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Conflict-free coloring of graphs
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Abstract

We study the conflict-free chromatic number χCF of graphs from ex-

tremal and probabilistic point of view. We resolve a question of Pach and

Tardos about the maximum conflict-free chromatic number an n-vertex

graph can have. Our construction is randomized. In relation to this we

study the evolution of the conflict-free chromatic number of the Erdős-

Rényi random graph G(n, p) and give the asymptotics for p = ω(1/n).
We also show that for p ≥ 1/2 the conflict-free chromatic number differs

from the domination number by at most 3.

MSC classes: 05C35, 05C15, 05C80, 05D40, 05C69.

1 Introduction and definitions

Let G = (V,E) be a simple graph. For every x ∈ V we denote by N(x) = {y ∈
V : xy ∈ E} its neighborhood and by N [x] = N(x)∪{x} its closed neighborhood.
A (not necessarily proper) vertex coloring χ of G is called conflict-free, if for
each vertex x ∈ V , there exists a vertex y in N [x] whose color is different
from the color of each other vertex in N [x]. We then say that y has unique

color in N [x]. The conflict-free chromatic number χCF (G) is the smallest r,
such that there exists a conflict-free r-coloring of G. Conflict-free coloring can
be interpreted as a relaxation of the usual proper coloring concept where each
vertex x is required to have a unique color in its own closed neighborhood N [x].
Hence χCF (G) ≤ χ(G) for every graph G.

The study of conflict-free colorings was originated in the work of Even,
Lotker, Ron, and Smorodinsky [4] and Smorodinsky [9] who were motivated
by the problem of frequency assignment in cellular networks. (See the recent
survey by Smorodinsky [10].) In most of these classical instances the graphs
studied arise from a geometric setting. Recently Pach and Tardos [7] initiated
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the study of the problem for abstract graphs and hypergraphs. Here we continue
the consideration of conflict-free colorings of abstract graphs.

Note that, unlike the proper coloring number, the conflict-free chromatic
number is not monotone. In particular, in the two extremes χCF (Kn) = 2 for
the complete graph and χCF (K̄n) = 1 for the empty graph, while the conflict-
free chromatic number of general graphs can be arbitrarily high. We investigate
this parameter from extremal and probabilistic points of view.

Pach and Tardos [7] raised the problem of determining the order of mag-
nitude of χCF (n) := max{χCF (G) : |V (G)| = n}, the largest conflict-free
chromatic number an n-vertex graph can have. From above they showed
χCF (n) = O

(

ln2 n
)

but from below they could only prove that the conflict-

free coloring number of the random graph G
(

n, 12
)

is asymptotically almost
surely Ω(lnn), hence χCF (n) = Ω(lnn). Here asymptotically almost surely
means probabilities tending to 1 as n goes to infinity and it will be abbreviated
below as a.a.s.

At first one could try to improve the lower bound χCF (n) by considering the
random graph G(n, p) with some p = p(n) 6= 1/2. In our first theorem we give
tight estimates (holding a.a.s.) for the conflict-free chromatic number of these
random graphs. Our bounds show that some probabilities p(n) → 0 yield the
highest conflict-free coloring numbers for the G(n, p(n)), but these are only a
constant factor larger than those of G(n, 1/2).

To state our theorem we introduce

µ = µ(p) = max{ip(1− p)i−1 : i ∈ N+}

for 0 < p < 1. Notice that the maximum is taken at i = ⌊1/p⌋ so we have

µ(p) =

⌊

1

p

⌋

p(1− p)⌊1/p⌋−1,

and (as simple calculation shows) this is a strictly increasing function tending
to e−1 as p goes to 0.

Theorem 1. For every ε > 0 and every function 0 < p = p(n) < 1 − ε such

that np(n) → ∞, the following holds a.a.s.

(1 − ε)
ln(np)

− ln(1− µ(p))
≤ χCF (G(n, p)) ≤ (1 + ε)

ln(np)

− ln(1− µ(p))
.

Note that the theorem implies χCF (G(n, p)) = O(log n) a.a.s. for all p
considered. It is not hard to show that the O(log n) upper bound is also valid
a.a.s. in the full range of p ∈ [0, 1]. For the range p = O(1/p) this follows from
χCF (G) ≤ χ(G) ≤ ∆(G)+1, but in this range we are not able to determine the
asymptotics.

For 1/2 ≤ p < 1 we can prove an even tighter result: the conflict-free coloring
number differs by at most 3 from the domination number. A set S of vertices
of a graph G constitutes a dominating set if each v ∈ V is either in S or is
adjacent to a vertex in S. The domination number D(G) is the smallest size of
a dominating set in G.

