), (5.15)–(5.17)] any φ ∈ Lcont can be written as

φ(g) =
1
π

∫ ∞

0
E
(
ϕ(iy), g

)
dy , ϕ := Sφ ∈ L′cont ,

and we have Plancherel’s identity

〈φ1, φ2〉 =
1
π

∫ ∞

0

〈
E(ϕ1(iy)), φ2

〉
dy =

1
π

∫ ∞

0
2
〈
ϕ1(iy), ϕ2(iy)

〉
dy

=
2
π

∫ ∞

0

〈
E(ϕ1(iy)), E(ϕ2(iy))

〉
dy .

To summarize, we have a GL2(A)-invariant orthogonal decomposition

L2(GL2(K)\GL2(A), ω
)

=
⊕
π∈Cω

Vπ ⊕
⊕
χ2=ω

Vχ ⊕
∫ ∞

0

⊕
χ1χ2=ω

χ1χ−1
2 =|·|2iy on Kdiag

∞,+

Vχ1,χ2dy (8)
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in the sense that each function in the L2-space decomposes into a convergent sum
and integral of functions from each subspace, and a Plancherel formula holds. For
notational simplicity we shall write the last term as

∫
Eω

V
 d�, where Eω is the
set of unordered pairs {χ1, χ2} of Hecke characters with χ1χ2 = ω and nontrivial
restrictions on Kdiag

∞,+.

2.3 Casimir eigenvalues and conductors. Let (π, Vπ) be an infinite-dimen-
sional irreducible automorphic representation of GL2(A) occurring in the spectral
decomposition (8), i.e. one of Vπ with π ∈ Cω, or Vχ1,χ2 with {χ1, χ2} ∈ Eω, equipped
with the right GL2(A)-action. By Flath’s theorem [F], Vπ decomposes as a restricted
tensor product over the places of K,

Vπ =
⊗

v

Vπv . (9)

For each 1 � j � d, the Laplace–Beltrami operator of the j-th component of
GL2(K∞) = GL2(R)d,

Δj := −y2
j (∂

2
xj

+ ∂2
yj

) + yj∂xj∂ϑj
, (10)

acts on the dense subset V∞π of smooth vectors by a scalar

λπ,j =: 1
4 − ν2

π,j ∈ R .

Here νπ,j ∈ 1
2Z if π∞,j belongs to the discrete series, and by [KiS] we have

νπ,j ∈ iR ∪ [−θ, θ] , θ := 1/9 , (11)

if π∞,j belongs to the principal series or the complementary series. We shall choose
νπ,j so that �νπ,j � 0 and �νπ,j � 0. For notational simplicity we write

λπ := (λπ,j)dj=1 ∈ Rd,

νπ := (νπ,j)dj=1 ∈ Rd,

λ̃π :=
(
1 + |λπ,j|

)d

j=1 ∈ Rd
>0 ;

ν̃π :=
(
1 + |νπ,j|

)d

j=1 ∈ Rd
>0 ;

(12)

in particular,

N λ̃π =
d∏

j=1

(
1 + |λπ,j|

)
and N ν̃π =

d∏
j=1

(
1 + |νπ,j|

)
.

Let cω ⊆ o denote the conductor of the central character ω, and for a nonzero
ideal c ⊆ cω let

Vπ(c) :=
{

φ ∈ Vπ

∣∣∣ φ

(
g

(
a b
c d

))
= ωc(d)φ(g)

for all g ∈ GL2(A) and
(

a b
c d

)
∈ K(c)

}
,

where
ωc(x) :=

∏
p|c

ωp(x) , x ∈ A× .

For c ⊆ c′ ⊆ cω we have Vπ(c′) ⊆ Vπ(c), because ωc(d) = ωc′(d) for
(

a b
c d

) ∈ K(c).
(Indeed, for p | c and p � c′ we have bc ∈ pop, hence a, d ∈ o×p by ad − bc ∈ o×p , so
that ωp(d) = 1 by p � cω.) We define the conductor cπ of π as the largest ideal c ⊆ cω
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such that Vπ(c) �= {0} (cf. [C, Th. 1] and [Mi, Cor. 2]). Analogously, for a prime p

and a nonzero ideal c ⊆ cωp we define Vπp (c) and the local conductor cπp . Note that
cπp = cπop. Finally, we define the analytic conductor of π (cf. [IS]) as

C(π) := (N cπ)(N λ̃π) . (13)

For any nonzero ideals t, c ⊆ o such that tcπ | c there is an isometric embedding
of complex vector spaces

Rt : Vπ(cπ) ↪→ Vπ(c) , (Rtφ)(g) := φ

(
g

(
t−1 0
0 1

))
, (14)

where t ∈ A×fin is any finite idele representing t. It follows from (9) and the local result
of Casselman [C] that the spaces Vπ(c) decompose (in general not orthogonally) as

Vπ(c) =
⊕
t|cc−1

π

RtVπ(cπ) , for any c ⊆ cπ , (15)

and Vπp (cπp ) is one-dimensional for each prime p. For each character k(ϑ) �→
exp(iq · ϑ), q ∈ Zd, of SO2(K∞) we define

Vπ,q :=
{
φ ∈ Vπ | φ(gk(ϑ)) = exp(iq · ϑ)φ(g) for all ϑ ∈ (R/2πZ)d

}
,

and correspondingly we write

Vπ,q(c) := Vπ,q ∩ Vπ(c) .

This gives an orthogonal decomposition (in a Hilbert space sense)

Vπ(c) =
⊕
q∈Zd

Vπ,q(c) , for any c ⊆ cπ , (16)

and also a decomposition of vector spaces

Vπ,q(c) =
⊕
t|cc−1

π

RtVπ,q(cπ) , for any c ⊆ cπ , (17)

where Vπ,q(cπ) is at most one-dimensional. Alternately, (17) and global multiplicity-
one were also established by Miyake [Mi] which then imply the above local results.

In the case of Vπ = Vχ1,χ2 consisting of Eisenstein series we replace the subscript
π by χ1, χ2 for convenience, e.g. we write cχ1,χ2 := cπ. For each 1 � j � d we have

λχ1,χ2,j = 1
4 − s2

j , νχ1,χ2,j = ±sj , (18)

where sj ∈ iR denotes the unique exponent such that χ1χ
−1
2 = | · |2sj on the j-th

component of K×
∞,+. We note that χ1χ

−1
2 = | · |2iy on Kdiag

∞,+, where

y :=
s1 + s2 + · · · + sd

id
∈ R×. (19)

It follows from the discussion in section 2.2 that Vχ1,χ2 and H(χ1, χ2) are isomorphic
representations, in particular there is a decomposition

H(χ1, χ2) =
⊗

v

Hv(χ1, χ2) . (20)

In addition,

Vχ1,χ2(c) =
{
E(ϕ(iy), · ) ∈ Vχ1,χ2 | ϕ ∈ H(χ1, χ2, c)

}
, (21)
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and by (15),
H(χ1, χ2, c) =

⊕
t|cc−1

π

RtH(χ1, χ2, cπ) .

Here it is known (e.g. [C, p. 306]) that cπ = cχ1,χ2 = cχ1cχ2 . In section 2.6 we shall
give a detailed proof of this fact for trivial central character.

Finally for c ⊆ cω we define, in harmony with the notation of the previous section,
Cω(c) :=

{
π ∈ Cω | c ⊆ cπ ⊆ cω

}
,

Eω(c) :=
{{χ1, χ2} ∈ Eω | c ⊆ cχ1,χ2 ⊆ cω

}
,

(22)

and we shall drop the subscript ω in case ω is trivial.

2.4 Normalized Whittaker functions. Let q ∈ Z. For q even, let
ν ∈ (1

2 + Z
) ∪ iR ∪ ( − 1

2 , 1
2

)
. For q odd, let ν ∈ Z ∪ iR. For these parameters

we define the normalized Whittaker function

W̃q/2,ν(y) :=
isgn(y) q

2 Wsgn(y) q
2
,ν(4π|y|){

Γ
(1

2 − ν + sgn(y) q
2

)
Γ
(1

2 + ν + sgn(y) q
2

)}1/2 , y ∈ R×, (23)

where Wα,β is the standard Whittaker function, see [WhW, Ch.XVI]. The right-
hand side is understood as 0 if one of 1

2 ± ν + sgn(y) q
2 is a nonpositive integer,

otherwise we have a positive number under the square-root sign by the constraints
on ν. We note that the above definition is invariant under ν → −ν, and for future
reference we record that

W̃ q
2
,ν(y) = ηq,ν

Wsgn(y) q
2
,ν(4π|y|)

Γ
(1

2 + ν + sgn(y) q
2

) , q ∈ 2Z , ν ∈ iR , y ∈ R×, (24)

where ηq,ν is a constant of modulus 1 depending on q and ν but not on y. (This can
be proved by induction on q, starting from the trivial case q = 0. Note that (24) is
only stated for special q and ν.)

By [BrMo, §4], the functions W̃q/2,ν (q ∈ Z) for fixed ν form an orthonormal
basis of the Hilbert space L2(R×, d×y) which justifies our normalization:

L2(R×, d×y) =
⊕
q∈Z

CW̃ q
2
,ν , 〈W̃ q

2
,ν , W̃ q′

2
,ν
〉 = δq,q′ . (25)

We review the uniform bounds [BlH2, (24)–(26)]. For all ν we have

W̃q/2,ν(y) � |y|1/2
( |y|
|q| + |ν| + 1

)−1−|�ν|
exp

(
− |y|
|q| + |ν| + 1

)
. (26)

For ν ∈ 1
2Z ∪ iR we have, for any 0 < ε < 1/4,

W̃q/2,ν(y) �ε |y|1/2−ε
(|q| + |ν| + 1

)
. (27)

For ν ∈ (−1/2, 1/2) we have, for any 0 < ε < 1,

W̃q/2,ν(y) �ε |y|1/2−|ν|−ε
(|q| + |ν| + 1

)1+|ν|
. (28)

For q ∈ Zd and appropriate ν ∈ Cd, we define

W̃q/2,ν(y) :=
d∏

j=1

W̃qj/2,νj
(yj) , y ∈ K×

∞ . (29)
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2.5 Hecke eigenvalues and Fourier expansion. Let c ⊆ cπ be a nonzero
ideal. There is a character επ : {±1}d → {±1} depending only on π such that every
φ ∈ Vπ,q(c) has a Fourier–Whittaker expansion (cf. [K, (2.11), (3.8)])

φ

((
y x
0 1

))
= ρφ,0(y) +

∑
r∈K×

ρφ(ryfin)επ

(
sgn(ry∞)

)
W̃q/2,νπ

(ry∞)ψ(rx) (30)

for y = y∞ × yfin ∈ A×, x ∈ A. Note that for any yfin ∈ A×fin the coefficient ρφ(yfin)
only depends on the fractional ideal represented by yfin and it is nonzero only if
this ideal is integral. The normalization of W̃q/2,νπ

is further justified by the fact
that these coefficients remain unchanged if φ is replaced by any of its nonzero Maaß
shifts.

If (π, Vπ) is one of the right GL2(A)-spaces Vχ with χ ∈ X in (8), then the
expansion (30) only contains the constant term ρ0(y).

Let us now assume that (π, Vπ) is one of the right GL2(A)-spaces Vπ with π ∈ Cω

in (8), so that ρ0(y) = 0. The finer structure of the coefficients ρφ can be revealed
by the theory of Hecke operators, as developed by Miyake [Mi] (see also [Sh1, §2]
and [K, §2]). By (17) we can decompose any vector φ ∈ Vπ,q(c) as

φ =
∑

t|cc−1
π

Rtφt ,

where each φt lies in Vπ,q(cπ). By (30) we infer

ρφ(m) =
∑

t|cc−1
π

ρRtφt(m) =
∑

t|cc−1
π

ρφt (mt−1) , m ⊆ o ,

so that we can focus our attention to the case when c = cπ, i.e. when φ ∈ Vπ,q(cπ) is
a newform. For each nonzero ideal m ⊆ o the Hecke operator Tcπ (m) acts on Vπ(cπ)
by a scalar λπ(m). The function λπ satisfies

λπ(m)λπ(n) =
∑

a|gcd(m,n)

ωπ(a)λπ(mna−2) , (31)

and
λπ(m) = ωπ(m)λ̄π(m) , gcd(m, cπ) = o , (32)

where ωπ : I(K) → C is defined as follows: if a ∈ I(K) is coprime to cπ then
ωπ(a) := ω(a) where a ∈ A×fin is any finite idele representing a with ap = 1 for
p | cπ, otherwise ωπ(a) := 0. In particular, λπ is multiplicative on the set of nonzero
integral ideals. The non-archimedean analogue of (11) is

λπ(m) �ε (Nm)θ+ε, θ := 1/9 , (33)
for any ε > 0, see [KiS]. It follows, as stated after (17), that each Vπ,q(cπ) is at most
one-dimensional, and in fact

ρφ(m) =
λπ(m)√Nm

ρφ(o) , m ⊆ o, φ ∈ Vπ,q(cπ) .

To maintain this identity we define λπ(a) to be zero for any nonintegral a ∈ I(K).
Comparing with (30) we see that for φ ∈ Vπ,q(cπ) we have

φ

((
y x
0 1

))
=

∑
r∈K×

λπ(ryfin)√N (ryfin)
Wφ(ry∞)ψ(rx) , y ∈ A×, x ∈ A , (34)
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where
Wφ(y) = ρφ(o)επ(sgn(y))W̃q/2,νπ

(y) , y ∈ K×
∞ , φ ∈ Vπ,q(cπ) . (35)

An intrinsic definition of Wφ becomes apparent upon choosing yfin = (1, 1, . . . ) and
xfin = (0, 0, . . . ) in (34) and picking by orthogonality and vol(K\A) = 1 the term
corresponding to r = 1:

Wφ(y) :=
∫

K\A
φ

((
y x
0 1

))
ψ(−x)dx , y ∈ K×

∞. (36)

We have verified (34) and (36) for pure weight newforms φ ∈ Vπ,q(cπ) but then, by
linearity, it extends to all smooth vectors φ ∈ V∞π (cπ). Using also (25), we obtain
a linear map from V∞π (cπ) to a dense subspace of L2(K×∞, d×y) given by φ �→ Wφ.
We will prove in section 2.9 that

〈φ1, φ2〉 = Cπ〈Wφ1 ,Wφ2〉 (37)
for some positive constant Cπ depending only on π. It follows that the map φ �→ Wφ

extends to a vector space isomorphism Vπ(cπ) → L2(K×∞, d×y), called the (archime-
dean) Kirillov map of π, and Lemma 3 below shows that it is essentially an isometry
(i.e. Cπ ≈ 1). In particular, (34) and (37) hold for all φ ∈ Vπ(cπ).

Now let c ⊆ cπ be any ideal. It will be important to investigate in detail vectors
in the larger space Vπ(c), classically called “oldforms”. The proofs of the following
facts depend partly on the theory of Eisenstein series that we will develop in later
sections (independently of the present statements, of course).

