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Abstract: Alternariol is an Alternaria mycotoxin that appears in fruits, tomatoes, oilseeds, and
corresponding products. Chronic exposure to it can induce carcinogenic and xenoestrogenic effects.
Cyclodextrins (CDs) are ring-shaped molecules built up by glucose units, which form host–guest
type complexes with some mycotoxins. Furthermore, insoluble CD polymers seem suitable for the
extraction/removal of mycotoxins from aqueous solutions. In this study, the interactions of alternariol
with β- and γ-CDs were tested by employing fluorescence spectroscopic and modeling studies.
Moreover, the removal of alternariol from aqueous solutions by insoluble β-CD bead polymer (BBP)
was examined. Our major observations/conclusions are the following: (1) CDs strongly increased the
fluorescence of alternariol, the strongest enhancement was induced by the native γ-CD at pH 7.4.
(2) Alternariol formed the most stable complexes with the native γ-CD (logK = 3.2) and the quaternary
ammonium derivatives (logK = 3.4–3.6) at acidic/physiological pH and at pH 10.0, respectively.
(3) BBP effectively removed alternariol from aqueous solution. (4) The alternariol-binding ability
of β-CD polymers was significantly higher than was expected based on their β-CD content. (5) CD
technology seems a promising tool to improve the fluorescence detection of alternariol and/or to
develop new mycotoxin binders to decrease alternariol exposure.

Keywords: alternariol; cyclodextrin; host-guest complexes; fluorescence spectroscopy; fluorescence
enhancement; cyclodextrin polymers; mycotoxin binder; toxin removal

1. Introduction

Contamination of food and feed with mycotoxins has been an emerging problem worldwide.
Alternariol (AOH) is a dibenzo-α-pyrone mycotoxin (Figure 1) produced by the phytopathogenic
Alternaria fungi. Cereals, tomatoes, grapes as well as other soft-skinned fruits and vegetables are
particularly susceptible for Alternaria infection [1]. Furthermore, AOH occurs as a contaminant in
the corresponding processed products (e.g., wine and tomato juice) [2–4]. The concentration of AOH
in different foods and beverages is in the 0.7 to 41.6 µg/L (2.7 to 161.1 nM) range [5]. However, the
extremely contaminated oilseeds can contain even 1000 µg/kg concentration of AOH [6]. The high
thermal stability of Alternaria toxins makes their removal from foodstuffs difficult [6,7]. The AOH
content of different foodstuffs and beverages is generally examined by HPLC (high performance liquid
chromatography) linked to FLD (fluorescence detector), MS (mass spectrometer), or DAD (diode array
detector), and stable isotope dilution assay (SIDA) methods [8–11]. Since AOH exerts fluorescence
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in aqueous solution, its molecular interactions can be effectively investigated using fluorescence
spectroscopy [12].

Cyclodextrins (CDs) are ring-shaped oligosaccharides built up from six (α-CDs), seven (β-CDs),
or eight (γ-CDs) glucopyranose units, linked through α-(1,4) bonds [13]. The hydrophilic outer part
of CDs provides excellent aqueous solubility, while their nonpolar internal cavity can accommodate
lipophilic compounds [14]. The chemical modification of CDs affects their aqueous solubility and the
stability of their host–guest type complexes, which properties are also influenced by the type and the
degree of substitution [15,16]. CDs are extensively used by pharmaceutical [15,17,18], cosmetic [19], and
food industries [20,21]. Their applications include solubilization and stabilization (protection against
light and oxidation) of compounds, improvement of the oral bioavailability of some drugs [18,22,23],
and CDs can suppress unpleasant odors and/or tastes [20]. Furthermore, CDs are employed in
environmental protection [24,25] and are also useful molecules in analytics [26,27].

Native and chemically modified CDs can form stable complexes with several mycotoxins,
including aflatoxins, citrinin, ochratoxin A, and zearalenone [28–31]. The complex formation can
strongly increase the fluorescence of some mycotoxins, which makes possible their more sensitive
fluorescence detection [29,31–33]. Furthermore, CD technology may be suitable for the development
of new mycotoxin binders. Previous studies demonstrated that patulin, ochratoxin A, and zearalenone
can be effectively removed/extracted from aqueous solutions (or even from beverages) with β-CD
polymers [34–37].

In this study, the interactions of AOH with native and chemically modified (methyl and quaternary
ammonium derivatives) β- and γ-CDs (Figure 1) were examined employing fluorescence spectroscopy
and molecular modeling. CD-induced enhancement in the fluorescence of AOH and the stability
of AOH-CD complexes were evaluated under different environmental conditions. Furthermore, the
removal of AOH from aqueous solution by insoluble β-CD bead polymer (BBP) was also tested. Our
results demonstrate that CDs strongly increase the fluorescence of AOH during the formation of stable
host-guest type complexes; moreover, BBP can effectively remove AOH from aqueous solution.
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Figure 1. Chemical structures of alternariol (AOH) as well as native and chemically modified β-
and γ-cyclodextrins (BCD, β-cyclodextrin; RAMEB, randomly methylated β-cyclodextrin; QABCD,
(2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin; GCD, γ-cyclodextrin; RAMEG, randomly
methylated γ-cyclodextrin; QAGCD, (2-hydroxy-3-N,N,N-trimethylamino)propyl-γ-cyclodextrin; DS:
average degree of substitution per CD ring).
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2. Materials and Methods

2.1. Reagents

Alternariol (AOH) was purchased from Cfm Oskar Tropitzsch GmbH (Marktredwitz, Germany).
Native and chemically modified CDs, including β-CD (BCD), γ-CD (GCD), randomly methylated β-CD
(RAMEB), randomly methylated γ-CD (RAMEG), (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-CD
(or quaternary ammonium β-CD, QABCD), (2-hydroxy-3-N,N,N-trimethylamino)propyl-γ-CD (or
quaternary ammonium γ-CD, QAGCD), soluble β-CD polymer (cross-linked with epichlorohydrin;
BCD content: 70 m/m%), and insoluble β-CD bead polymer (BBP; CD-epichlorohydrin cross-linked
bead polymer; BCD content: 50 m/m%) were obtained from CycloLab Cyclodextrin Research and
Development Laboratory, Ltd. (Budapest, Hungary). HPLC-grade acetonitrile and methanol were
purchased from VWR (Budapest, Hungary). Stock solution of AOH (5000 µM) was prepared in
dimethyl sulfoxide (DMSO, spectroscopic grade; Fluka, NJ, USA) and was stored at −20 ◦C.