As mentioned earlier, the decomposition (15) is in general not orthogonal. How-
ever, by a Gram–Schmidt orthogonalization process based on (80) below, we find
for each pair of integral ideals (s, t) with s | t | cc−1

π complex numbers αt,s such that

R(t) :=
∑
s|t

αt,sRs : Vπ(cπ) ↪→ Vπ(c) , t | cc−1
π , (38)

are isometric embeddings with pairwise orthogonal images, and R(o) is the identical
inclusion map. This yields an orthogonal decomposition

Vπ(c) =
⊕
t|cc−1

π

R(t)Vπ(cπ) , for any c ⊆ cπ , (39)

and an extension of the Kirillov map (36) to each subspace R(t)Vπ(cπ). Namely, by
(34) every φ ∈ R(t)Vπ(cπ) has a Fourier expansion

φ

((
y x
0 1

))
=

∑
r∈K×

λ
(t)
π (ryfin)√N (ryfin)

Wφ(ry∞)ψ(rx) , y ∈ A×, x ∈ A , (40)

where
Wφ := W(R(t))−1φ and λ(t)

π (m) :=
∑

s|gcd(t,m)

αt,s(N s)1/2λπ(ms−1) . (41)

It is clear that (37) holds true when extended to φ1, φ2 ∈ R(t)Vπ(cπ), and Lemma 3
below shows that

C(π)−ε‖φ‖ �K,ε ‖Wφ‖ �K,ε C(π)ε‖φ‖ , φ ∈ R(t)Vπ(cπ) , (42)
with implied constants depending only on K and ε.
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Remark 6. If c is squarefree, then the orthogonalization can be carried out com-
pletely explicitly by combining (80) below with the Hecke relations (31)–(32) above
(see e.g. [ILS, Prop. 2.6]), and one obtains αt,s �ε (N ts−1)θ−1/2+ε. For general
ideals c, this seems much harder.

2.6 Parametrizing Eisenstein series. For simplicity we shall assume in the
following three sections that the central character ω is trivial, since this is all we
need for our purposes. The general case, however, is quite similar. We can assume
that χ1 = χ and χ2 = χ−1, where χ is a Hecke character which is nontrivial on
Kdiag
∞,+. Let us denote the conductor of χ by cχ, and for an arbitrary place v of

K let us write χv for the restriction of χ to the quasifactor K×
v of A×. Note that

cχp = cχop for each prime p. For every prime p we fix a prime element �p ∈ op (i.e.
vp(�p) = 1) and we shall use the convention that vp(0) = ∞. For the purpose of
this paper we could get by with less information than provided in this section, but
we have preferred to give rather precise results.
Lemma 1. The conductor of H(χ, χ−1) is c2χ. More precisely, let p be a prime,
� := �p, r := vp(d), m := vp(cχ). For any integer n � 0 the complex vector space
Hp(χ, χ−1, pn) has dimension max(0, n − 2m + 1). For n � 2m an orthogonal basis
is {ϕp,j | 0 � j � n − 2m}, where the functions ϕp,j : K(op) → C are defined as
follows.

• When m = 0 (i.e. χ is unramified at p) and k =
( ∗ ∗

b�r ∗
)

∈ K(op),

ϕp,0(k) := 1 ; ϕp,1(k) :=

{
(Np)−1/2, vp(b) = 0 ,

−(Np)1/2, vp(b) � 1 ;
(43)

and for j � 2,

ϕp,j(k) :=

⎧⎪⎪⎨⎪⎪⎩
0 , vp(b) � j − 2 ,

−(Np)j/2−1, vp(b) = j − 1 ,

(Np)j/2
(
1 − 1

Np

)
, vp(b) � j .

(44)

• When m > 0 (i.e. χ is ramified at p) and k =
(

a ∗
b�r ∗

)
∈ K(op),

ϕp,j(k) :=

{
(Np)(m+j)/2χp(ab−1) , vp(b) = m + j ,

0 , vp(b) �= m + j .
(45)

Remark 7. The basis exhibited above is close to orthonormal. Using[K(op) : K((�j))
]

= (Np)j
(

1 +
1
Np

)
, j � 1 ,

it is straightforward to see that

1 − 1
Np

� ‖ϕp,j‖ � 1 , j � 0 , (46)

with equality on the right-hand side for j = 0.
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Proof. For the argument below it is useful to keep in mind that for any nonzero
ideal c ⊆ op

K(c) =
(

�r 0
0 1

)−1

K0(c)
(

�r 0
0 1

)
, K0(c) :=

{(
a b
c d

)
∈ GL2(op)

∣∣∣ c ∈ c

}
.

In particular, K(c) has the same measure as K0(c).
We can regard Hp(χ, χ−1, pn) as a subset of functions on N(op)\K(op)/K((�n))

with N(op) :=
{
( 1 x

0 1 ) | x ∈ d−1
p

}
. A set of double coset representatives for

N(op)\K(op)/K((�n)) is given by any collection{(
a ∗

�r+j ∗
)

∈ K(op)
∣∣∣ 0 � j � n , a ∈ o×p , a mod �min(j,n−j)

}
,

where for given a and j any choice of ∗ is admissible. To see this, we observe first
that by [Sh3, Proof on p. 25 and Errata on p. 269], this set has the right cardinality.
Moreover, two such representatives determine different double cosets. Indeed, mul-
tiplying a representative from the left by elements of N(op) and from the right by
elements of K((�n)) does not change the valuation of the lower left entry if j < n,
and it can at most increase the valuation if j = n, but all representatives have j � n,
so we conclude that different values of j correspond to different double cosets. In
addition, if

( a ∗

r+j ∗

)
and

(
a′ ∗


r+j ∗
)

are in the same double coset, then(
a′ ∗

�r+j ∗
)−1 (

1 x
0 1

)(
a ∗

�r+j ∗
)

∈ K(
(�n)

)
,

whence a′�j − a�j − x�2j ∈ (�n). This forces a = a′ if 0 < j < n, whereas in the
remaining cases j = 0 and j = n only a = a′ = 1 is allowed.

By a variant of the argument above we see that each
(

a b
c d

) ∈ K(op) is represented
by some

(
a′ ∗


r+j ∗
) ∈ K(op) with a′ ∈ o×p and j = min(vp(c) − r, n). Now for any

ϕ ∈ Hp(χ, χ−1, pn) the transformation rule (4) shows that

ϕ

((
a b
c d

))
= ϕ

((
a′ ∗

�r+j ∗
))

= χp(a′)ϕ
((

1 ∗
�r+j ∗

))
, a ∈ o×p ,

hence ϕ is determined by the n + 1 values ϕ
(( 1 ∗


r+j ∗
))

with 0 � j � n. By
the discussion of representatives we can further see that ϕ

(( 1 ∗

r+j ∗

)) �= 0 implies
χp(a′) = 1 for any a′ ∈ 1 + (�min(j,n−j)), i.e. m � j � n − m. In other words, ϕ is
determined by the n− 2m + 1 values ϕ

(( 1 ∗

r+j ∗

))
with m � j � n−m, because the

rest of the n+1 values are zero. The dependence on these values is linear, hence the
dimension of Hp(χ, χ−1, pn) is at most n− 2m + 1. For m = 0, it is straightforward
to check that the n + 1 functions ϕp,j for 0 � j � n defined by (43) and (44) lie
in Hp(χ, χ−1, pn) and, by [K(op) : K((�j))] = (Np)j

(
1 + 1

Np

)
for j � 1 they are

pairwise orthogonal. For m > 0, it is straightforward to check that the n − 2m + 1
functions ϕp,j for 0 � j � n− 2m defined by (45) lie in Hp(χ, χ−1, pn) and they are
pairwise orthogonal because their supports are pairwise disjoint. Any orthogonal
system is linearly independent, hence the proof of the lemma is complete. �

The lemma can be combined with (20) to obtain an orthogonal basis of H(χ, χ−1, c)
for each ideal c ⊆ c2χ. Namely, for any t | cc−2

χ and any q ∈ (2Z)d, we define
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ϕ(t,q) : K → C to be the tensor product of the local functions ϕ
(t,q)
∞ (k(ϑ)) := eiqϑ

and ϕ
(t,q)
p := ϕp,vp(t) as in the lemma. These global functions form an orthog-

onal basis of H(χ, χ−1, c); extending them to GL2(A) by (3), the corresponding
vectors φ(t,q) := E(ϕ(t,q)) form an orthogonal basis of Vχ,χ−1(c) by (21) and (7).
We obtain isometric embeddings R(t) : Vχ,χ−1(c2χ) ↪→ Vχ,χ−1(c) by defining R(t) :
φ(o,q)/‖φ(o,q)‖ �→ φ(t,q)/‖φ(t,q)‖ for all q ∈ (2Z)d. These yield an orthogonal decom-
position

Vχ,χ−1(c) =
⊕
t|cc−2

χ

R(t)Vχ,χ−1(c2χ) , for any c ⊆ c2χ , (47)

similarly as in the cuspidal case, see (39). In the next section we shall exhibit for
each nonzero ideal t ⊆ o a vector space isomorphism R(t)Vχ,χ−1(c2χ) → L2(K×∞, d×y),
written as φ �→ Wφ, such that every φ ∈ R(t)Vχ,χ−1(c2χ) has a Fourier expansion with
similar features as in the cuspidal case (cf. (40)–(42)):

φ

((
y x
0 1

))
= ρφ,0(y)+

∑
r∈K×

λ
(t)
χ,χ−1(ryfin)√N (ryfin)

Wφ(ry∞)ψ(rx) , y ∈ A×, x ∈ A , (48)

where
λ

(t)
χ,χ−1(m) �K,ε

(N gcd(t,m)
)
(Nm)ε, m ⊆ o , (49)

‖Wφ‖ �K,ε (N t)εC(χ, χ−1)ε‖φ‖ , φ ∈ R(t)Vχ,χ−1(c2χ) . (50)

Next we prove a density result about the Eisenstein spectrum.
Lemma 2. For a nonzero ideal c ⊆ o write c = c21c2 with c2 squarefree. In the
notation of (18) and (22) we have, for any X � 1,∫


∈Eω(c)
|ν�,j|�X

1 d� �K Xd(N c1) .

Proof. We need to estimate the measure of the set of Hecke character pairs {χ, χ−1}
for which c ⊆ cχ,χ−1 and χ = | · |sj with some sj ∈ i[−X,X] on the j-th component
of K×

∞,+. We write χ = χ∞χfin with the obvious convention. By Lemma 1, cχ must
divide c1, hence the number of possibilities for the restriction of χfin to Ω =

∏
p o×p is

at most ϕ(c1). We fix therefore any character ξ : Ω → S1 and estimate the measure
of the set of Hecke character pairs {χ, χ−1} for which χfin agrees with ξ on Ω and
(s1, . . . , sd) ∈ i[−X,X]d. If this set is empty, we are done, otherwise we fix some
element χ0 in it. Any χ in the set has the feature that χ̃ := χχ−1

0 is trivial on Ω,
moreover χ̃ = | · |sj on the j-th component of K×

∞,+ with (s1, . . . , sd) ∈ iB, where
B := [−2X, 2X]d. As χ̃ is also trivial on K×, its infinite part χ̃∞ is trivial on the set
of totally positive units U+ embedded in K×

∞,+. Let {u1, . . . , ud−1} be a generating
set of U+, and put

M :=

⎛⎜⎜⎜⎝
1 · · · 1

log uσ1
1 · · · log uσd

1
...

...
log uσ1

d−1 · · · log uσd
d−1

⎞⎟⎟⎟⎠ ∈ Rd×d.
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Then s ∈ iB, regarded as a column vector, satisfies Ms ∈ iΛ(y), where y ∈ [−2X, 2X]
is as in (19) and Λ(y) := {yd} × (2πZ)d−1 is a lattice in an affine hyperplane of Rd.
Note that M is non-singular and depends only the field K, hence by the finiteness
of K×K×

∞,+Ω\A× it suffices to show that∫ 2X

−2X
#

(
Λ(y) ∩ MB)

dy �K Xd.

The integrand is �K Xd−1, hence the required bound follows. �

2.7 Explicit Fourier expansion of Eisenstein series. The aim of this section
is to verify the relations (48)–(50). In particular, we need to define Wφ : K∞ → C

for each φ ∈ R(t)Vχ,χ−1(c2χ) and identify the coefficients λ
(t)
χ,χ−1(m) for nonzero ideals

m ⊆ o. By linearity and orthogonality, we can assume that φ is one of the pure
tensors φ(t,q) := E(ϕ(t,q)) ∈ R(t)Vχ,χ−1(c2χ) introduced after the proof of Lemma 1.
The superscript indicates a nonzero ideal t ⊆ o and a vector q ∈ (2Z)d: we shall
keep it fixed and drop it from the notation for simplicity.

First of all we observe that (46) implies

(N t)−ε �K,ε ‖ϕ‖ � 1 (51)

for any ε > 0. We insert the definition (6) into the Fourier decomposition (strictly
speaking, we should extend ϕ to a section ϕ(s) ∈ H(s), perform the calculation for
�s > 1/2, and deduce the result for �s � 0 by meromorphic continuation; we also
note that vol(K\A) = 1 by our choice of Haar measures)

E

(
ϕ,

(
y x
0 1

))
=

∑
r∈K

∫
K\A

E

(
ϕ,

(
y ξ
0 1

))
ψ(−rξ)dξ ψ(rx) ,

and use the fact that by the Bruhat decomposition a complete set of representatives
of P (K)\GL2(K) is given by ( 1 0

0 1 ) and the matrices
(

0 −1
1 ∗

)
in GL2(K). We obtain

E

(
ϕ,

(
y x
0 1

))
= ϕ

((
y 0
0 1

))
+

∑
r∈K

∫
A

ϕ

((
0 −1
y ξ

))
ψ(−rξ)dξ ψ(rx) .

On the right-hand side r = 0 contributes to the constant term of E(ϕ). From now on
we shall assume that r ∈ K×. We define δ ∈ A× by δ∞ := (1, . . . , 1) and δp := �

vp(d)
p

for each prime p. By the change of variable ξ → yδ−1ξ the integral over A becomes,
using also (3) and χ(r) = |r| = 1,

χ2(δ)χ−1(ry)|ry|1/2
∫

A
ϕ

((
0 −δ−1

δ ξ

))
ψ(−ryδ−1ξ)dξ . (52)

As ϕ is a pure tensor, we can write this expression as a product of local factors in
a natural fashion.

By our choice of the Haar measure on K∞, the infinite part of (52) is |DK |−1/2

times the product over 1 � j � d of the following expressions:

χj(sgn(ry))|rσjyj|1/2−sj

∫ ∞

−∞
ϕj

((
0 −1
1 ξ

))
e(−rσjyjξ)dξ , (53)
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where sj ∈ iR denotes the unique exponent such that χj = | · |sj on R>0 (cf. notation
following (18)). Using the Iwasawa decomposition(

0 −1
1 ξ

)
=

(
1√

ξ2+1
−ξ√
ξ2+1

0
√

ξ2 + 1

)⎛⎝ ξ√
ξ2+1

−1√
ξ2+1

1√
ξ2+1

ξ√
ξ2+1

⎞⎠ , (54)

we see that

ϕj

((
0 −1
1 ξ

))
=

χ−1
j (ξ2 + 1)√

ξ2 + 1

(
ξ − i√
ξ2 + 1

)qj

=
1

(ξ2 + 1)1/2+sj

(
ξ − i

ξ + i

)qj/2

,

where we used that qj is even. Therefore (53) equals

χj(sgn(ry))|rσjyj|1/2−sj

∫ ∞

−∞

e(−rσjyjξ)
(ξ2 + 1)1/2+sj

(
ξ − i

ξ + i

)qj/2

dξ .