2.2. Spectroscopic Studies

Fluorescence spectroscopic measurements were carried out using a Hitachi F-4500 fluorescence
spectrophotometer (Tokyo, Japan) in the presence of air, at +25 ◦C. Samples with AOH (5 µM =

1.29 mg/L) and increasing amounts of CDs (final concentrations: 0.0, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0,
and 10.0 mM) were prepared in 50 mM sodium acetate (pH 5.0), sodium phosphate (pH 7.4), and
sodium borate buffers (pH 10.0). Since the aqueous solubility of BCD is lower vs. other CDs [38],
the concentrations of BCD were the following: 0.0, 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 mM. Fluorescence
emission spectra were recorded using 345 nm excitation wavelength, and the changes in the fluorescence
emission of AOH was evaluated at 460 nm.

Binding constants of AOH-CD complexes were determined employing the graphical application
of the following Benesi-Hildebrand equation [16,29,37]:

I0

(I − I0)
=

1
A

+
1

A×K × [CD]n
(1)

where K denotes the binding constant (unit: L/mol), I0 and I are the fluorescence intensity (λex =

345 nm, λem = 460 nm) of AOH without and with CDs, [CD] is the concentration of the host molecule
(unit: mol/L), A is a constant, and n is the number of binding sites.

To confirm the determined binding constants and binding stoichiometry of AOH-CD complexes,
some experimental data were also evaluated applying the Scatchard equation (for the 1:1 complex
formation) [39,40]:

(I − I0)

[CD]
= (IAOH−CD − I0) ×K − (I − I0) ×K (2)

where IAOH-CD is the fluorescence intensity when total AOH has been complexed with CDs.

2.3. Modeling Studies

Molecular modeling studies have been performed at semi-empirical AM1 level using HyperChem
8 code [41,42]. After geometry optimization at AM1 level, the vibrational-rotational analyses were
performed in harmonic approximation. Then, the enthalpy change of the complex formation was
considered as the energy change calculated by subtracting the total energies of the reactants from
the total energies of the products. Similarly, the entropy changes were calculated by subtracting the
entropy terms of the reactants from the entropy terms of the products. To consider the overall effect of
the entropy changes, the different terms of the entropy contents of all species were calculated applying
the Boltzmann-statistics. For example, after calculating the vibrational frequencies using the harmonic
approximation, the entropy was determined on the common way using the following HyperChem
code [41,42]:
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Svib = R
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 hvi/kT
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− 1
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hvi
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] (3)

where νi is the frequency of vibration and T is the temperature (298.16 K). The stability constants were
determined from the Gibbs free energy changes associated to the complex formation at 298 K. A neutral
aqueous environment was considered by the TIP3P solvation model implemented in HyperChem code
(HyperChem, Hypercube Inc. 2007).

Cyclodextrin derivatives (QABCD, RAMEB, QAGCD, and RAMEG) were considered as charged
species of the native molecules. Accordingly, the electron releasing property of the methyl groups
were considered as negatively charged native BCD or GCD molecules, while the electron withdrawing
character of quaternary ammonium moieties were considered as the positively charged native BCD
or GCD.

2.4. Extraction of AOH from Aqueous Solution with Insoluble β-Cyclodextrin Bead Polymer

The removal of AOH by BBP was tested in four buffers (50 mM sodium phosphate, pH 3.0; 50 mM
sodium acetate, pH 5.0; 50 mM sodium phosphate, pH 7.4; and 50 mM sodium borate, pH 10.0). AOH
(2 µM = 516.5 µg/L, 1.5 mL) was incubated in the presence of 0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 mg BBP in a
thermomixer (1000 rpm, 30 min, 25 ◦C). The insoluble beads were sedimented by pulse centrifugation
(4000 g, 3 sec, at room temperature), and then a 500 µL aliquot of the supernatant was diluted 1.5-fold
with acetonitrile (before dilution, the samples at pH 10.0 were acidified with 6.5 µL of 3 mM perchloric
acid). AOH contents of these samples were quantified by HPLC (see in Section 2.5).

Using the same experimental conditions, increasing concentrations of AOH (0.2, 0.5, 1.0, 2.5, 5.0,
7.5, 10.0, 12.5, and 15.0 µM in 1.5 mL buffer) were added to BBP (2.5 mg). Then, the AOH content of
supernatants was determined. Using these data, the interaction of AOH with BBP was evaluated based
on the Langmuir and Freundlich sorption isotherms [36,37]. The Langmuir equation is expressed as

qe =
Q0 ×KL ×Ce

(1 + KL ×Ce)
(4)

where qe is the amount of bound AOH (mg) by BBP (g), while Ce is the amount of unbound AOH (mg)
in the solution at equilibrium. Q0 is the calculated maximum amount of AOH (mg) bound per g of BBP,
and KL denotes the Langmuir equilibrium constant (L/mg). The Freundlich equation is described as

qe = KF ×C1/n
e (5)

where KF is the Freundlich constant (unit: (mg/g)(L/mg)1/n), while n is the heterogeneity index.

2.5. HPLC Analyses

The AOH content of samples was determined applying a HPLC system (Jasco; Tokyo, Japan)
built up by a binary pump (PU-4180), an autosampler (AS-4050), and a FP-920 fluorescence detector.
Samples (with 20 µL injected volume) were driven through a NovaPak C18 (4.0 × 3.0 mm) guard
cartridge linked to a NovaPak C18 (150 × 3.9 mm, 4.0 µm) analytical column. The mobile phase was
1 mM orthophosphoric acid (pH 3) and acetonitrile (60:40 v/v%). The isocratic elution was performed
with 1.0 mL/min flow rate at room temperature, then AOH was detected at 455 nm (λex = 345 nm).
Chromatographic data were evaluated using ChromNAV software (Version 2).

2.6. Comparison of the Interaction of Alternariol with β-Cyclodextrin, Soluble β-Cyclodextrin Polymer, and
Insoluble β-Cyclodextrin Bead Polymer at pH 3

According to the manufacturer’s description, the soluble BCD polymer and the BBP contain
approximately 70 and 50 m/m% BCD, respectively. Therefore, we can calculate the molar concentrations
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of BCD which are contained by the applied amounts of soluble BCD polymer and BBP. In the following
experiments, increasing amounts of BCD (final concentrations: 0, 0.25, 0.5, 1.0, 1.5, 2.0, and 2.5 mM) or
soluble BCD polymer (final concentrations were equivalent to 0, 0.14, 0.35, 0.7, 1.4, 2.1, and 2.8 mM of
BCD) were added to AOH (2 µM) in sodium phosphate buffer (50 mM, pH 3.0). Then, the changes in the
emission signal of AOH were recorded (λex = 345 nm, λem = 460 nm). According to these fluorescence
data, the logK values were calculated employing the Benesi-Hildebrand equation (Equation (1)),
assuming 1:1 stoichiometry of the complex formation.

Furthermore, based on the bound fraction of AOH in the presence of BBP (see details in 2.4 and
2.5), the logK values regarding AOH-BBP interaction was also calculated assuming 1:1 stoichiometry.

AOH + CD↔ AOHBCD (6)

K =
[AOHBCD]

[AOH] × [BCD]
(7)

where AOHBCD denotes the 1:1 stoichiometry complex of AOH with BCD, while [AOH], [BCD], and
[AOHBCD] are the molar concentrations of unbound AOH, unbound BCD, and AOH-BCD complex,
respectively.

2.7. Statistical Analyses

Data demonstrate mean± standard error of the mean (SEM) derived from at least three independent
experiments. Statistical significance was established based on the One-Way ANOVA test (p < 0.01)
using the IBM SPSS Statistics software (Version 21; New York, NY, USA).

3. Results

3.1. Effect of the Environmental pH on the Fluorescence Spectrum of Alternariol

First, the fluorescence excitation spectra of AOH were recorded under acidic (pH 5.0), physiological
(pH 7.4), and alkaline (pH 10.0) conditions, using 417 and 465 nm emission wavelengths. Under acidic
circumstances, the excitation maximum of AOH appeared approximately at 350 nm. Then, with the
elevation of the pH, a slight blue shift (350→340 nm) and the decreased intensity of this peak was
observed (Figure 2A). Furthermore, at pH 7.4, a second excitation peak appeared at 410 nm, which
became highly dominant at pH 10.0 (Figure 2B).
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Figure 2. Fluorescence excitation (A: λem = 417 nm; B: λem = 465 nm) and emission (C: λex = 345 nm)
spectra of AOH (50 µM = 12.9 mg/L) in sodium acetate (50 mM, pH 5.0), sodium phosphate (50 mM,
pH 7.4), and sodium borate (50 mM, pH 10.0) buffers (ex slit: 10 nm, em slit: 10 nm; RLU, relative
light unit).

Emission spectra of AOH were recorded using 345 nm excitation wavelength. At pH 5.0, the
emission maximum of AOH appeared at 417 nm, while the red shift of the emission spectrum was
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observed with the elevation of pH, showing emission maxima at 425 and 465 nm at pH 7.4 and 10.0,
respectively (Figure 2C). Using 410 nm excitation wavelength, a large emission peak was noticed
approximately at 450 nm, while this emission peak was significantly lower and missing at pH 7.4 and
5.0, respectively (Figure S1).

3.2. Effects of Cyclodextrins on the Fluorescence Spectrum of Alternariol

To characterize the interactions of AOH with CDs (native, randomly methylated, and quaternary
ammonium β- and γ-CDs), fluorescence emission spectra of AOH were recorded in the presence
of increasing CD concentrations using a 345 nm excitation wavelength. In the presence of CDs,
a significant red shift in the emission spectrum of AOH was observed, and the AOH-CD complexes
showed their emission maxima around 450–470 nm depending on the CD and the buffer used (Figure 3).
Therefore, we selected 460 nm for the following comparison and evaluations (e.g., calculation of binding
constants). At acidic and physiological pH, noticeably two emission peaks can be distinguished in the
presence of CDs (peak 1 around 410 nm and peak 2 around 450 nm), as it is demonstrated in Figure 3
regarding GCD. This shape of the emission spectra was same in the presence of uncharged CDs (BCD,
RAMEB, GCD, and RAMEG) at pH 5.0 and 7.4 (Figure 3A). However, at pH 10.0, peak 1 seems to be
disappeared and a further red shift of the emission maximum was observed (Figure 3B).
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The emission spectra of AOH in the presence of cationic CDs (tetraalkylammonium salts, QABCD
and QAGCD) behaved similar to the uncharged CDs at pH 5.0 (Figure 4A) and 10.0 (Figure 4C), while
the strong decrease of peak 1 vs. peak 2 was noticed even at pH 7.4 (Figure 4B).