The integral on the right-hand side remains unchanged when rσjyj and qj are re-
placed by |rσjyj| and sgn(rσjyj)qj, hence by [BrMo, (2.16)] we deduce (after the
change of variable ξ → −ξ) that the previous display equals

χj(sgn(ry))(−1)
qj
2 π

1
2
+sj

Wsgn(rσj yj)
qj
2

,sj
(4π|rσj yj|)

Γ
(1

2 + sj + sgn(rσjyj)
qj

2

) .

Now we can combine (18), (24), (29) to conclude that the infinite part of (52) can
be written as

η∞χ∞
(
sgn(ry∞)

)
W̃q/2,νχ,χ−1

(ry∞) , (55)

where η∞ = η∞(q, χ∞) ∈ C is a constant of modulus πd/2|DK |−1/2.
We now calculate the local factor of (52) corresponding to a prime p. For sim-

plicity we shall omit the subscripts in �p and δp. The calculation is based on the
following Iwasawa decomposition for ξ �= 0:

(
0 −δ−1

δ ξ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 0
0 1

)(
0 −δ−1

δ ξ

)
, vp(ξ) � 0 ,(

ξ−1 −δ−1

0 ξ

)(
1 0

δξ−1 1

)
, vp(ξ) < 0 .

(56)

We write m := vp(cχ) � 0, n := vp(ry) � 0, and we recall that ϕp = ϕp,vp(t) is as in
Lemma 1.

We first consider the case when m = 0, i.e. χp is unramified. We assume that
vp(t) = 0, then ϕp is constant 1 on K(op), and by (56) we have∫

Kp

ϕp

((
0 − δ−1

δ ξ

))
ψ(−ryδ−1ξ)dξ

=
∫

vp(ξ)�0
ψ(−ryδ−1ξ)dξ +

∫
vp(ξ)<0

χ−2
p (ξ)|ξ|−1ψ(−ryδ−1ξ)dξ

= 1 +
∞∑

j=1

χp(�2j)(Np)−j

∫
vp(ξ)=−j

ψ(−ryδ−1ξ)dξ .
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We calculate the inner integral by observing

∫
vp(ξ)=−j

ψ(−ryδ−1ξ)dξ =

⎧⎪⎪⎨⎪⎪⎩
(Np)j

(
1 − 1

Np

)
, 1 � j � n ,

−(Np)n, j = n + 1 ,

0 , j � n + 2 .

(57)

We obtain∫
Kp

ϕp

((
0 −δ−1

δ ξ

))
ψ(−ryδ−1ξ)dξ = 1 − χp(�2n+2)

Np
+

(
1 − 1

Np

) n∑
j=1

χp(�2j)

=
(

1 − χp(�2)
Np

) n∑
j=0

χp(�2j) .

We proved that for χp unramified and vp(t) = 0 the local factor of (52) corresponding
to p equals

|ry|1/2
p χ2

p(δ)
(

1 − χ2
p(�)
Np

) n∑
j=0

χp(�2j−n) . (58)

For vp(t) = 1 a similar calculation based on (43) and (56) shows that∫
Kp

ϕp

((
0 −δ−1

δ ξ

))
ψ(−ryδ−1ξ)dξ

=
1 + χp(�2n+2)

(Np)1/2 − (Np)1/2
(

1 − 1
Np

) n∑
j=1

χp(�2j) ,

where we understand any empty sum as zero. If χ2
p(�) �= −1, then we con-

clude that the local factor of (52) corresponding to p has absolute value equal to
|1 + χ2

p(�)|(Np)−1/2 for n = 0 and not exceeding (n + 1)(Np)(1−n)/2 in general.
If χ2

p(�) = −1, then we conclude that the local factor of (52) corresponding to p

equals

|ry|1/2
p χ2

p(δ)χ
−1
p (�)(Np)1/2

(
1 − χ2

p(�)
Np

) n−1∑
j=0

χp(�2j−n+1) , (59)

an expression very similar to (58). For vp(t) � 2 a similar calculation based on (44)
and (56) shows that∫

Kp

ϕp

((
0 −δ−1

δ ξ

))
ψ(−ryδ−1ξ)dξ

= −χp

(
�2vp(t)−2)(Np)−vp (t)/2

∫
vp(ξ)=1−vp(t)

ψ(−ryδ−1ξ)dξ

+
(

1 − 1
Np

) ∞∑
j=vp(t)

χp(�2j)(Np)vp (t)/2−j

∫
vp(ξ)=−j

ψ(−ryδ−1ξ)dξ .

Using (57), we conclude that the local factor of (52) corresponding to p vanishes for
n � vp(t)−3, has absolute value equal to (Np)−1 for n = vp(t)−2 and not exceeding
(n − vp(t) + 3)(Np)(vp (t)−n)/2 for n � vp(t) − 1.
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We turn to the case when m > 0, i.e. χp is ramified. We combine (45) with (56)
to see that the local factor of (52) corresponding to p equals

χ2
p(δ)χ

−1
p (ry)|ry|1/2

p (Np)(m+vp (t))/2
∫

vp(ξ)=−m−vp (t)
χ−2

p (ξ)|ξ|−1χp(ξ)ψ(−ryδ−1ξ)dξ .

By the change of variable ξ → (ry)−1ξ this is the same as

χ2
p(δ)(Np)(n−m−vp (t))/2

∫
vp(ξ)=n−m−vp(t)

χ−1
p (ξ)ψ(−δ−1ξ)dξ .

For n = vp(t) the integral is a Gauß sum of absolute value (Np)m/2. For n < vp(t) we
pick z ∈ p−1o×p such that ψ(δ−1z) �= 1. Changing ξ to ξ + z = ξ(1 + ξ−1z) does not
affect the value χ−1

p (ξ) and therefore introduces an additional factor ψ(−δ−1z) �= 1,
hence the integral vanishes. For n > vp(t) we pick z ∈ 1 + pm−1o×p if m > 1 and
z ∈ o×p if m = 1 such that χp(z) �= 1. Changing ξ to ξz = ξ − ξ(1 − z) does not
affect the value ψ(−δ−1ξ) and therefore introduces an additional factor χ−1

p (z) �= 1,
hence again the integral vanishes. We proved that for χp ramified the local factor
of (52) corresponding to p equals{

ηp , vp(ry) = vp(t) ,

0 , vp(ry) �= vp(t) ,
(60)

where ηp = ηp(χp,�p) ∈ C is a constant of modulus 1.
By the above discussion (in particular by (52), (55), (58), (59), (60)), we can see

that the Fourier coefficients ρE(ϕ)(m) in (30) are supported on ideals m divisible by

tχ :=
∏

p|t,p�cχ

vp(t)=1
χ2

p(
p)=−1

p
∏

p|t, p�cχ

vp(t)�3

pvp(t)−2
∏

p|t,p|cχ

pvp(t), (61)

and ∣∣ρE(ϕ)(tχ)
∣∣ =

πd/2|DK |−1/2∣∣L(tt−1
χ )(1, χ2)

∣∣(N tt−1
χ )1/2Fχ,t

, (62)

where L(tt−1
χ )(·, χ2) denotes a partial Hecke L-function (note that L(s, χ2) is holo-

morphic and nonzero at s = 1, because χ2 is a nontrivial Hecke character), and

Fχ,t :=
∏

p|t,p�cχ

vp(t)=1
χ2

p(
p)�=−1

|1 + χ2
p(�p)|−1. (63)

For convenience we note that
tt−1

χ =
∏

p|t,p�cχ

vp(t)=1
χ2

p(
p)�=−1

p
∏

p|t,p�cχ

vp(t)�2

p2,

so that for p � cχ the relation p � tt−1
χ is equivalent to p | t, vp(t) = 1, χ2

p(�p) = −1.
The coefficients ρE(ϕ)(m) enjoy the property

ρE(ϕ)(mtχ) =
λχ,t(m)√Nm

ρE(ϕ)(tχ) , m ⊆ o , (64)
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where λχ,t is a multiplicative function on nonzero integral ideals satisfying the iden-
tity

λχ,t(m) =

{∑
ab=mχ(ab−1) , gcd(m, tt−1

χ cχ) = o ,

0 , gcd(m, cχ) �= o ,

and the general bound

|λχ,t(m)| � τ(m)
∏

p|t,p|m,p�cχ

vp(t)=1
χ2

p(
p)�=−1

Np

|1 + χ2
p(�p)|

∏
p|t, p|m,p�cχ

vp(t)�2

(Np)2

� Fχ,tτ(t)
(N (tt−1

χ )
)1/2(N gcd(tt−1

χ ,m)
)
τ(m) . (65)

We are now ready to write down explicitly the Fourier expansion (30) for our
specific φ = E(ϕ) ∈ R(t)Vχ,χ−1(c2χ) introduced at the beginning of this section. We
have

ρE(ϕ),0(y) = ϕ

((
y 0
0 1

))
+

∫
A

ϕ

((
0 −1
y ξ

))
dξ , y ∈ A× , (66)

and
εχ,χ−1(sgn(y)) = χ∞(sgn(y)) , y ∈ K×

∞ . (67)

With the notation (61), (63) and (64) we define

λ
(t)
χ,χ−1(m) :=

{
F−1

χ,t τ(t)−1(N t)−1/2(N tχ)λχ,t(mt−1
χ ) , tχ | m ,

0 , otherwise ,
(68)

and

WE(ϕ)(y) := Fχ,tτ(t)
(N (tt−1

χ )
)1/2

ρE(ϕ)(tχ)εχ,χ−1(sgn(y))W̃q/2,νχ,χ−1
(y) , y ∈ K×

∞ .

(69)
Then (48) follows from (30), (64), (68), (69); (49) follows in slightly sharper form
from (65), (68); (50) follows from (7), (13), (25), (51), (62), (69).

It is worthwhile to review the special case when c = c2χ. Then t = tχ = o and
φ = E(ϕ) spans the space Vχ,χ−1,q(c2χ) of newforms of pure weight q. We can define

Wφ intrinsically by (36), and the coefficients λ
(t)
χ,χ−1 in this case specialize to the

Hecke eigenvalues given for m ⊆ o by

λχ,χ−1(m) =

{∑
ab=mχ(ab−1) , gcd(m, cχ) = o ,

0 , otherwise .

By (25) and the above discussion, newforms φ1, φ2 ∈ Vχ,χ−1(c2χ) satisfy the analogue
of (37),

〈φ1, φ2〉 = Cχ,χ−1〈Wφ1 ,Wφ2〉
with some positive constant Cχ,χ−1 �K,ε C(χ, χ−1)−ε depending only on χ.

2.8 The constant term of a certain Eisenstein series. For a Rankin–
Selberg type computation in the next section we need to understand in more detail
the constant term of a certain Eisenstein series. For s ∈ C let χ1, χ2 be the qua-
sicharacters defined by χ1(y) := |y|s, χ2(y) := |y|−s for y ∈ A×. For a nonzero ideal
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c ⊆ o let us define ϕ = ϕ(s, g) ∈ H(χ1, χ2) by

ϕ

(
s,

(
a x
0 b

)
k

)
:=

{∣∣a
b

∣∣1/2+s
, k ∈ SO2(K∞) ×K(c) ,

0 , k ∈ K − (
SO2(K∞) ×K(c)

)
.

(70)

The constant term of E(ϕ(s), g) equals (cf. (66) and [GJ, (5.3)])

Econst
(
ϕ(s), g

)
:= ϕ(s, g) +

∫
A

ϕ

(
s,

(
0 −1
1 ξ

)
g

)
dξ , g ∈ GL2(A) . (71)

The aim of this section is to prove that∫
A

ϕ

(
s,

(
0 −1
1 ξ

)
g

)
dξ =

ΛK(2s)
ΛK(1 + 2s)

H(s, g) , (72)

where
ΛK(s) := |DK |s/2(π−s/2Γ(s/2)

)d
∏
p

(
1 − (Np)−s

)−1
, �s > 1 ,

is the completed Dedekind zeta-function, and H(s, g) is a meromorphic function
whose zeros and poles lie on �s = 0 and �s = −1/2, respectively, and which is
constant at s = 1/2:

H(1/2, g) = |δ|(N c)−1
∏
p|c

(
1 + (Np)−1)−1 = |DK |−1[K(o) : K(c)

]−1
.

This is a general feature (cf. [Bu, Prop. 3.7.5] and [GJ, p. 277]), but we preferred to
prove it by direct calculation.

In order to understand the integral in (71), we define δ ∈ A× as in the previous
section, and then using the Iwasawa and Bruhat decompositions we write

g =
(

a x
0 b

)
h , x ∈ A , a, b ∈ A×, h ∈ GL2(A) ,

where h∞ ∈ SO2(K∞), hp ∈ K(op) for p � c, and hp ∈ GL2(Kp) is either ( 1 0
0 1 ) or

of the form
(

0 −δ−1
p

δp ηp

)
for p | c. After simple manipulations the integral in (71)

becomes ∣∣∣a
b

∣∣∣1/2−s |δ|2s

∫
A

ϕ

(
s,

(
0 −δ−1

δ ξ

)
h

)
dξ .

The new integral decomposes as a product of local factors in a natural fashion, using
that ϕ is the tensor product of its restrictions ϕ∞ and ϕp to the various quasifactors
of GL2(A).

The infinite part of the new integral equals, by our choice of the Haar measure
on K∞, the right SO2(K∞)-invariance of ϕ∞(s, · ), the Iwasawa decomposition (54),
and the formula [GrR, 3.251.2],

|DK |−1/2
(∫ ∞

−∞

dξ

(ξ2 + 1)1/2+s

)d

= |DK |−1/2
(

Γ(1/2)Γ(s)
Γ(1/2 + s)

)d

.

We now calculate the local factor corresponding to a prime p. For simplicity we
shall omit the subscripts in δp and ηp. If p � c, then ϕp(s, · ) is right K(op)-invariant,
hence by the Iwasawa decomposition (56) the local factor corresponding to p equals∫

Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

))
dξ =

∫
vp(ξ)�0

1 dξ +
∫

vp(ξ)<0
|ξ|−1−2s dξ
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= 1 +
∞∑

j=1

(Np)−j(1+2s)(Np)j
(

1 − 1
Np

)

=
1 − (Np)−1−2s

1 − (Np)−2s
.

If p | c then depending on the shape of hp the local factor is either∫
Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

))
dξ (73)

or ∫
Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

)(
0 −δ−1

δ η

))
dξ . (74)

The integral (73) equals, by the Iwasawa decomposition (56),∫
Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

))
dξ =

∫
vp(ξ)�−vp(c)

|ξ|−1−2s dξ

=
∞∑

j=vp(c)

(Np)−j(1+2s)(Np)j
(

1 − 1
Np

)

= (Np)−(2s)vp (c) 1 − (Np)−1

1 − (Np)−2s
.

If vp(η) � −vp(c), then by the right K(cp) invariance of ϕp(s, · ) the integral (74)
equals∫

Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

)(
0 −δ−1

δ η

))
dξ =

∫
Kp

ϕp

(
s,

(
0 −δ−1η

δη−1 ηξ − 1

)(
1 0

δη−1 1

))
dξ

= |η|1+2s

∫
Kp

ϕp

(
s,

(
0 −δ−1

δ η2ξ − η

))
dξ

= |η|2s−1(Np)−(2s)vp (c) 1 − (Np)−1

1 − (Np)−2s
,

where in the last step we combined the change of variable ξ → η−2(ξ + η) with our
previous result for (73). If vp(η) > −vp(c), then (74) equals∫

Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

)(
0 −δ−1

δ η

))
dξ =

∫
Kp

ϕp

(
s,

(−1 −δ−1η
δξ ηξ − 1

))
dξ

=
∫

Kp

ϕp

(
s,

(
0 −δ−1ξ−1

δξ ηξ − 1

))
dξ

=
∫

Kp

|ξ|−1−2sϕp

(
s,

(
0 −δ−1

δ η − ξ−1

))
dξ .