A further typical difference between uncharged and cationic CDs is also demonstrated using
GCD and QAGCD as examples. At acidic and physiological pH, GCD induced a strong increase in
the fluorescence of AOH even at 0.25 mM concentration, and the emission signal of AOH reached its
maximum in the presence of 4 mM GCD (Figure 3A,C). However, at pH 10.0, the emission signal of
AOH only slightly increased by low GCD concentrations (0.25 and 0.5 mM) and strongly raised (as well
as did not reach its plateau) even in the presence of 10 mM GCD (Figure 3B,D). In contrast, increasing
concentrations of QAGCD induced a less steep, gradual increase in the fluorescence of AOH at pH
5.0 (0.25 and 0.5 mM concentrations of QAGCD produced only slight effects, and the fluorescence
signal did not reach a maximum even in the presence of 10 mM QAGCD) (Figure 4A,D). At pH 7.4,
a steeper elevation in fluorescence can be observed compared to the acidic environment (Figure 4B,E).
Furthermore, at pH 10.0, QAGCD induced a spectacular increase in the fluorescence of AOH even at
low concentration (e.g., 0.25 mM), and the emission signal of the mycotoxin reached its maximum
even in the presence of 3 mM QAGCD (Figure 4C,F).
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(pH 10.0; C) buffers (λex = 345 nm). QAGCD-induced increase in the emission signal of AOH (λex =

345 nm, λem = 460 nm) in acetate (pH 5.0; D), phosphate (pH 7.4; E), and borate (pH 10.0; F) buffers
(ex slits: 10 nm at each pH; em slits: 20, 20, and 10 nm at pH 5.0, 7.4, and 10.0, respectively; RLU,
relative light unit).

In a concentration-dependent fashion, each CD tested markedly increased the fluorescence
emission signal of AOH (Figure 5; λex = 345 nm, λem = 460 nm), except the native BCD, which only
slightly enhanced the fluorescence of the mycotoxin (from 1.1- to 2.0-fold increase was observed in
the presence of 5 µM AOH and 2.0 mM BCD). At pH 5.0 and 7.4, the native GCD proved to be the
strongest fluorescence enhancer. However, at pH 10.0, quaternary ammonium derivatives were the
most effective from this point of view, QABCD induced the strongest increase in the emission signal of
AOH (Figure 5).
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Figure 5. Absolute fluorescence signal (±SEM) of AOH (5 µM) in the absence and presence of CDs
(10 mM each) in different buffers: sodium acetate (50 mM, pH 5.0), sodium phosphate (50 mM, pH 7.4),
and sodium borate (50 mM, pH 10.0) (λex = 345 nm, λex = 460 nm; ex slit: 10 nm, em slit: 10 nm; RLU,
relative light unit). Because of the lower aqueous solubility of BCD vs. other CDs tested, BCD has not
been demonstrated here.



Biomolecules 2019, 9, 428 8 of 18

3.3. Binding Constants of Alternariol-Cyclodextrin Complexes

Binding constants of AOH-CD complexes were determined based on fluorescence emission data
employing the graphical application of the Benesi-Hildebrand equation (Equation (1); λex = 345 nm,
λem = 460 nm; logK values were also determined using other emission wavelengths to confirm our
results). Benesi-Hildebrand plots showed good linearity (R2 = 0.95–0.99) with the 1:1 stoichiometry
model (Figure 6).
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345 nm, λex = 460 nm): (A) sodium acetate (50 mM, pH 5.0), (B) sodium phosphate (50 mM, pH 7.4),
and (C) sodium borate (50 mM, pH 10.0).

The calculated logK values of AOH-CD complexes are listed in Table 1. Because of the lower
aqueous solubility of BCD, its lower concentrations were applied (see Section 2.2). Therefore, the
Benesi-Hildebrand plots of AOH-BCD complex are demonstrated separately in Figure S2. LogK values
were in the range of 2.1–3.6, suggesting the strongly differing stabilities of AOH-CD complexes,
depending on the CD applied and the environmental conditions (Table 1). Under acidic and
physiological circumstances, the binding constants of RAMEB, GCD, and RAMEG complexes were
significantly higher than at pH 10.0. At pH 5.0 and 7.4, the native GCD formed highly the most stable
complexes with the mycotoxin. However, under alkaline circumstances (pH 10.0), AOH bound to the
quaternary ammonium derivatives (QABCD and QAGCD) with approximately 10-fold higher affinity
than to other CDs tested.

Table 1. Decimal logarithmic values of the binding constants (K; unit: L/mol) of AOH-CD complexes.

Mycotoxin-CD
Complex

logK (±SEM)

pH 5.0 pH 7.4 pH 10.0

AOH-BCD 2.23 ± 0.01 2.52 ± 0.01 2.22 ± 0.03
AOH-RAMEB 2.50 ± 0.02 2.64 ± 0.01 2.11 ± 0.03
AOH-QABCD 2.38 ± 0.03 2.85 ± 0.04 3.40 ± 0.01

AOH-GCD 3.18 ± 0.06 3.21 ± 0.01 2.17 ± 0.03
AOH-RAMEG 2.96 ± 0.03 3.03 ± 0.03 2.23 ± 0.03
AOH-QAGCD 2.11 ± 0.03 2.97 ± 0.01 3.58 ± 0.03

Buffers used: sodium acetate (50 mM, pH 5.0), sodium phosphate (50 mM, pH 7.4), and sodium borate (50 mM, pH
10.0). See further details in Section 2.2 and Figure 6.