Using the change of variable ξ → (η − ξ)−1 and the Iwasawa decomposition (56) we
obtain∫

Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

)(
0 −δ−1

δ η

))
dξ =

∫
Kp

|η − ξ|2s−1ϕp

(
s,

(
0 −δ−1

δ ξ

))
dξ
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=
∫

vp(ξ)�−vp(c)
|η − ξ|2s−1|ξ|−1−2sdξ .

By vp(ξ) � −vp(c) < vp(η) we have |η − ξ| = |ξ|, hence by the change of variable
ξ → ξ−1∫

Kp

ϕp

(
s,

(
0 −δ−1

δ ξ

)(
0 −δ−1

δ η

))
dξ =

∫
vp(ξ)�−vp(c)

dξ

|ξ|2

=
∫

vp(ξ)�vp(c)
1 dξ = (Np)−vp(c).

This equation is also true for η = 0, because then |η − ξ| = |ξ| holds trivially.
Collecting the previous computations, we arrive at (72).

2.9 L-functions on GL2 and GL2 × GL2. Let (π, Vπ) be an irreducible cus-
pidal representation. Let χ be a Hecke character of conductor q. The twisted
L-function

L(s, π ⊗ χ) =
∑
m

λπ⊗χ(m)(Nm)−s, �s > 1 ,

can be continued to an entire function on C and satisfies a functional equation
relating s to 1 − s with analytic conductor (see (13))

C
(
π ⊗ χ ⊗ |det |s−1/2) 
π,χ∞ (N q)2

(
1 + |�s|)2

.

The Hecke eigenvalues λπ⊗χ(m) satisfy the bound (33) and the identity

λπ⊗χ(m) = λπ(m)χ(m) , gcd(m, qcπ) = o .

By [H, Th. 2.1] we can express L(1/2, π ⊗χ) as an essentially finite series: there is a
complex number η of modulus 1 and a smooth function V : (0,∞) → C with rapidly
decaying derivatives, both depending only on the archimedean parameters of π ⊗χ,
such that

L(1/2, π ⊗ χ) = Σ + ηΣ̄ , Σ :=
∑

{0}�=m⊆o

λπ⊗χ(m)√Nm
V

( Nm√
C(π ⊗ χ)

)
.

Together with a smooth partition of unity and standard bounds for λπ⊗χ at ramified
primes we obtain (cf. e.g. [BlHM, §5.1])

L(1/2, π ⊗ χ) �π,χ∞,ε (N q)ε max
Y �c(Nq)1+ε

∣∣∣∣ ∑
{0}�=m⊆o

λπ(m)χ(m)√Nm
V

(Nm

Y

)∣∣∣∣ , (75)

where c = c(π, χ∞, ε) > 0 is a constant and V : (0,∞) → C is a smooth function
supported on [1/2, 2] such that V (j)(y) �π,χ∞,j 1 for all for all j ∈ N0.

The Rankin–Selberg convolution L(s, π ⊗ π̃) (with π̃ the contragradient repre-
sentation) is, up to finitely many Euler factors at the primes dividing cπ, given
by

ζK(2s)
∑

{0}�=m⊆o

|λπ(m)|2
(Nm)s

.

It is an entire function of order 1 except for a simple pole at s = 1 and satisfies a
functional equation relating s to 1 − s, see e.g. [HoR, Rem. 1.2], and the references
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given there. By [HoR, Lem. b], the analytic conductor satisfies
C(π)−B � C(π ⊗ π̃) � C(π)B (76)

for some constant B depending only on K. By standard contour integration we
obtain ∑

Nm�x

∣∣λπ(m)
∣∣2 � C(π)B

′
x (77)

for x � 1 and some constant B′ depending only on K.
Let φ1, φ2 ∈ Vπ,q(cπ) be newforms of some weight q ∈ Zd and let t1, t2 ⊆ o be

nonzero ideals. For any integral ideal c divisible by t1cπ, t2cπ the vectors ψi := Rtiφi

lie in Vπ,q(c) (cf. (17)), and our aim is to express their inner product in terms of the
inner product of the Whittaker functions Wφi

. For this purpose we shall apply the
Rankin–Selberg unfolding technique to the function

F (s) :=
∫

GL2(K)Z(A)\GL2(A)
ψ1(g)ψ̄2(g)E

(
ϕ(s), g

)
dg ,

where ϕ(s, g) is defined by (70). It is known from the theory of Eisenstein series, that
E(ϕ(s), g) is meromorphic in s with all the singularities coming from the constant
term Econst(ϕ(s), g), more precisely from the integral in (71), see [GJ, §5]. The result
of the previous section shows that E(ϕ(s), g) has a pole at s = 1/2 with constant
residue

res
s=1/2

E
(
ϕ(s), g

)
=

CK

[K(o) : K(c)]
, CK :=

ress=1 ΛK(s)
2|DK |ΛK(2)

.

In particular,

res
s=1/2

F (s) = CK
〈Rt1φ1, Rt1φ2〉
[K(o) : K(c)]

. (78)

On the other hand, unfolding the integral we see (cf. [KniL1, Prop. 7.47] or [Bu,
p. 372–373]) that

F (s) =
∫

P (K)Z(A)\GL2(A)
ψ1(g)ψ̄2(g)ϕ(s, g)dg

=
∫

K×\A×

∫
K\A

∫
K
ψ1

((
y x
0 1

)
k

)
ψ̄2

((
y x
0 1

)
k

)
ϕ

(
s,

(
y x
0 1

)
k

)
dk dx

d×y

|y|

=
∫

K×\A×

∫
K\A

∫
SO2(K∞)×K(c)

ψ1

((
y x
0 1

)
k

)
ψ̄2

((
y x
0 1

)
k

)
|y|s− 1

2 dk dx d×y .

Since ψ1ψ̄2 is right SO2(K∞) ×K(c)-invariant, we obtain

F (s) =
1

[K(o) : K(c)]

∫
K×\A×

∫
K\A

ψ1

((
y x
0 1

))
ψ̄2

((
y x
0 1

))
|y|s− 1

2 dx d×y .

We choose any finite ideles ti ∈ A×fin representing the ideals ti, so that ψi(g) =

φi

(
g
(

t−1
i 0
0 1

))
. We insert the Fourier expansion (34), and integrate over x getting

F (s) =
(N t1t2)1/2

[K(o) : K(c)]

∫
K×\A×

∑
r∈K×

λπ(ryfint
−1
1 )λ̄π(ryfint

−1
1 )

N (ryfin)

Wφ1(ry∞)W̄φ2(ry∞)|y|s− 1
2 d×y
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=
(N t1t2)1/2

[K(o) : K(c)]

∫
A×

λπ(yfint
−1
1 )λ̄π(yfint−1

1 )
N (yfin)

Wφ1(y∞)W̄φ2(y∞)|y|s− 1
2 d×y,

=
(N t1t2)1/2

[K(o) : K(c)]

(∫
K×∞

Wφ1(y)W̄φ2(y)|y|s− 1
2 d×y

)(∫
A×

fin

λπ(yt−1
1 )λ̄π(yt−1

2 )

(N (y))
1
2
+s

d×y

)
.

We choose any t ∈ A×fin representing the ideal gcd(t1, t2), and we make the change
of variable y → yt1t2t

−1 in the second integral. We obtain

F (s) =
(N gcd(t1, t2))

1
2
+s

(N t1t2)s[K(o) : K(c)](∫
K×∞

Wφ1(y)W̄φ2(y)|y|s− 1
2 d×y

)(∫
A×

fin

λπ(yt′2)λ̄π(yt′1)

(N (y))
1
2
+s

d×y

)
,

where the finite ideles t′i := tit
−1 represent the coprime integral ideals ti :=

ti gcd(t1, t2)−1. We conclude

res
s= 1

2

F (s) =
〈Wφ1 ,Wφ2〉

(N t′1t
′
2)1/2[K(o) : K(c)]

res
s=1

∑
{0}�=m⊆o

λπ(mt′2)λ̄π(mt′1)
(Nm)s

,

whence by (78) also

〈Rt1φ1, Rt1φ2〉 =
〈Wφ1 ,Wφ2〉

CK(N t′1t′2)1/2 res
s=1

∑
{0}�=m⊆o

λπ(mt′2)λ̄π(mt′1)
(Nm)s

.

We now draw some useful consequences of this identity. First, combining the
special case t1 = t2 = o with (16), (25), and taking into account the ramified primes,
we arrive at (37) with some positive constant Cπ depending only on π which satisfies

(N cπ)−ε res
s=1

L(s, π ⊗ π̃) �K,ε Cπ �K,ε (N cπ)ε res
s=1

L(s, π ⊗ π̃). (79)

Second, comparing the special case with the general one, we infer (cf. [ILS, p. 73])

〈Rt1φ1, Rt2φ2〉 =
〈φ1, φ2〉

(N t′1t
′
2)1/2

∏
pν1‖t′1

( ∞∑
k=0

λπ(pk)λ̄π(pk+ν1)
(Np)k

)( ∞∑
k=0

|λπ(pk)|2
(Np)k

)−1

∏
pν2‖t′2

( ∞∑
k=0

λπ(pk+ν2)λ̄π(pk)
(Np)k

)( ∞∑
k=0

|λπ(pk)|2
(Np)k

)−1

. (80)

An important feature here is that the ratio of the two inner products is independent
of the weight q ∈ Zd. This independence is key to the existence of the operators
(38); it can also be verified directly by using the Maaß shift operators.

We are now ready to prove the following lemma.
Lemma 3. Let (π, Vπ) be an irreducible cuspidal representation of GL2(K)\GL2(A)
with unitary central character, and let φ ∈ Vπ(cπ). Then

C(π)−ε‖φ‖ �K,ε ‖Wφ‖ �K,ε C(π)ε‖φ‖ .

The implied constants are ineffective and depend only on K and ε.
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Proof. By (37) and (79) it remains to show

C(π)−ε �K,ε res
s=1

L(s, π ⊗ π̃) �K,ε C(π)ε.

For K = Q this is known from the work of Iwaniec [I2, Th. 2] (upper bound) and
Hoffstein–Lockhart [HoL] (lower bound). The same bounds are also available in the
number field case and can be obtained as follows: the upper bound follows verbatim
as in [I2, p. 72–73, especially the comment between (20) and (21)] once we have
the multiplicativity relation (31), and we know that L(s, π ⊗ π̃) is of order 1 and
holomorphic except for a simple pole at s = 1, and satisfies a suitable functional
equation with conductor satisfying (76). For the lower bound, [HoL, Prop. 1] to-
gether with (76) gives the desired bound. Note that L(s, π ⊗ π̃) has nonnegative
coefficients (which incidentally holds by [HoR, Lem. a] in a much more general con-
text). To verify the hypothesis “no Siegel zeros” for the application of this result,
we distinguish between two cases depending on whether ad2π is cuspidal or not.
In the first case, the absence of Siegel zeros follows from [B, Th. 5]. In the second
case, the discussion in [HoL, p. 180] shows that L(s, ad2π) factors into a Dirichlet
L-function with character associated to some quadratic extension K ′/K and a Hecke
L-function LK ′(s, χ), both with conductor bounded by �K C(π). For both factors,
we can bound possible Siegel zeros away from 1 by the theorem of Siegel–Brauer–
Stark (see [Fo] and [St]). �

2.10 Sobolev norms. The right action of GL2(K∞) on L2(GL2(K)\GL2(A), ω)
induces an action of its Lie algebra gl(K∞) on the subspace of differentiable func-
tions. We recall this action for the Lie subalgebra g := sl(K∞) generated by the
independent vectors

Hj :=
(

ej 0
0 −ej

)
, Rj :=

(
0 ej

0 0

)
, Lj :=

(
0 0
ej 0

)
, 1 � j � d ,

where ej = (0, . . . , 0, 1, 0, . . . , 0) with 1 at position j. The corresponding differential
operators are (cf. [Bu, Prop. 2.2.5])

dHj = −2yj sin(2ϑj)∂xj + 2yj cos(2ϑj)∂yj + sin(2ϑj)∂ϑj
, (81)

dRj = yj cos(2ϑj)∂xj + yj sin(2ϑj)∂yj + sin2(ϑj)∂ϑj
, (82)

dLj = yj cos(2ϑj)∂xj + yj sin(2ϑj)∂yj − cos2(ϑj)∂ϑj
. (83)

The action of g induces an action of its universal enveloping algebra U(g) by
higher-order differential operators. This action commutes with the spectral
decomposition (8), hence for each D ∈ U(g) and any sufficiently smooth
φ ∈ L2(GL2(K)\GL2(A), ω) decomposing as

φ =
∑
π∈Cω

φπ +
∑

χ2=ω

φχ +
∫
Eω

φ
 d�

with φπ ∈ Vπ, φχ ∈ Vχ, φ
 ∈ V
, it follows that (cf. [BlH2, (33)])

‖Dφ‖2 =
∑
π∈Cω

‖Dφπ‖2 +
∑

χ2=ω

‖Dφχ‖2 +
∫
Eω

‖Dφ
‖2d� . (84)
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We now define, for any μ ∈ N0 and any (sufficiently) smooth vector φ, the Sobolev
norm

‖φ‖Sμ :=
∑

ord(D)�μ

‖Dφ‖ ,

where D ranges over all monomials in Hj1, Rj2 , Lj3 of order at most μ in U(g).
Clearly,

‖φ‖2
Sμ 
μ

∑
ord(D)�μ

‖Dφ‖2,

therefore by (84) also

‖φ‖2
Sμ 
μ

∑
π∈Cω

‖φπ‖2
Sμ +

∑
χ2=ω

‖φχ‖2
Sμ +

∫
Eω

‖φ
‖2
Sμd� . (85)

Let (π, Vπ) be an automorphic representation of GL2(A) generated by a cusp form
of arbitrary central character ω or an Eisenstein series with trivial central character
ω = 1, i.e. one of Vπ with π ∈ Cω or Vχ,χ−1 with χ an arbitrary Hecke character which
is nontrivial on Kdiag

∞,+. Earlier we introduced for each ideal t ⊆ o an isometric embed-
ding R(t) : Vπ(cπ) ↪→ Vπ and a vector space isomorphism R(t)Vπ(cπ) → L2(K×∞, d×y),
written as φ �→ Wφ, which satisfy (39)–(42) and (48)–(50). Using that the right ac-
tions of GL2(K∞) and GL2(Afin) on Vπ commute, it is easy to see that U(g) acts on
each subspace R(t)Vπ(cπ) separately, which then induces an action on L2(K×∞, d×y).
Interestingly, this action is independent of t. Indeed, (81)–(82) show that Hj acts
by 2yj∂yj and Rj acts by 2πiyj . Then, the j-th Casimir element

−4Δj = H2
j + 2RjLj + 2LjRj = H2

j − 2Hj + 4RjLj (86)

acts by the scalar −4λπ,j (cf. (10) and [Bu, p. 153]), hence RjLj acts by −λπ,j+y2
j ∂

2
yj

and Lj acts by (2πi)−1(−λπ,jy
−1
j + yj∂

2
yj

). These formulae justify for any μ ∈ N0

and any 2μ times differentiable function W : K×∞ → C the definition of the Sobolev
norm

‖W‖Sμ :=
∑

ord(D)�μ

‖DW‖ ,

where D is as before, and the bound (cf. (12) and [V2, Lem. 8.4])

‖W‖Sμ �μ

(
max
1�j�d

λ̃π,j

)μ
‖W‖A2μ , (87)

where

‖W‖Aμ :=
∑

μ1+···+μd�μ
κ1�μ1,...,κd�μd

(∫
K×∞

∣∣∂κ1
y1

· · · ∂κd
yd

W (y)
∣∣2 d∏

j=1

(|yj | + |yj|−1)μjd×y

)1/2

.