Since a marked emission peak also appeared around 410 nm at pH 5.0 regarding each CD
examined (see in Figure 4A), the binding constants were also determined at pH 5.0 using 345 and
410 nm excitation and emission wavelengths, respectively. The calculated binding constants were
same as the data determined applying 460 nm emission wavelength (see in Table 1).
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To confirm the binding constants and stoichiometry determined based on the Benesi-Hildebrand
equation, some data were also evaluated using the graphical application of the Scatchard equation
(Equation (2); λex = 345 nm, λem = 460 nm). The Scatchard plot of AOH-GCD complex (at pH 7.4) is
demonstrated in Figure S3. This model also showed an excellent correlation with the 1:1 stoichiometry
of complex formation, and gave similar binding constants to the evaluation performed with the
Benesi-Hildebrand plot (e.g., the logK values regarding AOH-GCD complex were 3.21 ± 0.01 vs.
3.31 ± 0.05 based on the Benesi-Hildebrand plot and the Scatchard plot, respectively).

3.4. Modeling Studies

To get a deeper insight into the complex formation, the AOH guest molecule and its deprotonated
derivatives with the CD host molecules were investigated. The host molecules were represented by
variation of the total molecular charge of the parent BCD and GCD molecules, while the deprotonated
guest molecules were represented by their most stable conformers. Accordingly, the most probable
deprotonation route of AOH is determined considering the formation energies associated to each
deprotonation step. The differently protonated derivatives of AOH (Figure 7) were then used to
investigate the complex formation. The inclusion of AOH by the cavities of BCD and GCD is
demonstrated in Figure 8. A steric hindrance appeared regarding AOH-BCD interaction, so the
mycotoxin is therefore able to sink deeper into the cavity of GCD.
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Figure 7. The energetically most favorable deprotonation route of AOH (from left to right: nonionic
AOH, monoanionic AOH, dianionic AOH, and trianionic AOH) determined at AM1 method in the
present work (C, O, and H atoms are indicated with blue, red, and white spheres, respectively). These
results are in agreement with the previous study of Tu and co-workers (calculated at B3LYP using
6-311++G** basis set) [43].
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Figure 8. Equilibrium conformation with isosurface charge grids of AOH-BCD (left) and AOH-GCD
(right) complexes. C, O, and H atoms of BCD and GCD are indicated with blue, red, and white spheres,
respectively; while AOH is represented by black spheres.

Based on modeling studies, the logK values associated to the formation of AOH-CD complexes
were calculated and are summarized in Table 2. These results support the higher stability of AOH-GCD
vs. AOH-BCD complexes and are in agreement with the experimental data (Table 1) according to the
tendencies of the protonation state or the electron density of the host cavity. Native and randomly
methylated CDs form more stable complexes with the nonionic form of the mycotoxin, while the
positively charged quaternary ammonium derivatives prefer the deprotonated forms of AOH.
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Table 2. LogK values (the unit of K is L/mol) of AOH-CD complexes based on theoretical calculations.
Semi-empirical AM1 method with TIP3P solvation model was applied.

Host
Molecule

Host
Simulated as

LogK Values of AOH and Its Deprotonated Forms
AOH

(Nonionic)
AOH

(Monoanionic)
AOH

(Dianionic)
AOH

(Trianionic)

BCD 0 BCD 2.61 2.51 2.46 2.42
RAMEB −1 BCD 2.52 2.41 2.32 2.14
QABCD +1 BCD 2.48 2.81 2.98 3.40

GCD 0 GCD 3.17 3.11 3.04 2.61
RAMEG −1 GCD 3.11 2.87 2.72 2.46
QAGCD +1 GCD 2.29 2.88 3.12 3.46

The methyl derivatives (RAMEB and RAMEG), due to the electron releasing property of methyl substituent, were
considered as negatively charged (−1) CDs. The quaternary ammonium derivatives (QABCD and QAGCD), because
of the electron withdrawing character of the tetraalkylammonium moiety, were considered as the positively charged
(+1) CDs.

3.5. Extraction of Alternariol from Aqueous Solution by Insoluble β-Cyclodextrin Bead Polymer

Since the first acid dissociation constant (pKa) value of AOH is approximately 8.4 [44], we did
not see reasonable to use lower pH than 5.0 in the previous experiments. However, AOH commonly
appears in more acidic drinks (e.g., wine and tomato juice). Therefore, the removal of AOH by BBP was
tested in the pH range of 3.0–10.0. The standard concentration of AOH (2 µM = 516.5 µg/L, in 1.5 mL
buffer) was incubated in the presence of increasing amounts of BBP (1.0–20.0 mg/1.5 mL; see further
details in Section 2.4), then the mycotoxin content of the supernate was quantified by HPLC-FLD (see
Section 2.5). In a concentration-dependent fashion, BBP removed significant amounts of AOH from
aqueous solutions (Figure 9). Insoluble β-cyclodextrin bead polymer was similarly effective mycotoxin
binder in the 3.0-7.4 pH range. However, its AOH binding ability was strongly decreased at pH 10.0
compared to the other buffers applied. Under acidic and weakly alkaline circumstances (pH 3.0–7.4),
even low amounts of BBP (1.0 mg/1.5 mL) caused approximately 60% decrease in the mycotoxin content
of the solutions, and 10.0 mg/1.5 mL BBP almost completely removed AOH (Figure 9). However, at pH
10.0, only 47 and 66% decrease in the AOH content of the supernatant was observed in the presence of
10.0 and 20.0 mg/1.5 mL BBP, respectively.
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Figure 9. Extraction of AOH from aqueous solutions by insoluble β-cyclodextrin bead polymer (BBP).
Effects of increasing concentrations of BBP (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 mg/1.5 mL) on the AOH
(initial concentration: 2 µM) content of different buffers (50 mM sodium phosphate, pH 3.0; 50 mM
sodium acetate, pH 5.0; 50 mM sodium phosphate, pH 7.4; and 50 mM sodium borate, pH 10.0).
Incubations were carried out in a thermomixer (1000 rpm, 30 min, 25 ◦C; * p < 0.01).