(88)
Lemma 4. Let (π, Vπ) be an automorphic representation of GL2(K)\GL2(A) as
before, and let t ⊆ o be an ideal. Let a, b, c ∈ N0, 0 < ε < 1/4, and θ as in (11).
Let P ∈ C[x1, . . . , xd] be a polynomial of degree at most a in each variable, and
consider the differential operator D := P (y1∂y1 , . . . , yd∂yd

). Then for φ ∈ R(t)Vπ(cπ)
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and y ∈ K×∞ we have, using the notation (12),

DWφ(y)�a,b,c,P,K,ε(N t)ε(N cπ)ε(N λ̃π)−c‖φ‖Sd(5+a+b+2c)

d∏
j=1

|yj |1/2−θ−ε min
(
1, |yj |−b

)
.

Proof. To start with, let us fix q ∈ Zd and assume φ ∈ R(t)Vπ,q(cπ). By (25), (29),
(35), (41), (69) we have

|Wφ(y)| = ‖Wφ‖
∣∣W̃q/2,νπ

(y)
∣∣ , y ∈ K×

∞ , (89)

where by (42), (50), (13),

‖Wφ‖ �K,ε (N t)ε(N cπ)ε(N ν̃π)ε‖φ‖ .

In addition, (82)–(83) show that (Rj − Lj)φ = iqφ. Now we infer, using (27)–(29),
that

Wφ(y) �K,ε (N t)ε(N cπ)ε(N ν̃π)ε‖φ‖
d∏

j=1

(
ν̃π,j + |qj|

)1+θ(|yj|1/2−ε + |yj|1/2−θ−ε
)

�K,ε (N t)ε(N cπ)ε(N ν̃π)1+θ+ε

∥∥∥∥ d∏
j=1

(
1− (Rj −Lj)2

)
φ

∥∥∥∥ d∏
j=1

|yj |1/2−ε + |yj |1/2−θ−ε

(1 + |qj|)1−θ
.

For an arbitrary φ ∈ R(t)Vπ(cπ) with weight decomposition (cf. (16)–(17))

φ =
∑
q∈Zd

φq , φq ∈ R(t)Vπ,q(cπ) ,

we apply the operator D′ := ∏d
j=1

(
1−(Rj−Lj)2

)
on both sides obtaining the weight

decomposition

D′φ =
∑
q∈Zd

D′φq , D′φq = (1 + q2)φq ∈ R(t)Vπ,q(cπ) .

In particular, ‖D′φ‖2 =
∑

q∈Zd ‖D′φq‖2, hence the previous bound and Cauchy–
Schwarz yield

Wφ(y) �K,ε (N t)ε(N cπ)ε(N λ̃π)‖φ‖S2d

d∏
j=1

(|yj |1/2−ε + |yj|1/2−θ−ε
)
.

Depending on a, b, c ∈ N0 and y ∈ K×∞, we replace φ by D′′φ ∈ R(t)Vπ(cπ) with

D′′ :=
( ∏

1�j�d

(1/2 + H2
j + 2RjLj + 2LjRj)c+1

)( ∏
1�j�d
|yj |>1

Rb+1
j

)
P (H1, . . . ,Hd) ,

then we obtain the general bound of the lemma by combining (86) and |1/2−4λπ,j | >
λ̃π,j/5 for each 1 � j � d. �

Lemma 5. Let (π, Vπ) be an irreducible cuspidal representation of GL2(K)\GL2(A)
with unitary central character, and let φ ∈ Vπ(cπ) be such that ‖φ‖S3d exists. Then

‖φ‖∞ := sup
g∈GL2(A)

|φ(g)| �π,K ‖φ‖S3d .
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Remark 8. It is relatively easy to show that the implied constant depends poly-
nomially on C(π), and the order of the Sobolev norm could also be lowered easily.
However, it seems hard and would be interesting to find close to optimal bounds
for the sup-norm of an automorphic form in terms of the L2-norm (or some small
Sobolev norm) and the various parameters of π. For strong results in this direction
see the work of Bernstein and Reznikov [BeR].

Proof. Let us first assume that φ ∈ Vπ,q(cπ), i.e. φ is of pure weight q ∈ Zd. Let
g ∈ GL2(A), and let i1, . . . , ih ∈ A×fin be h finite ideles representing the ideal classes
of K. By strong approximation [Bu, Th. 3.3.1] there are γ ∈ GL2(K), g′ ∈ GL2(K∞),
and k ∈ K(o) such that

g = γ

(
g′ ×

(
ij 0
0 1

)
k

)
for some 1 � j � h. It follows from [Fr, p. 36 & p. 67] that there are elements
a1, . . . , a2dh ∈ GL2(K) regarded as elements of GL2(K∞) and some δ > 0 depending
only on K such that, for suitable z ∈ Z(K∞), γ′ ∈ SL2(o) regarded as an element
of SL2(K∞), and k′ ∈ SO2(K∞), we have

g′ = zγ′aj′

(
y′ x′

0 1

)
k′

for some 1 � j′ � 2dh and some
(

y′ x′
0 1

) ∈ P (K∞) with y′1, . . . , y
′
d > δ. Combining

with the previous display we obtain

g = zγγ′aj′

((
y′ x′

0 1

)
k′ × a−1

j′ γ′−1
(

ij 0
0 1

)
k

)
,

where z ∈ Z(K∞) is now regarded as an element of Z(A), and the first (resp.
second) occurrences of γ′ and aj′ are regarded as elements of GL2(A) (resp. of
GL2(Afin)). Here γγ′aj′ ∈ GL2(K), while a−1

j′ γ′−1
(

ij 0
0 1

)
k lies in a fixed compact

subset of GL2(Afin) depending only on K which can be covered by finitely many left
cosets of the open subgroup K(cπ). It follows that

g = zγ̃

(
y x
0 1

)
(k̃∞ × k̃fin)

for some γ̃ ∈ GL2(K), k̃ = k̃∞ × k̃fin ∈ SO2(K∞) ×K(cπ), and ( y x
0 1 ) ∈ P (A), where

y = y∞ × yfin is such that all coordinates of y∞ exceed δ and yfin takes values from
a finite set depending only on K and cπ. Thus the Fourier expansion (34) together
with (33), (89) and Lemma 3 gives

|φ(g)| =
∣∣∣∣φ((

y x
0 1

))∣∣∣∣ �
∑

r∈(y−1
fin )

r �=0

|λπ(ryfin)|√N (ryfin)

∣∣Wφ(ry∞)
∣∣

�π,K ‖φ‖
∑

r∈(y−1
fin )

r �=0

∣∣W̃q/2,νπ
(ry∞)

∣∣ ,
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where (y−1
fin ) = y−1

fin o is the fractional ideal corresponding to y−1
fin . We fix some

0 < ε < 1/20 and let

R1 :=
{

r ∈ (y−1
fin )

∣∣∣ |rσj | < δ−1(|qj | + |νπ,j| + 1
) d∏

j=1

(|rσj | + |qj |
)ε

}
,

R2 := (y−1
fin ) − R1 .

Using (26)–(29) and the property of y∞, we find∑
r∈R2
r �=0

∣∣W̃q/2,νπ
(ry∞)

∣∣ �π,K,ε 1

and ∑
r∈R1
r �=0

∣∣W̃q/2,νπ
(ry∞)

∣∣ �π,K #R1

d∏
j=1

(
1 + |qj |

)1+θ �π,K,ε

d∏
j=1

(
1 + |qj|

)2+θ+ε
.

By (82)–(83) we see now that for any φ ∈ Vπ,q(cπ) we have

‖φ‖∞ �π,K

∥∥∥∥ d∏
j=1

(1 + Rj − Lj)3φ
∥∥∥∥ d∏

j=1

(
1 + |qj|

)−2/3
.

Using Cauchy–Schwarz and Parseval we can infer for a general φ ∈ Vπ(cπ) that
‖φ‖∞ �π,K ‖φ‖S3d ,

assuming the right-hand side exists. �

2.11 Waldspurger’s theorem and generalizations. Let r ∈ o be a nonzero
squarefree integer, i.e. 0 � vp(r) � 1 for all prime ideals p ⊆ o. If χr denotes
the quadratic character associated to the extension K(

√
r)/K, the central value

L(1/2, π ⊗ χr) is related to the square of the r-th Fourier coefficient of a half-
integral weight Hilbert modular form. The prototype of such a theorem for K = Q
goes back to Waldspurger [W2] with refinements by Kohnen–Zagier [KoZ], [Ko]. For
an arbitrary totally real number field K, precise results of this type can be found for
example in [K, Th. 8.1] and [BaM, Th. 4.3]. Using these, one can turn a bound for
twisted central L-values into a bound for the Fourier coefficients of a half-integral
weight Hilbert modular form. An explicit statement of this phenomenon is [BaM,
Th. 1.5] which we recall below.

Let S̃L2 denote the metaplectic double cover of SL2, and let (π̃, Vπ̃) be an irre-
ducible cuspidal representation of S̃L2(K)\S̃L2(A) orthogonal to the theta series
generated by quadratic forms in one variable. Let π be the unique irreducible
cuspidal representation of GL2(K)Z(A)\GL2(A) associated to π̃ by the Shimura–
Waldspurger correspondence [W1,3]. Define the r-th Fourier coefficient of a smooth
vector φ̃ ∈ Vπ̃ as

W̃ r
φ̃

:=
∫

K\A
φ̃

((
1 x
0 1

))
ψ(−rx)dx .

Assume that φ̃ is a pure tensor ⊗vφ̃v, and for each archimedean place 1 � j � d
define a quantity e(φ̃j , r) as in [BaM, (4.3)], cf. also [BaM, §2.2]. For φ̃j belonging
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to the holomorphic discrete series, this quantity is calculated explicitly in [BaM,
Prop. 8.8]. Assume that there is a bound

L(1/2, π ⊗ χr) �π,K |N r|β
for some β > 0, then one has

W̃ r
φ̃

d∏
j=1

e(φ̃j , r) �φ̃,K |N r|β−1
2 . (90)

By the last two displays, Corollary 1 is an immediate consequence of Theorem 1.

2.12 Kuznetsov’s formula. There are several adelic [Y], [KniL2] and classi-
cal [BrMP] versions of the Kuznetsov formula over number fields available in the
literature. For our purposes, a slightly generalized version of the “semi-classical”
formula given in [V1] (which in turn is based on [BrM]) is the most suitable. The
extension is needed because [V1] deals only with representations that are spherical
at infinity (i.e. totally even non-exceptional Hilbert–Maaß forms), while we need to
include holomorphic forms and totally even exceptional Hilbert–Maaß forms. Fortu-
nately, the necessary integral transforms together with sharp estimates are provided
in full detail in [BrMP], so we can quote the results and restrict ourselves to a brief
exposition.

We introduce the set

S :=
{
ν ∈ C : |�ν| < 2

3

} ∪ (1
2 + Z

)
,

and for each 1 � j � d we consider an even function kj : S → C, holomorphic on
the interior of S, which satisfies the decay condition kj(ν) � (1 + |ν|)−a for some
a > 2. We write

k(ν) :=
∏
j

kj(νj) , ν ∈ Sd.

Following [BrMP, Defs. 2.5.2-2.5.4 & (25)], we define the Bessel transforms

ǩj(t) := −i

∫
(0)

kj(ν)J2ν

(
4π

√
t
) ν dν

cos(πν)

+
∑

b�2 even

(−1)b/2(b − 1)kj

(
b − 1

2

)
Jb−1

(
4π

√
t
)
, t > 0 ;

ǩj(t) := −i

∫
(0)

kj(ν)I2ν

(
4π

√
|t|) ν dν

cos(πν)
, t < 0 ;

k̃j :=
i

2

∫
(0)

kj(ν)ν tan(πν)dν +
∑

b�2 even

b − 1
2

kj

(
b − 1

2

)
.

Let c, y1, y2 ⊆ o be nonzero ideals. Within a fixed set of representatives of all ideal
classes of K we define C as the subset of ideals a satisfying a2y1y2d

2 ∼ 1. For each
a ∈ C we fix, once and for all, a generator γ of the principal ideal a2y1y2d

2. For any
nonzero elements c ∈ ca−1, r1 ∈ y1, r2 ∈ y2 we define the Kloosterman sum

S(r1, y1; r2, y2; c, a) := KS
(
r1, (y1d)−1; r2γ

−1, (y2d)−1; c, a
)
,
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where the right-hand side is given by [V1, Def. 2]. We only need to know Weil’s
bound for this type of Kloosterman sum [V1, (13)]

S(r1, y1; r2, y2; c, a) �K,ε

(N gcd(r1y
−1
1 , r2y

−1
2 , ca)

)1/2(N (ca))1/2+ε. (91)
Since we will not need the details later, we suppress a detailed discussion of the
continuous spectrum contribution and follow [V1] to abbreviate this quantity (whose
exact shape is irrelevant for our purposes) by CSC. Then we have the following
variant of Kuznetsov’s formula:[K(o) : K(c)

]−1 ∑
π∈C(c)
επ=1

C−1
π

∑
t|cc−1

π

k(νπ)λ̄(t)
π (r1y

−1
1 )λ(t)

π (r2y
−1
2 ) + CSC

= c1δ(r1y
−1
1 , r2y

−1
2 )

d∏
j=1

k̃j

+ c2
∑
a∈C

∑
u∈U/U2

∑
c∈ca−1

S(r1, y1;ur2, y2; c, a)
N (ca)

d∏
j=1

ǩj

((
ur1r2

γc2

)σj
)

. (92)

Here π runs over all totally even cuspidal representations of trivial central character
and conductor dividing c (cf. (22) and (30)); Cπ was defined in (37) and estimated in
Lemma 3; the coefficients λ

(t)
π are those in (40); c1, c2 are certain positive constants

depending only on K; finally δ(a, b) = 1 if and only if a = b.
We will only discuss the main ideas of the proof, since all ingredients can be

found in detail in [V1], [BrM], [BrMP]. The transition between the classical and
adelic versions of the Kuznetsov formula is based on the fact that for any nonzero
ideal y ⊆ o there is an embedding of coset spaces

Γ(y, c)Z(K∞)\GL2(K∞) ↪→ GL2(K)Z(K∞)\GL2(A)/K(c)
given by

Γ(y, c)Z(K∞)g �→ GL2(K)Z(K∞)g
(

η−1 0
0 1

)
K(c) , g ∈ GL2(K∞) ,

where η ∈ A×fin is any finite idele representing y. Indeed, it is straightforward to see
that the above map is well-defined and injective by combining (2) with∏

p

K(yp, cp) =
(

η−1 0
0 1

)
K(c)

(
η 0
0 1

)
.

In addition, strong approximation [Bu, Th. 3.3.1] shows that the image consists of
the double cosets whose union equals (cf. section 2.1.1){

g ∈ GL2(A) | det(g) ∈ η−1K×K×
∞Ω

}
.

Therefore if y1, . . . , yh represent the ideal classes of K, then we obtain a decompo-
sition of spaces (cf. [V1, §6.1])

GL2(K)Z(K∞)\GL2(A)/K(c) ∼=
h∐

j=1

Γ(yj , c)Z(K∞)\GL2(K∞) .

The Haar measure on Z(K∞)\GL2(A) defined in section 2.1.3 gives rise to a Borel
measure on the left-hand side assigning to each Borel set the measure of its preimage
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in GL2(K)Z(K∞)\GL2(A) under the natural projection. The Haar measure on
Z(K∞)\GL2(K∞) defined in section 2.1.3 induces a Borel measure on the right-
hand side. Now an important feature is that the measure of each Borel set on the
left-hand side is exactly [K(o) : K(c)]−1 times the measure of the corresponding
Borel set on the right-hand side. To see this claim, it suffices to show that for any
nonzero ideal y ⊆ o and for any Borel set U ⊆ GL2(K∞) representing distinct cosets
Γ(y, c)Z(K∞)g for g ∈ U , we have

vol
(

GL2(K)Z(K∞)\GL2(K)Z(K∞)U
(

η−1 0
0 1

)
K(c)

)
=

[K(o) : K(c)
]−1 vol

(
Z(K∞)\Z(K∞)U

)
.

By the discussion above, the double cosets GL2(K)Z(K∞)g
(

η−1 0
0 1

)K(c) for g ∈ U
are distinct, hence the left-hand side equals

vol
(

Z(K∞)\Z(K∞)U
(

η−1 0
0 1

)
K(c)

)
= vol(Z(K∞)\Z(K∞)U) vol

((
η−1 0
0 1

)
K(c)

)
= vol

(
Z(K∞)\Z(K∞)U

)
vol(K(c)) .

Since vol(K(c)) = [K(o) : K(c)]−1 by vol(K(o)) = 1, our claim follows.
Let T denote the subgroup of elements ( ∗ 0

0 1 ) ∈ O2(K∞), i.e. those with coor-
dinates

(±1 0
0 1

)
. Then T represents O2(K∞)/SO2(K∞) and the above discussion

shows

GL2(K)Z(K∞)\GL2(A)/TK(c) ∼=
h∐

j=1

Γ(yj , c)Z(K∞)\GL2(K∞)/T

with similarly related Borel measures on the two sides. We denote by FS the
L2-space of the left-hand side, viewed as a Hilbert space of measurable functions
φ : GL2(A) → C which are left GL2(K)Z(K∞)-invariant and right TK(c)-invariant.
This space is analogous to FS in [V1, §2.3] for the special case χ = 1, the only differ-
ence being that instead of right O2(K∞)-invariance we require right T -invariance.
We clearly have

FS ∼=
h⊕

j=1

L2(Γ(yj , c)Z(K∞)\GL2(K∞)/T
)
, (93)

and in order to derive (92), we follow [V1, §6]. The proof is based on a geometric
and spectral evaluation of a certain inner product formed of two Poincaré series on
FS, each of which is supported in only one component on the right-hand side of (93).
The spectral expansion is carried out in an orthonormal basis of the right-hand side
of (93) which, according to our discussion above, is provided by [K(o) : K(c)]−1/2

times any orthonormal basis of FS. For the latter we make use of the decomposition

FS =
⊕

ω∈Ĉ(K)

L2(GL2(K)\GL2(A)/TK(c), ω
)
, (94)
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where each class group character ω is regarded as a character of A× trivial on
K×K×∞Ω, and the corresponding component is the right TK(c)-invariant subspace
of L2(GL2(K)\GL2(A), ω), in the notation of section 2.2. Utilizing (8), (39), (47),
we can form an orthonormal basis of FS from certain totally even automorphic forms
of pure weight, level c and central character trivial on K×K×∞Ω. By averaging over
C(K) several inner products associated with the same pair of Poincaré series, we
can ensure that only ω = 1 contributes to the final spectral expansion. This outline
explains the structure of the left-hand side of (92).

To carry out the above plan, we need to work with slightly more general Poincaré
series than [V1, (89)], namely we only require right T -invariance instead of right
O2(K∞)-invariance. Then the geometric evaluation [V1, §6.3] goes through with no
changes, but in the spectral evaluation [V1, §6.4] the integrals over A have to be
replaced by integrals over AO2(K∞). Now we choose the test function f as in [BrMP,
§5.3, see also Def. 5.2.4]. The special integrals in [V1, (96a), (96b), (98)] are evaluated
in [V1, §6.5] using the relations [BrM, (25), Prop. 9.4, (26)], respectively. In our more
general situation, we use the corresponding results [BrMP, (83), Prop. 5.2.6, (84)].
This yields the formula (92) as in [V1, §6.6]. We note that in [BrMP] the authors
are faced with more subtle convergence issues; this is, for example, reflected in the
fact that in [BrMP, Def. 5.2.4] weight 2 Maaß forms rather than weight 0 Maaß
forms are used which leads to the correction factor

(1
4 − ν2

)−1 in [BrMP, (87)].
Remark 9. Unfortunately, there are different concurrent normalizations in the
literature which makes it a little tedious to compare the various papers. For the
convenience of the reader we give an account of the differences. There are three
sources of different notation/normalization:

• Groups. As mentioned in section 2.1.2, our congruence subgroups are slightly
different from those in [V1]; our K(y, c) ⊆ GL2(Kp) is precisely the group
K0,p(c, (yd)−1) defined in [V1, §2.2].

• Measures. In [BrM], [BrMP] the group N(K∞) of upper triangular unipo-
tent matrices is equipped with the measure π−ddx1 · · · dxd (with dx the usual
Lebesgue measure) whereas we have normalized the measure in section 2.1.3
as |DK |−1/2dx1 · · · dxd. Venkatesh [V1] follows the normalization in [BrM],
[BrMP]. (We remark, however, that a comparison of [V1, (11)] and [BrM, (5)]
shows that the factor vol(ΓN\N)−1 in [BrM, (5)] is wrongly adapted in [V1,
(11)] as (Nd)−1/2 instead of 2dCπdR+dC(Nd)−1/2, cf. [V1, (96)].)

• Whittaker functions. Our normalization of Whittaker functions coincides with
that of [BrMP] for �ν = 0, up to a factor of absolute value

√
2π at each

archimedean place, cf. (24) and [BrMP, (16)]. If �ν �= 0, the discrepancy
between [BrMP, (16)] and our definition (23) is compensated by [BrMP, (15)].
In [BrM], [V1] only the weight 0 case is treated, and hence the authors use√

yKν(2πy) = 1
2W0,ν(4πy) (unnormalized!) as a Whittaker function. This

scales the Fourier coefficients up by a factor π−1(2 cos(πν))1/2, cf. also the
remark before [BrMP, Def. 2.5.2]. Accordingly, the decay conditions of the test
function in [BrMP] do not include exponentials, and the measure in [BrMP,
Def. 2.5.2] contains the function tan(πν) rather than sin(πν).
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As a first application of the Kuznetsov formula and a warm-up for later calcula-
tions we will deduce a weak Weyl law that will give an upper bound of roughly the
expected order of magnitude.
Lemma 6. Let c,m ⊆ o be two nonzero ideals, let X ∈ [1,∞)d, and write Ξ :=∏d

j=1 Xj . Then for any ε > 0 we have∑
π∈C(c)
επ=1

|νπ,j |�Xj

1 �K,ε Ξ2+ε(N c)1+ε

and ∑
π∈C(c)
επ=1

|νπ,j|�Xj

∑
t|cc−1

π

∣∣λ(t)
π (m)

∣∣2 �K,ε Ξ2+ε
(
(N c)1+ε + (N gcd(m, c))1/2(Nm)1/2+ε

)
.

Remark 10. This should be compared with Lemma 2. The first bound with
unspecified exponents is contained in [MV, (9.3)].

Proof. The first bound follows from the second with m = o by noting that λ
(o)
π (o) =

λπ(o) = 1. To prove the second bound, we choose an ideal class representa-
tive y ∼ m−1 from a fixed set depending on K, then m = ry−1 with r ∈ y and
N (r) 
K Nm. We apply Kuznetsov’s formula (92) with r1 = r2 = r, y1 = y2 = y,
k(ν) :=

∏d
j=1 kXj (νj), where for any Z � 1

kZ(ν) :=

{
e(ν2−1/4)/Z2

, |�ν| < 2
3 ,

1 , ν ∈ 1
2 + Z and 3

2 � |ν| � Z .
(95)

By [BrMP, p. 124–126] we have
ǩ(t) � Z2 min

(
1, |t|1/2) and k̃ � Z2. (96)

By Lemma 3 we have [K(o) : K(c)]Cπ �K,ε Ξε(N c)1+ε for the relevant π. Hence the
diagonal term contributes �K,ε Ξ2+ε(N c)1+ε. By (91) and (96), the off-diagonal
contribution is at most

�K,ε Ξ2+ε(N c)1+ε max
a∈C

∑
0�=c∈ca−1

(N gcd(m, ca))1/2

(N (c))1/2−ε

d∏
j=1

min
(

1,
∣∣∣∣(r2

c2

)σj
∣∣∣∣1/2 )

.

We now use [BrM, Lem. 8.1] as in the proof of [BrMP, Lem. 3.2.1]. We infer that
the c-sum is

�K

∑
0�=(c)⊆ca−1

(N gcd(m, ca))1/2

(N (c))1/2−ε

(
1 +

∣∣∣∣log N (c2)
N (r2)

∣∣∣∣d−1 )
min

(
1,

(N (r2)
N (c2)

)1/2 )

�K,ε

∑
0�=(c)⊆ca−1

(N gcd(m, ca))1/2

(N (c))1/2−ε

(N (r2)
N (c2)

)1/4+ε

.

The last sum extends in a natural fashion to all nonzero ideals contained in ca−1,
therefore by a standard argument it is at most

�K,ε
(N gcd(m, c))1/2(Nm)1/2+3ε

(N (ca−1))1+ε
.
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Altogether the off-diagonal term contributes

�K,ε Ξ2+ε
(N gcd(m, c)

)1/2(Nm)1/2+ε. (97)

�

3 Part II: Subconvexity and Shifted Convolution Sums

3.1 Heuristic explanation of the exponent. The Burgess exponent 3/8 for
GL2, or 3/16 for GL1, seems to be a universal barrier, and there are several quite
distinct methods that independently yield it (perhaps in a slightly weaker version
coming from possible non-tempered representations). Therefore it might be instruc-
tive to sketch the subconvexity argument neglecting all the technical details to show
where the exponents come from in our method. This is not intended to be a proof
of any kind, but an experienced reader will have little difficulty in reconstructing a
rigorous proof from the following remarks. For simplicity let us assume that K = Q,
and the conductor of π is 1, and let us also assume the Ramanujan–Petersson con-
jecture. Moreover we will not display epsilons.

We consider the amplified moment∑
ω (mod q)

∣∣∣∑
�∼L

ω(�)χ̄(�)
∣∣∣2∣∣L(1/2, π ⊗ ω)

∣∣2.
On the one hand, this is

� L2∣∣L(1/2, π ⊗ χ)
∣∣2, (98)

on the other hand, this is

� q
∑

�1,�2∼L

χ(�1)χ̄(�2)
∑

�1m−�2n≡0 (mod q)

λπ(m)λ̄π(n)√
mn

W

(
m

q

)
W̄

(
n

q

)
.

We single out the term �1m − �2n = 0 which essentially implies �1 = �2, m = n and
hence contributes

� qL. (99)

We write the off-diagonal contribution of the inner sum as∑
h∼L

∑
�1m−�2n=qh

λπ(m)λ̄π(n)√
mn

W

(
m

q

)
W̄

(
n

q

)
. (100)

By the surjectivity of the Kirillov map, we can find a vector φ ∈ Vπ such that the
inner sum is the horocycle integral∫ 1

0

(
R�1φR�2 φ̄

)︸ ︷︷ ︸
=:Φ

((
(qL)−1 x

0 1

))
e(−qhx)dx ,

where R� is the shift operator (14). We decompose the form Φ (which is of level
∼ L2) spectrally (ignoring the continuous spectrum) as Φ =

∑
j Φj, so that we can

recast (100) roughly as ∑
h∼L

∑
j

λj(qh)√
qh

WΦj

(
h

L

)
(101)



38 V. BLOMER AND G. HARCOS GAFA 

with the notation (40)–(41). In particular, WΦj is a multiple of the Whittaker
function and therefore decays rapidly in the spectral parameter λj . By Plancherel
and the fact that the Kirillov map is almost an isometry (see (42)), we have∑

j ‖WΦj‖2 ∼ ‖Φ‖ � 1, since the operators R� are isometries. By Weyl’s law, there
are about L2 eigenvalues in an interval of constant length, so the j-sum has effec-
tively about L2 terms, and hence each WΦj (h/L) ∼ WΦj (1) should be of size 1/L.
At this point we can already sum trivially to get an off-diagonal contribution of

q L2︸︷︷︸
amplifier

L︸︷︷︸
h-sum

L2︸︷︷︸
j-sum

1√
qL

1
L

= q1/2L7/2. (102)

Combining (98), (99) and (102) gives L(1/2, π ⊗ χ) � q2/5 upon choosing L = q1/5.
However, we can do better by exploiting cancellation in the double sum over j

and h. One way to see this is to recognize that the h-sum mimics the central value
L(1/2, πj) (the length is L and the conductor is L2), and on average over j we should
be able to prove Lindelöf, that is, on average we should have

∑
h∼L λj(h)h−1/2 ∼ 1

rather than L1/2. This can be made precise as follows: by Cauchy–Schwarz, (101)
is bounded by

1√
qL

( ∑
λj∼1

1
)1/2

( ∑
h1,h2∼L

1√
h1h2

∑
λj∼1

λj(h1)λ̄j(h2)
)1/2

. (103)

The Kuznetsov formula translates the innermost sum into

L2
(

δh1,h2 +
∑
L2|c

1
c
S(h1, h2, c)f

(
h1h2

c2

))
,

where S(h1, h2, c) � c1/2 and f(x) � min(1, x1/2), so that (103) is by Weil’s bound
and by trivial estimates � Lq−1/2, and hence the complete off-diagonal term is
� q1/2L3. This yields L(1/2, π ⊗ χ) � q3/8 upon choosing L = q1/4.

3.2 Shifted convolution sums. In this section we will appeal to the
spectral decomposition (8) for trivial ω. We will work with the subspace
L2(GL2(K)\GL2(A)/TK(c), triv) which is also a component of the subspace FS
according to (94). To simplify notation, we drop the subscripts ω in Cω(c), Eω(c)
etc., and we use the abbreviations (cf. (22), (30), (67))∫

(c)
f
 d� :=

∑
π∈C(c)
επ=1

fπ +
∫


∈E(c)
ε�=1

f
d�

for any quantity f indexed by irreducible automorphic representations. The aim of
this section is to prove the following central result.
Theorem 2. Let π1, π2 be two irreducible cuspidal representations of
GL2(K)\GL2(A) with the same unitary central character and signature charac-
ter. Let �1, �2 ∈ o be nonzero integers and write c := lcm(�1cπ1 , �2cπ2). Let
a, b, c ∈ N0, and let W1,W2 : K×∞ → C be arbitrary functions such that ‖W1,2‖Aμ

given by (88) exist for μ := 2d(8 + a + b + 2c). Let P ∈ C[x1, . . . , xd] be a poly-
nomial of degree at most a in each variable, and consider the differential operator
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D := P (y1∂y1 , . . . , yd∂yd
). Then for any � ∈ C(c) ∪ E(c) with ε
 = 1 and for any

t | cc−1

 there exists a function W
,t : K×∞ → C depending only on π1,2, W1,2, �, t,

K such that the following two properties hold.