To quantitatively characterize the AOH binding ability of BBP, increasing AOH concentrations
(0.2–15µM in 1.5 mL buffer) were added to standard amount of BBP (2.5 mg) in sodium phosphate buffer
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(pH 3.0). Figure 10 demonstrates the corresponding Langmuir and Freundlich isotherms. Experimental
data showed good fitting with both Langmuir (Equation (4)) and Freundlich (Equation (5)) models
(R2 = 0.98 and 0.97, respectively). The Langmuir equilibrium constant (KL) was 0.16 ± 0.04 L/mg,
and the maximum quantity of AOH (mg) bound per gram of BBP (Q0 value) was 41.92 ± 3.94 mg/g.
Furthermore, the Freundlich constant (KF) was 5.52 ± 1.31 (mg/g) × (L/mg)1/n, while the 1/n value was
0.74 ± 0.04.
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Figure 10. Langmuir (solid line) and Freundlich (dashed line) isotherms for the AOH binding of BBP
in sodium phosphate buffer (50 mM, pH 3.0). The amount of bound AOH (mg) by BBP (g) and the
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3.6. Comparison of the Interactions of Alternariol with Native β-Cyclodextrin, Soluble β-Cyclodextrin Polymer,
and Insoluble β-Cyclodextrin Bead Polymer

Despite the stability of AOH-BCD complex is relatively low (Table 1), BBP very effectively
decreased the mycotoxin content of aqueous solution (Figure 9). To test the hypothesis that BCD
polymers may have considerably higher AOH binding capacity compared to the native BCD, the
AOH binding ability of BCD, soluble BCD polymer, and BBP were compared in the same buffer
(sodium phosphate, pH 3.0). Increasing amounts of BCD and soluble BCD polymer were added to
AOH (2 µM), and then fluorescence emission spectra were recorded. According to the manufacturer’s
description, the soluble BCD polymer and the BBP contains approximately 70 and 50 m/m% BCD,
respectively. Based on these data, BCD concentrations contained by the applied amounts of soluble
BCD polymer and BBP were calculated. The relative increase in the fluorescence emission signal of
AOH (I/I0) in the presence of BCD and soluble BCD polymer was plotted as a function of the BCD
concentration (Figure 11A,B). Similarly, the bound fraction of AOH in the presence of BBP (calculated
based on the data represented in Figure 9) was also plotted vs. the BCD concentration contained by BBP
(Figure 11C). Under the applied conditions, BCD induced less than 10% increase in the emission signal
of AOH, while soluble BCD polymer caused more than five-fold enhancement in the fluorescence
of the mycotoxin (Figure 11A,B). β-cyclodextrin polymers which are equivalent to 1.5–2.0 mM BCD
content were able to bind close the total amount of AOH molecules (Figure 11A,B). However, the
curve of BCD was far from the saturation even in the presence of 2.5 mM BCD (Figure 11A). Binding
constants were quantified using the Benesi-Hildebrand equation (Equation (1); for BCD and soluble
BCD polymer) and based on the free and bound fractions of AOH and BBP (Equation (7); for BBP),
assuming 1:1 stoichiometry of complex formation (see details in Section 2.6). LogK values were 2.40
(±0.07), 3.40 (±0.01), and 3.67 (±0.07) regarding BCD, soluble BCD polymer, and BBP, respectively.
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Figure 11. Comparison of the interactions of AOH with BCD, soluble BCD polymer, and BBP. Relative
increase (I/I0) in the fluorescence emission intensity of AOH in the presence of increasing concentrations
of BCD (A; λex = 345 nm, λex = 460 nm). Relative increase (I/I0) in the fluorescence emission intensity of
AOH in the presence of increasing concentrations of soluble BCD polymer (B; λex = 345 nm, λex = 460 nm;
concentration of BCD represents the molar BCD content of the applied amount of the soluble polymer).
Bound fraction of AOH (% of total AOH concentration; calculated based on the data demonstrated in
Figure 9) in the presence of increasing concentrations of BBP (C; concentration of BCD represents the
molar BCD content of the applied amount of BBP). Each experiment was performed with 2 µM AOH
concentration in sodium phosphate buffer (50 mM, pH 3.0).

4. Discussion

AOH possesses three phenolic hydroxyl groups (Figure 1). Considering the previously reported
pKa values of AOH (8.4, 9.7, and 13.6) [44], it appears dominantly in its nonionic form (each phenolic
hydroxyl group of the mycotoxin is protonated) at pH 5.0. With the elevation of the pH, significant
changes in the fluorescence excitation and emission spectra of AOH were observed (Figure 2 and
Figure S1), likely due to the deprotonation of the mycotoxin. In the applied pH range, the nonionic,
monoanionic, and dianionic forms of the mycotoxin appear at relevant concentrations. Unfortunately,
we cannot see separately the fluorescence spectra of the ionized forms because both monoanionic
and dianionic AOH gradually appear with the elevation of the pH. Two distinct peaks were noticed
in the excitation spectra of AOH (approximately at 350 and 410 nm; see in Figure 2A,B). The lack
of the second peak at pH 5.0 and its appearance at higher pH values (pH 7.4 and 10.0) suggest
that the higher excitation peak (at 410 nm) belongs to the ionized forms of the mycotoxin. This
hypothesis is also supported by the emission spectra recorded using 410 nm excitation wavelength:
no significant emission was noticed at pH 5.0, while an increasing emission peak appeared at higher
pH values applied (Figure S1A). Furthermore, with the elevation of the pH, the first excitation peak
(around 350 nm) decreased but did not disappear (Figure 2A,B). Thus, the first excitation peak can
also be applied during the investigation of the ionized mycotoxins (at least monoanionic AOH). This
hypothesis is also supported by the observation that significant emission signal of the mycotoxin was
noticed using 345 nm excitation wavelength, even at pH 10.0 (Figure 2C).

Using 345 nm excitation wavelength, the emission spectrum of AOH seems to be one wide peak
(Figure 2C). However, in the presence of CDs, we can distinguish two emission peaks (around 410 and
460 nm) at pH 5.0 and 7.4 (Figures 3 and 4). Since AOH has tautomers [43], these two peaks likely
belong to the two tautomeric forms of nonionic AOH. The tautomers can be visibly distinguished
only in the presence of CDs, as it has also been reported regarding flavonoids fisetin and geraldol [45].
LogK values of AOH-CD complexes were determined at pH 5.0 using both 410 and 460 nm emission
wavelengths, during which the calculated binding constants were identical. Based on these data, the
tautomers of nonionic AOH bind to the same CD with the same affinity. With the elevation of the pH,
the first emission peak became less dominant and/or disappeared at pH 10.0. Cationic CDs tested
(QABCD and QAGCD) induced the strong decrease of the emission peak at 410 nm even at pH 7.4
(Figure 4), while it was not observed with other CDs (BCD, RAMEB, GCD, and RAMEG) (Figure 3).
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These observations support that the emission peak at 410 nm belongs to the nonionic AOH. Since
quaternary ammonium derivatives form more stable complexes with the ionized form(s) of AOH
(Tables 1 and 2), QABCD and QAGCD can shift the chemical equilibrium toward the deprotonation of
the mycotoxin, which consequently leads to the decreased emission peak at 410 nm.

GCD and QABCD induced a more than ten-fold increase in the fluorescence of AOH at pH 7.4 and
10.0, respectively. Cyclodextrins have been widely used to increase the performance and sensitivity of
analytical techniques, including mycotoxin analysis [32,33,46]. Previous studies demonstrated that the
fluorescence intensity of fluorescent mycotoxins can be strongly increased as a result of the formation
of mycotoxin–CD host–guest type complexes [29,33,42,47]. It can be explained by the fact that water
molecules can significantly quench the fluorescence of aromatic fluorophores [48]. Since the inclusion
of the mycotoxin by the apolar CD cavity disrupts the hydration shell of the mycotoxin, the quenching
effect of water molecules decreases, and consequently the increased fluorescence signal of AOH can be
observed [27,41,42]. As the modeling studies suggest, non-ionized AOH sinks deeper into the GCD
than into the BCD cavity (Figure 8). Therefore, the greater part of the fluorophore is protected from
the external quencher molecules, which may explain the stronger enhancement in the fluorescence of
AOH in the presence of GCD vs. BCD. Furthermore, at pH 10.0, the electrostatic interaction between
the anionic form(s) of AOH and the positively charged quaternary ammonium CDs can increase the
steric hindrance of AOH [49], leading to the strong increase in the fluorescence of the mycotoxin.

The stability of AOH-CD complexes was highly influenced by the environmental pH and by the
CD applied (Table 1). At pH 10.0, QAGCD formed the most stable complex with the mycotoxin, while
at pH 5.0 and 7.4, GCD formed the most stable complexes with the mycotoxin. The interaction of AOH
with BCD was poorly affected by the pH. The binding constants of AOH-RAMEB, AOH-RAMEG, and
AOH-GCD complexes were significantly higher at pH 5.0 and 7.4 (three-, six-, and 10-fold, respectively)
vs. at pH 10.0. However, the stability of AOH-QABCD (three-fold at pH 7.4 and 10-fold at pH 10.0
compared to at pH 5.0) and AOH-QAGCD (seven-fold at pH 7.4 and 30-fold at pH 10.0 compared to at
pH 5.0) complexes gradually increased with the elevation of the pH. Since at pH 10.0 the monoanionic
and dianionic forms of AOH are dominant, these observations suggest that uncharged CDs generally
prefer the nonionic form of AOH, while quaternary ammonium derivatives bind to the anionic form(s)
of the mycotoxin with much higher affinity. Because QABCD and QAGCD are positively charged
tetraalkylammonium cations, it is reasonable to hypothesize the ionic interaction between these
CDs and AOH anion(s). Besides the inclusion, an electrostatic interaction contributes to the strong
binding between the deprotonated AOH and the positively charged cavity entrance of γ-CD torus.
It seems a close structural and functional analogy to rocuronium–Sugammadex interaction, where the
aminosteroid non-depolarizing muscle relaxant guest binds with high affinity to the anionic γ-CD
derivative [50]. The deprotonation of the AOH causes its negatively charged state, which is enhanced
by the elevating pH. Modeling studies highlighted that this charge interacts with the host cavity and the
electron density of the host molecule moderates the secondary host–guest interactions by the coulomb
repulsion (RAMEB, RAMEG) or coulomb attraction (QABCD, QAGCD). As a result, the stability of
AOH-QABCD and AOH-QAGCD complexes is increased by the deprotonation of AOH. In contrast,
the opposite tendency was observed with AOH-RAMEB and AOH-RAMEG complexes. The slightly
electron rich character of the GCD cavity causes reduced stability at higher deprotonated state of AOH.
Overall, higher complex stabilities were observed with γ-CDs than with β-CDs in both spectroscopic
(Table 1) and modeling (Table 2) studies, which is probably resulted from the steric hindrance appeared
during the interactions with the smaller BCD cavity. Therefore, the entry of AOH molecule into the
host cavity is deeper during the formation of AOH-GCD vs. AOH-BCD complexes (Figure 8).

Data showed good fitting to the 1:1 stoichiometry models regarding both Benesi-Hildebrand
(Figure 6) and Scatchard plots (Figure S3), suggesting the 1:1 stoichiometry of complex formation.
Furthermore, modeling studies also predicted the formation of 1:1 complexes. Despite the fact that
GCD has a large cavity size (which theoretically makes possible the inclusion of more than one guest
molecules), the deep inclusion of nonionic AOH inhibits the accommodation of another guest molecule
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due to the steric hindering. In each other case, when AOH is presented in its anionic form(s), the
repulsive interaction between AOH molecules also prevents the formation of AOH-GCD complexes
with higher stoichiometry.