• For Y ∈ (0,∞)d, an ideal y ⊆ o and a nonzero q ∈ y there is a spectral
decomposition∑

�1r1−�2r2=q
0�=r1,2∈y

λπ1(r1y
−1)λ̄π2(r2y

−1)√N (r1r2y−2)

· W1

(
(�1r1)σ1

Y1
, . . . ,

(�1r1)σd

Yd

)
W̄2

(
(�2r2)σ1

Y1
, . . . ,

(�2r2)σd

Yd

)
=

∫
(c)

∑
t|cc−1

�

λ
(t)

 (qy−1)√N (qy−1)

W
,t

(
qσ1

Y1
, . . . ,

qσd

Yd

)
d� , (104)

where λ
(t)

 (m) is given by (40) and (48).

• For y ∈ K×∞, 0 < ε < 1/4, and θ as in (11), there is a bound∫
(c)

∑
t|cc−1

�

(N λ̃
)2c
∣∣DW
,t(y)

∣∣2d�

� ∣∣N (�1�2)
∣∣ε‖W1‖2

Aμ‖W2‖2
Aμ

d∏
j=1

|yj|1−2θ−ε min
(
1, |yj |−2b

)
with an implied constant depending only on π1,2, a, b, c, P , K, ε.

Remark 11. For q �∈ y the left-hand side of (104) vanishes trivially. The assump-
tions on π1,2 only serve notational convenience, and with a little more work one can
show that the implied constant depends polynomially on C(π1)C(π2).

Remark 12. One can combine the L2-bound in Theorem 2 for c + 1 in place of
c with Cauchy–Schwarz and Lemma 6 (resp. Lemma 2) to deduce an L1-bound for
the cuspidal (resp. continuous) spectrum. For κ := 2d(10 + a + b + 2c) one obtains∫


∈C(c)
ε�=1

∑
t|cc−1

�

(N λ̃
)c
∣∣DW
,t(y)

∣∣d�

� ∣∣N (�1�2)
∣∣ 1
2
+ε‖W1‖Aκ‖W2‖Aκ

d∏
j=1

|yj |
1
2
−θ−ε min

(
1, |yj |−b

)
and, denoting by l ⊆ o the largest square divisor of lcm((�1), (�2)),∫


∈E(c)
ε�=1

∑
t|cc−1

�

(N λ̃
)c
∣∣DW
,t(y)

∣∣d�

� (N l)
1
4

∣∣N (�1�2)
∣∣ε‖W1‖Aκ‖W2‖Aκ

d∏
j=1

|yj |
1
2
−θ−ε min

(
1, |yj |−b

)
,

with implied constants depending only on π1,2, a, b, c, P , K, ε.

Proof. By the surjectivity of the Kirillov map (see the remark after (37)) we can
choose φi ∈ Vπi(cπi) for i = 1, 2, such that Wφi

= Wi. Let

Φ :=
(
R(�1)φ1

)(
R(�2)φ̄2

)
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with the notation as in (14). Then Φ ∈ L2(GL2(K)\GL2(A)/TK(c), triv) with c as
in the theorem. Let y ∈ A× be such that y∞ = (Y1, . . . , Yd) and (yfin) = y. By (14)
and (34) we have∑

�1r1−�2r2=q
0�=r1,2∈y

λπ1(r1y
−1)λ̄π2(r2y

−1)√N (r1r2y−2)

· W1

(
(�1r1)σ1

Y1
, . . . ,

(�1r1)σd

Yd

)
W̄2

(
(�2r2)σ1

Y1
, . . . ,

(�2r2)σd

Yd

)
=

∫
K\A

Φ
((

y−1 x
0 1

))
ψ(−qx)dx .

By (8), (39), (47), we have an orthogonal decomposition

Φ = Φsp +
∫

(c)

∑
t|cc−1

�

Φ
,td� , Φsp ∈ Lsp , Φ
,t ∈ R(t)V
(c
) ,

where Φsp is the projection of Φ on the subspace generated by the functions
g �→ χ(det g) with any quadratic Hecke character χ as discussed in section 2.2. As
q is nonzero, (104) is immediate from (40) and (48) upon defining W
,t := WΦ�,t .

We proceed to establish the upper bound stated in the theorem. By Lemma 4
and (85) we have∫

(c)

∑
t|cc−1

�

(N λ̃
)2c
∣∣DW
,t(y)

∣∣2d� � (N c)ε‖Φ‖2
Sα

d∏
j=1

|yj|1−2θ−ε min
(
1, |yj |−b

)
,

where α := d(5 + a + b + 2c). It remains to show that
‖Φ‖Sα � ‖W1‖Aμ‖W2‖Aμ (105)

for μ as in the theorem. By Lemma 5 any D ∈ U(g) of order at most α satisfies∥∥DR(�i)φi

∥∥
∞ =

∥∥R(�i)Dφi

∥∥
∞ = ‖Dφi‖∞ �πi,K ‖φi‖Sα+3d ,

therefore the Leibniz rule for derivations immediately shows

‖Φ‖Sα �π1,π2,K ‖φ1‖Sα+3d‖φ2‖Sα+3d .

An application of Lemma 3 and (87) now yields (105) and completes the proof of
Theorem 2. �

3.3 A Burgess-like subconvex bound for twisted L-functions. In this
section we prove Theorem 1, borrowing several important ideas from [CoPS], [Co].
For simplicity, we shall in general not indicate the dependence of implied constants
on π, χ∞, K. We regard χ as a Grössencharacter, i.e. a certain character of the group
of fractional ideals coprime to q. We extend χ to the group of all fractional ideals
by defining it to be zero for fractional ideals not coprime to q. There exists a pair of
characters χfin : (o/q)× → S1 and χ∞ : K×∞ → S1 such that χ((r)) = χfin(r)χ∞(r)
for r ∈ o coprime to q. We lift any character ξ of (o/q)× to a function ξ : o → C by
defining ξ(r) = ξ(r mod q) for r ∈ o coprime to q and ξ(r) = 0 elsewhere.

Our starting point is the approximate functional equation in the user-friendly
version (75). We cut the sum into (finitely many) pieces according to the narrow
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ideal class of the ideal m. We fix a narrow ideal class and a representative y coprime
to q; we can assume Ny �ε (N q)ε. Then it is enough to bound∑

0<<r∈y
r mod U+

λπ(ry−1)χ(ry−1)√N (ry−1)
V

(N r

Y

)
(106)

for Y �ε (N q)1+ε and a smooth function V : (0,∞) → C supported on [1/2, 2]
such that V (j)(y) �j 1 for all j ∈ N0. Let us fix (once and for all) a fundamental
domain F0 for the action of U+ on the hyperboloid {y ∈ K×

∞,+ | N y = 1} such that
its image under the map K×

∞,+ → Rd, y �→ (log yσ1 , . . . , log yσd), is a fundamental
parallelotope of the image of U+ under the same map. (The image of U+ is a lattice
in the hyperplane of K∞ orthogonal to (1, . . . , 1).) The cone F := Kdiag

∞,+F0 is a
fundamental domain for the action of U+ on K×

∞,+. We introduce the following
smooth variants of F0 and F : we fix a smooth and compactly supported function
F0 : {y ∈ K×

∞,+ | N y = 1} → C such that
∑

u∈U+ F0(uy) = 1 for any y ∈ K×
∞,+ of

norm 1, and we extend this to all of K×
∞,+ by F (y) := F0(y/(N y)1/d). Note that

the support of F0 is contained in some box [c1, c2]d ⊆ K×
∞,+, and the support of F

is contained in the cone Kdiag
∞,+[c1, c2]d of this box. We can rewrite (106) as∑

0<<r∈y

λπ(ry−1)χ(ry−1)√N (ry−1)
F (r)V

(N r

Y

)
which is really a finite sum, because y is a lattice in K∞ and the terms vanish outside
the box

[1
2c1Y

1/d, 2c2Y
1/d

]d. Let us fix a smooth function W : K×
∞,+ → C supported

on
[1

3c1, 3c2
]d such that W (y) = 1 on

[1
2c1, 2c2

]d, then we can recast (106) as

χ̄(y)
∑

0<<r∈y

λπ(ry−1)χ((r))√
N (ry−1)

F (r)V
(N r

Y

)
W

( r

Y 1/d

)
=

χ̄(y)χ∞(Y 1/d)
(2πi)d

∫
(iR)d

V̌ (v)
∑

0<<r∈y

λπ(ry−1)χfin(r)√N (ry−1)
Wv

( r

Y 1/d

)
dv , (107)

where v := (v1, . . . , vd) ∈ (iR)d and

V̌ (v) :=
∫

K×
∞,+

F (y)V (N y)χ∞(y)
d∏

j=1

y
vj

j d×y , Wv(y) := W (y)
d∏

j=1

y
−vj

j .

At this point it is worthwhile to extend the notational convention in (12) to all
complex vectors z ∈ Cd as follows:

z̃ :=
(
1 + |zj |

)d

j=1 ∈ Rd
>0 . (108)

The functions F (y)V (N y) and W (y) are smooth of compact support and χ∞(y) =∏d
j=1 y

sj

j for some fixed s ∈ (iR)d, therefore we have the bounds

V̌ (v) �A,χ∞ (N ṽ)−A , A > 0 , (109)

∂μ1
y1

· · · ∂μd
yd

Wv(y) �μ

d∏
j=1

(
1 + |vj |

)μj , μ ∈ Nd
0 . (110)
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We fix v ∈ (iR)d and postpone the integration over v to the very end of the
argument. For a character ξ of (o/q)× we define

Lξ(v) :=
∑

0<<r∈y

λπ(ry−1)ξ(r)√
N (ry−1)

Wv

( r

Y 1/d

)
,

so that Lχfin
(v) is the sum on the right-hand side of (107). Observe that the sum is

supported in the box
[1

3c1Y
1/d, 3c2Y

1/d
]d whose cone C ⊆ K×

∞,+ is independent of Y
and can be covered by finitely many U+-translates of F . We consider an amplified
second moment and choose a parameter L satisfying log L 
 log(N q). It is not hard
to see that

#
{
l ⊆ o is a totally positive principal prime ideal | N l ∈ [L, 2L], l � q

} �ε L(Nq)−ε,

hence by positivity∣∣Lχfin
(v)

∣∣2 �ε
(Nq)ε

L2

∑
ξ∈(̂o/q)×

∣∣∣Lξ(v)
∑

�∈o∩F
N �∈[L,2L]

(�) prime, (�)�q

ξ(�)χ̄fin(�)
∣∣∣2.

By Plancherel’s formula for (o/q)× this is the same as∣∣Lχfin
(v)

∣∣2 �ε
ϕ(q)(N q)ε

L2

∑
x∈(o/q)×

∣∣∣∣ ∑
�∈o∩F

N �∈[L,2L]
(�) prime, (�)�q

χ̄fin(�)
∑

r∈y∩C
�r≡x (mod q)

λπ(ry−1)√N (ry−1)
Wv

( r

Y 1/d

)∣∣∣∣2.
We can extend the summation over all x ∈ o/q by positivity, then after opening the
square we get∣∣Lχfin

(v)
∣∣2 �ε

(N q)1+ε

L2

∑
�1,�2∈o∩F

N �1,N �2∈[L,2L]
(�1),(�2) primes

(�1),(�2)�q

χ̄(�1)χ(�2)

×
∑

�1r1−�2r2∈q
r1,r2∈y∩C

λπ(r1y
−1)λ̄π(r2y

−1)√
N (r1r2y−2)

Wv

( r1

Y 1/d

)
W̄v

( r2

Y 1/d

)
. (111)

We single out the diagonal term �1r1 − �2r2 = 0 which contributes at most

�ε
(N q)1+ε

L2

∑
�∈o∩F
N ��L

∑
r∈y∩C
N r�Y

|λπ(ry−1)|2
N (ry−1)

#
{
(�′, r′) ∈ (o ∩ F) × (y ∩ C) | �′r′ = �r

}
,

uniformly in v ∈ (iR)d. The last factor is bounded by �ε (LY )ε, and so by (77) the
preceding display is at most

�ε
(N q)1+ε

L2 #{l ⊆ o | N l 
 L}
∑

Nm�Y

|λπ(m)|2
Nm

�ε (N q)ε
N q

L
. (112)

Let us now consider the off-diagonal contribution in (111). If [c3, c4]d ⊆ K×
∞,+ is

a box containing F0, then in (111) the variables satisfy �1,2 ∈ [c3L
1/d, 2c4L

1/d]d and
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r1,2 ∈ [1
3c1Y

1/d, 3c2Y
1/d

]d, so that

�1r1 − �2r2 ∈ B :=
[− 6c2c4(LY )1/d, 6c2c4(LY )1/d

]d
.

We fix �1,2 for the moment and we rewrite the off-diagonal part of the inner sum in
(111) as∑

0�=q∈qy∩B

∑
�1r1−�2r2=q
0�=r1,r2∈y

λπ(r1y
−1)λ̄π(r2y

−1)√N (r1r2y−2)
W1

(
�1r1

(LY )1/d
; v

)
W̄2

(
�2r2

(LY )1/d
; v

)
,

(113)
where Wi(·; v) : K×∞ → C for i = 1, 2 are smooth functions defined by

Wi(y; v) :=

{
Wv(�−1

i L1/dy) , y ∈ K×
∞,+ ,

0 , otherwise .

Note that Wi(·; v) is supported on
[1

3c1c3, 6c2c4
]d and by (110) it satisfies

∂μ1
y1

· · · ∂μd
yd

Wi(y; v) �μ

d∏
j=1

(
1 + |vj |

)μj , μ ∈ Nd
0 . (114)

Using Theorem 2, we rewrite (113) as∑
0�=q∈qy∩B

∫
(c)

∑
t|cc−1

�

λ
(t)

 (qy−1)√N (qy−1)

W
,t

(
q

(LY )1/d
; v

)
d� , (115)

where c := cπ lcm((�1), (�2)). At this point we can already estimate the Eisenstein
contribution trivially. On the one hand, we can combine the second bound in Re-
mark 12 with (88) and (114) to see that (cf. (108))∫


∈E(c)
ε�=1

∑
t|cc−1

�

∣∣W
,t(y; v)
∣∣ d� �ε

(N (�1�2)
)ε(N ṽ)44d,

uniformly in y ∈ K×∞, v ∈ (iR)d, �1,2 and y. On the other hand, by (49) we have the
uniform bound

λ(t)

 (qy−1) �ε

(N gcd(c, (q))
)
(N (q))ε,

hence the Eisenstein contribution in (115) is at most

�ε (N ṽ)44d(N q)ε
∑

0�=q∈q∩B

N gcd(c, (q))√N (q)
.