The occurrence of mycotoxins in foods, feeds, and beverages is a considerable health and economic
hazard worldwide. To reduce the mycotoxin content of these products, decontamination strategies are
extensively studied, including filtration, heat treatment, ultraviolet radiation, addition of chemical
reagents or adsorbents, etc. [51–54]. Insoluble CD polymers have been tested in few studies for
decontamination/extraction purposes: they were successfully applied for the removal of patulin from
apple juice [34,35], zearalenone from corn beer [37], and ochratoxin A from red wine [36]. Furthermore,
CDs can also entrap the masked mycotoxin zearalenone-14-O-β-D-glucoside. BBP significantly reduced
the zearalenone-14-O-β-D-glucoside content of aqueous solution [55]. Despite AOH-BCD complex
showed similar binding constant in the pH range tested (pH 3.0–10.0; see in Sections 3.3 and 3.6), BBP
proved to be a less effective mycotoxin binder at pH 10.0 compared to other conditions examined
(pH 3.0–7.4). The extraction of zearalenone by BBP was examined in our previous study under similar
experimental conditions. AOH and zearalenone were removed from aqueous solutions by BBP with
similar efficiency [37]. The successful extraction of AOH by BBP under acidic circumstances suggests
the potential suitability of insoluble CD polymers regarding the decontamination of acidic beverages
like wines (pH ~ 3.1–3.9 [56]) and tomato juice (pH ~ 4.0–4.2 [57]), beverages that are frequently
contaminated with Alternaria mycotoxins [9,10].

The sorption isotherms can quantitatively describe the mycotoxin binding ability of BBP. Langmuir
isotherm describes strictly homogenous monolayer adsorption, while Freundlich model does not have
this restriction [58]. The Langmuir equilibrium constants of the interactions of AOH and zearalenone
with BBP were in the same range (0.16 and 0.6 L/mg, respectively), while Q0 value (describing the
maximum quantity of the mycotoxin bound per gram of BBP) was significantly higher for AOH (42 vs.
3 mg/g) [37]. The Freundlich constant suggests the higher adsorptive capacity of BBP regarding AOH
compared to zearalenone (5.5 and 1.2 (mg/g) × (L/mg)1/n, respectively) [37]. The heterogeneity index (n)
for AOH-BBP interaction is close to 1, suggesting the relatively homogenous sorption of AOH by BBP.

The observation that AOH was removed from aqueous solutions by BBP with similar efficiency
to zearalenone [37] was unexpected because AOH binds to BCD with considerably lower affinity
compared to zearalenone (the logK values of AOH-BCD and zearalenone-BCD complexes are 2.2 and
4.0 at pH 5.0, respectively) [59]. As it is described in Section 3.6, both soluble BCD polymer and BBP
were able to bind AOH with considerably higher efficiency than it was expected considering their BCD
content. The calculated logK values listed in Section 3.6 do not describe precisely the interaction of
AOH with CD polymers (because their BCD content was considered as BCD monomers). Nevertheless,
these data clearly demonstrate the higher binding capacity of BCD polymers vs. the BCD monomer.
The complexing potency of epichlorohydrin cross-linked BCD polymers sometimes surpasses that of the
corresponding monomer (BCD) [60–63]. This phenomenon resulted from the cooperative/synergistic
interaction of neighboring CD units, leading to the improved entrapment/complexing properties
of the covalently linked rings [60,63]. Moreover, cross-linked CDs can be considered as partially
and statistically dihydroxypropylated CD ethers (Figure S4), which show improved water solubility
at room temperature (the disturbed H-bond system on the secondary face of the cavity entrance
commonly enhances the aqueous solubility). The better solubility of BCD polymers (vs. BCD) and
the cooperating lipophilic cavities, as well as the flexibly cross-linked CD network, support the
more effective encapsulation and the more stable interaction with poorly water-soluble bulky guest
molecules, such as AOH.

5. Conclusions

In summary, the interaction of mycotoxin AOH was examined with CDs and CD polymers. Most
of the CDs induced a strong increase in the fluorescence signal of AOH. The native γ-CD proved to be
the most successful fluorescence enhancer among the β- and γ-CDs tested, resulting in approximately
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15-fold increase in the emission signal of AOH at pH 7.4. Native and methyl-substituted CDs formed
more stable complexes with the nonionic form of the mycotoxin (under acidic and physiological
conditions), while the quaternary ammonium derivatives prefer the ionized form(s) of AOH (which
appear under alkaline circumstances). BBP successfully removed AOH from aqueous solutions under
acidic and close to neutral conditions, but it was a less effective mycotoxin binder at pH 10.0. The
AOH binding ability of soluble BCD polymer and BBP was significantly higher than expected based
on their BCD content, suggesting the cooperative/synergistic interaction of neighboring CD units in
the polymers applied. Based on the above-listed observations, CD technology seems a promising tool
to improve the sensitivity of the fluorescence detection of AOH. Furthermore, CD polymers may be
suitable for the development of new mycotoxin binders to remove AOH from contaminated beverages
and consequently to decrease mycotoxin exposure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/9/428/s1,
Figure S1: Emission spectra of AOH using 410 nm excitation wavelength, Figure S2: Investigation of AOH-BCD
complex formation based on the Benesi-Hildebrand equation (Equation (1)). Figure S3: Investigation of AOH-GCD
complex formation based on the Scatchard equation (Equation (2)). Figure S4: Schematic representation of the
chemical structure of epichlorohydrin cross-linked BCD polymer.
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