In the last sum each principal ideal (q) has multiplicity � (log(N q))d−1. Indeed,
any nonzero principal ideal in o has a generator q such that |qσj | � c3 for 1 � j � d,
so the multiplicity in question is at most the number of units u ∈ U in the cube
[−c5(LY )1/d, c5(LY )1/d]d for c5 := 6c2c4/c3 which is � (log(N q))d−1 by Dirichlet’s
unit theorem (or its proof). At any rate, the last sum is

�ε (N q)ε
∑
(q)⊆q

N (q)�LY

N gcd(c, (q))√N (q)
�ε (N q)−1+2ε(LY )1/2 �ε (N q)−1/2+3εL1/2,
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hence the Eisenstein contribution in (115) is at most

�ε (N ṽ)44d(N q)−1/2+εL1/2. (116)

Let us now turn to the cuspidal contribution in (115). Choosing a = 0, b = 1,
c very large in Theorem 2 and combining the inequality there with (88) and (114),
Cauchy–Schwarz and Lemma 6, we see for any ε > 0 that the contribution of all
� ∈ C(c) with λ̃
,j � (N q)ε for some j is negligible. Let us introduce the notation

C(c, ε) :=
{
� ∈ C(c) | λ̃
,j � (N q)ε for 1 � j � d

}
, ε > 0 ,

and
B(ξ) :=

{
y ∈ B | sgn(y) = ξ

}
, ξ ∈ {±1}d.

Then it suffices to bound, for fixed primes �1, �2 >> 0 and ε > 0, ξ ∈ {±1}d the
quantity ∑

q∈qy∩B(ξ)

∑

∈C(c,ε)

t|cc−1
�

λ
(t)

 (qy−1)√
N (qy−1)

W
,t

(
q

(LY )1/d
; v

)
. (117)

We separate the variables � and q by Mellin inversion. For s ∈ Cd with �sj � −1/4
we write

Ŵ
(ξ)

,t(s; v) :=

∫
K×

∞,+

W
,t(ξy; v)
d∏

j=1

y
sj

j d×y

and recast (117) as(
1

2πi

)d ∫
(iR)d

(LY )(s1+···+sd)/d
∑


∈C(c,ε)
t|cc−1

�

Ŵ
(ξ)

,t(s; v)

∑
q∈qy∩B(ξ)

λ
(t)

 (qy−1)√N (qy−1)

d∏
j=1

|qσj |−sjds

�
∫

(iR)d

( ∑

∈C(c,ε)

t|cc−1
�

∣∣Ŵ (ξ)

,t(s; v)

∣∣2) 1
2

( ∑

∈C(c,ε)

t|cc−1
�

∣∣∣∣ ∑
q∈qy∩B(ξ)

λ
(t)

 (qy−1)√N (qy−1)

d∏
j=1

|qσj |−sj

∣∣∣∣2) 1
2

|ds| .

Using the differential operator D :=
∏d

j=1(1 + yj∂yj )
3 the first sum is, for any

s ∈ (iR)d,

� (N s̃)−3
∫

K×∞

∫
K×∞

∑

∈C(c,ε)

t|cc−1
�

∣∣DW
,t(y; v)
∣∣∣∣W
,t(z; v)

∣∣d×y d×z ,

� (N s̃)−3
∫

K×∞

∫
K×∞

( ∑

∈C(c,ε)

t|cc−1
�

∣∣DW
,t(y; v)
∣∣2)1/2( ∑


∈C(c,ε)
t|cc−1

�

∣∣W
,t(z; v)
∣∣2)1/2

d×y d×z .

We apply Theorem 2 with (a, b, c) = (3, 1, 0) and (a, b, c) = (0, 1, 0), then by (88)
and (114) the integrand is

�ε (N q)ε(N ṽ)84d
d∏

j=1

min
(|yj |1/4, |yj |−1/2)min

(|zj |1/4, |zj |−1/2) ,
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so that the previous display is
�ε (N q)ε(N ṽ)84d(N s̃)−3.

We infer that (117) is bounded by

�ε (N q)ε(N ṽ)42d sup
s∈(iR)d

( ∑

∈C(c,ε)

t|cc−1
�

∣∣∣∣ ∑
q∈qy∩B(ξ)

λ
(t)

 (qy−1)√N (qy−1)

d∏
j=1

|qσj |−sj

∣∣∣∣2)1/2

. (118)

Let us write for any nonzero ideal a ⊆ o and any s ∈ (iR)d

f(a; s) :=
∑

q∈B(ξ)
(q)=ay

d∏
j=1

|qσj |−sj ,

then similarly as in the proof of (116) we have∣∣f(a; s)
∣∣ � #

{
q ∈ B | (q) = ay

} � (
log(N q)

)d−1 �ε (N q)ε, (119)
while the q-sum in (118) equals the following sum over integral ideals m:∑

Nm�LY/N (qy)

λ
(t)

 (mq)√N (mq)

f(mq; s) .

We now need to “factor out” λ
(t)

 (q). This is completely elementary, but a little

tricky. First we rewrite the previous expression as∑
q|q′|q∞

∑
Nm�LY/N (q′y)

gcd(m,q)=o

λ
(t)

 (mq′)√N (mq′)

f(mq′; s) .

Using the construction of λ
(t)

 (m) as given in (41) and the preceding remarks, together

with the Hecke relation (31), we proceed as in [BlHM, p. 73–74] to show that

λ(t)

 (mq′) =

∑
b|gcd(c,q′, q′

gcd(c,q′) )

μ(b)λ


(
q′

b gcd(c, q′)

)
λ(t)




(
m gcd(c, q′)

b

)
.

Since gcd(c, q′) divides cπ (where π is the representation whose L-function we want
to estimate), we can bound the q-sum in (118) by

�ε

∑
q|q′|q∞

(N q′)−1/2+θ+ε
∑
b|cπ

∣∣∣∣ ∑
Nm�LY/N (q′y)

gcd(m,q)=o

λ
(t)

 (mb)√N (m)

f(mq′; s)
∣∣∣∣ .

Before we substitute this back into (118), we add a suitable positive contribution of
the continuous spectrum, and with the notation (95) we majorize the characteristic
function of {

ν ∈ S : |1/4 − ν2| � (N q)ε
}

with OK(1) times the function

k(ν) :=
d∏

j=1

kZ(νj) , Z := (N q)ε/2 � 1 .
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Using (119) and Lemma 3 we conclude that the �-sum in (118) is

�ε (N q)−1+2θ+2ε max
b1,b2|cπ

∑
Nm1 ,Nm2�LY/Nq

(N (m1m2)
)−1/2

×
∣∣∣∣ ∑


∈C(c)

1
C


∑
t|cc−1

�

k(ν
)λ̄(t)

 (m1b1)λ(t)


 (m2b2) + CSC
∣∣∣∣ .

Note that LY/N q �ε (N q)εL. We are now in a position to apply the Kuznetsov
formula (92) to the second line of the preceding display. We proceed very similarly
as in the proof of Lemma 6 and estimate the right-hand side of (92) trivially, using
(96) and (91). The diagonal contribution is

�ε (N q)−1+2θ+ε
∑

Nm�LY/Nq

(Nm)−1L2 � (N q)−1+2θ+2εL2,

while the off-diagonal contribution is (use (97) with Ξ → (N q)dε/2 and m →
gcd(m1,m2))

�ε (N q)−1+2θ+ε
∑

Nm1,Nm2�LY/Nq

(N gcd(m1,m2, c)
)1/2(N (m1m2)

)−1/4+ε

�ε (N q)−1+2θ+2ε
( ∑
Nm�LY/Nq

(N gcd(m, c))1/4(Nm)−1/4
)2

�ε (N q)−1+2θ+3εL3/2.

Going back to (117) and using (118) it follows that the contribution of � ∈ C(c, ε)
in (115) is

�ε (N ṽ)42d(N q)−1/2+θ+εL .

Together with (116) and the remarks preceding (117) this implies that (113) is at
most

�ε (N ṽ)2B(N q)−1/2+θ+εL ,

where B = B(d, ε) > 0 is a certain constant. By summing trivially over �1,2 in the
off-diagonal part of (111) and recalling also (112) we infer that

Lχfin
(v) �ε (N ṽ)B(N q)ε

(
(N q)1/2L−1/2 + (N q)1/4+θ/2L1/2) .

The right-hand side is smallest when we take L := (N q)1/4−θ/2, then

Lχfin
(v) �ε (N ṽ)B(N q)

1
2
− 1

8
(1−2θ)+ε.

This result in combination with (109) for A := 2 + B shows that (107) is at most

�ε (N q)
1
2
− 1

8
(1−2θ)+ε,

whence by (75)
L(1/2, π ⊗ χ) �π,χ∞,ε (N q)

1
2
− 1

8
(1−2θ)+ε.

The proof is complete.

3.4 Spectral decomposition of a Dirichlet series. We keep notation devel-
oped in sections 2 and 3.2. As another application of Theorem 2 we shall prove



GAFA TWISTED L-FUNCTIONS OVER NUMBER FIELDS 47

Theorem 3. Let π1, π2 be two irreducible cuspidal representations of
GL2(K)\GL2(A) with the same unitary central character and signature charac-
ter. Let �1, �2 ∈ o be totally positive integers and write c := lcm(�1cπ1 , �2cπ2). Let
c, β ∈ N0 such that β > d(66 + 12c). Then for any � ∈ C(c) ∪ E(c) with ε
 = 1 and
for any t | cc−1


 there exists a holomorphic function

F
,t :
{
s ∈ Cd | 1/2 + θ < �sj < 3/2

} → C

depending only on π1,2, β, �, t, K such that the following two properties hold.

• For an ideal y ⊆ o and 0 << q ∈ y there is a spectral decomposition in the
domain 1 < �sj < 3/2∑

�1r1−�2r2=q
0<<r1,2∈y

λπ1(r1y
−1)λ̄π2(r2y

−1)N(�1r1�2r2)(β−1)/2∏d
j=1((�1r1 + �2r2)σj )sj+β−1

=
d∏

j=1

q
1/2−sj

j

∫
(c)

∑
t|cc−1

�

λ(t)

 (qy−1)F
,t(s) d� .

• For 0 < ε < 1/2 there is a uniform bound in the domain 1/2+θ+ε < �sj < 3/2∫
(c)

∑
t|cc−1

�

(N λ̃
)c
∣∣F
,t(s)

∣∣d� � (Ny)−1/2(N (�1�2)
)ε(N s̃)d(46+8c)

with the notation (108) and an implied constant depending only on π1,2, β,K, ε.
In particular, the left-hand side of the spectral identity can be continued holo-
morphically to the larger domain �sj > 1/2 + θ with polynomial growth on
vertical lines.

Remark 13. The character assumptions on π1,2 and the positivity assumptions
on �1,2, r1,2, q are not essential, they only serve simplicity of notation and expo-
sition. With a little more work one can show that the implied constant depends
polynomially on C(π1)C(π2) and β.

Remark 14. Selberg [Se] asks for the meromorphic continuation of a Dirichlet
series associated to shifted convolution sums. Progress over Q in this direction was
made by Good [Go1,2], Sarnak [S1,2], Jutila [J1,2], Motohashi [Mo] and the authors
[BlH2]. A version of Theorem 3 for π1,2 whose archimedean components belong to
the discrete series appears in [CoPS].

Proof. This is similar to the proof of Theorem 2 in [BlH2], so we present only the
main steps, and omit convergence issues that are discussed in detail in [BlH2]. For
c and β as in the statement, γ := d(45 + 8c) and t � 0 we consider the functions

Wβ(t; z) := tβ/2e−zt and Gγ(t) :=

{
(t(1 − t))γ , 0 � t � 1 ,

0 , t > 1 .

By Laplace inversion we have, for any y1, y2, Y > 0,(y1y2

Y 2

)β/2
Gγ

(
y1 + y2

Y

)
=

1
2πi

∫
(1)

Ǧγ(z)Wβ

(y1

Y
; z

)
Wβ

(y2

Y
; z

)
dz , (120)
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where
Ǧγ(z) :=

∫ ∞

0
Gγ(t)eztdt , z ∈ C .

We note the bound
Ǧγ(z) �γ |z|−γ−1, �z = 1 , (121)

which follows easily by partial integration. We will also need the Mellin transform
of Gγ(t) as given by [GrR, 3.196.3],∫ ∞

0
Gγ(t) ts−1 dt =

Γ(s + γ)Γ(γ + 1)
Γ(s + 1 + 2γ)

, �s > −γ . (122)

Let �zj = 1 and Yj > 0 for 1 � j � d (we will later integrate over all zj and Yj), and
let us write z = (z1, . . . zd) and Y = (Y1, . . . Yd). We apply Theorem 2 and Remark 12
with a = 0, b = 1, c as in the statement of Theorem 3, W1(y; z) :=

∏d
j=1 Wβ(yj ; zj),

W2(y; z) :=
∏d

j=1 W̄β(yj ; zj). We find

∑
�1r1−�2r2=q
0<<r1,2∈y

λπ1(r1y
−1)λ̄π2(r2y

−1)√N (r1r2y−2)

d∏
j=1

Wβ

(
(�1r1)σj

Yj
; zj

)
Wβ

(
(�2r2)σj

Yj
; zj

)

=
∫

(c)

∑
t|cc−1

�

λ
(t)

 (qy−1)√N (qy−1)

W
,t

(
qσ1

Y1
, . . . ,

qσd

Yd
; z

)
d� (123)

for some functions W
,t(·; z) : K×∞ → C depending only on π1,2, β, z, �, t, K.
Following Remark 12 and using ‖W1,2(·; z)‖Aκ � (N z̃)κ for β > 3κ we see that∫

(c)

∑
t|cc−1

�

(N λ̃
)c
∣∣W
,t(y; z)

∣∣d�

� (N (�1�2)
)1/2+ε(N z̃)d(44+8c)

d∏
j=1

|yj |1/2−θ−ε min
(
1, |yj |−1) , (124)

the implied constant depending only on π1,2, β, c, K, ε. We integrate both sides of
(123) against (

1
2πi

)d ∫
(1)

· · ·
∫

(1)

d∏
j=1

Ǧγ(zj)dz ,

so that by (120)∑
�1r1−�2r2=q
0<<r1,2∈y

λπ1(r1y
−1)λ̄π2(r2y

−1)
(N (�1r1�2r2)

)(β−1)/2
d∏

j=1

Y −β
j Gγ

(
(�1r1 + �2r2)σj

Yj

)

=
(N (�1�2qy)

)−1/2
∫

(c)

∑
t|cc−1

�

λ(t)

 (qy−1)H
,t

(
qσ1

Y1
, . . . ,

qσd

Yd

)
d� , (125)

where

H
,t(y) :=
(

1
2πi

)d ∫
(1)

· · ·
∫

(1)
W
,t(y; z)

d∏
j=1

Ǧγ(zj)dz .
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Note that by (121) and (124) these integrals converge absolutely and they satisfy
the bound∫

(c)

∑
t|cc−1

�

(N λ̃
)c
∣∣H
,t(y)

∣∣d�

�π1,2,β,c,K,ε

(N (�1�2)
)1/2+ε

d∏
j=1

|yj|1/2−θ−ε min
(
1, |yj |−1) . (126)

Now for s ∈ Cd with 1 < �sj < 3/2 we integrate both sides of (125) against∫
K×

∞,+

d∏
j=1

Y
1−sj

j d×Y

and use also (122): we arrive at the spectral identity of Theorem 3 with

F
,t(s) :=
(N (�1�2y)

)−1/2
( d∏

j=1

Γ(sj+β+2γ)
Γ(sj+β−1+γ)Γ(γ+1)

)∫
K×

∞,+

H
,t(y)
d∏

j=1

y
sj−1
j d×y .

By (126) these functions are holomorphic in the domain 1/2 + θ + ε < �sj < 3/2
and there they satisfy the bound of Theorem 3. The proof is complete. �
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