Theorem 2. For every graph G,

χCF (G) ≤ D(G) + 1.
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Furthermore, for 1
2 ≤ p(n) a.a.s.

D(G(n, p(n)))− 3 ≤ χCF (G(n, p(n))).

The domination number of the random graph with constant p was pinned
down to be one of two integers a.a.s. by Wieland and Godbole [11]. Furthermore,
it was observed by Glebov, Liebenau, and Szabó [5] that the same result holds
also for a variable p(n). The following is a corollary of these results for the range
of our interest:

Theorem 3 (Corollary of [11, 5]). For 1/2 ≤ p < 1 the domination number

D(G(n, p(n)) is either
⌊

lnn−2 ln lnn+ln ln 1

1−p

− ln(1−p)

⌋

+ 1 or one more a.a.s.

Hence the behavior of χCF is also very well understood in this range. In fact,
we prove Theorem 2 by calculating the a.a.s. lower bound on χCF (G(n, p)) and
comparing it with the a.a.s. domination number. Notice that using Theorem 3
Theorem 2 implies Theorem 1 for the range p ≥ 1/2, where we have µ(p) = p.
We mention that for the range p < 1

2 the results of [11, 5] on the domination
number and Theorem 1 imply that the conflict-free chromatic number and the
domination number differ in the asymptotics.

In our final result we resolve the open problem of Pach and Tardos [7] re-
garding χCF (n) by constructing n-vertex graphs G with χCF (G) = Ω(ln2 n).

Theorem 4.
χCF (n) = Θ(ln2 n).

The structure of the paper is the following: in Section 2 we prove Theorems 1
and 2, while Theorem 4 is proven in Section 3. For simplicity we routinely
omit floor and ceiling signs as long as they do not influence the validity of our
asymptotic statements.

Notation. Let G be a graph with vertex set V = V (G) and let A ⊆ V . We

say that N
(1)
G (A) = {v ∈ V \A : |N(v) ∩ A| = 1} is the one-neighborhood of A

and NG(A) = V \⋃x∈AN [x] is the non-neighborhood of A. The subscript G is
omitted if it is clear from the context.

We use
(

V
m

)

to denote the set of all m-element subsets of V .

2 Evolution of the conflict-free chromatic num-

ber in random graphs

2.1 Upper bounds

A simple upper bound is obtained from the fact that any proper coloring is a
conflict-free coloring, so

χCF (G) ≤ χ(G).

However, this bound is a.a.s. not tight for the random graph G(n, p) in the range
of p we are interested in, i.e., for p = ω(1/n).

Another inequality involves domination. If a set of vertices S is a dominating
set of G then one can construct a conflict-free coloring of G with |S|+ 1 colors
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by giving |S| distinct colors to the vertices in S and one further color to vertices
in V (G) \ S. Hence for every graph G

χCF (G) ≤ D(G) + 1.

This proves the upper bound in Theorem 2.
The rest of this section deals with the upper bound in Theorem 1.
Regarding conflict-free colorings the crucial property of a vertex x is whether

it has exactly one neighbor in some color class S and hence the color of S is
unique in N [x]. For a fixed set S and a fixed vertex x ∈ V \ S the probability
of this happening is |S|p(1 − p)|S|−1. This motivates our definition of µ(p) in
Section 1 as the maximum of this probability for any color class size. We let
m = ⌊1/p⌋ stand for the “most desirable” color class size maximizing the above
probability and giving µ = mp(1− p)m−1.

Since the upper bound in Theorem 2 implies the upper bound in Theorem 1
for p ≥ 1

2 , we assume p < 1
2 from now on. To start we prove two technical

lemmas for random graphs.
First we give an explicit bound on the probability that the domination num-

ber of a random graph is extremely low. We need the explicit bound in because
we will use the union bound for more than a constant number of similar events
and thus the a.a.s. bound of Theorem 3 is not enough.

Lemma 1. For any ℓ ∈ N+ and p with 100
ℓ < p < 1

2 we have that

P [D(G(ℓ, p)) < m] < 0.9ℓ,

where m = ⌊1/p⌋ as before.

Proof Throughout the proof we will use that m − 1 < 1
p < ℓ

100 . Let

S ⊂ V be a set of size m − 1. The probability that a vertex x ∈ V \ S has no
neighbor in S is

P[N(x) ∩ S = ∅] = (1− p)|S| ≥ (1− p)1/p > 1/4.

The events that N(x) ∩ S = ∅ are independent for x ∈ V \ S, hence S is
dominating with probability < (3/4)ℓ−m+1. The probability in the lemma is

P

[

∃S ∈
(

V

m− 1

)

: N(S) = ∅
]

<

(

ℓ

m− 1

)

(3/4)ℓ−m+1

< 0.9ℓ.

�

We know that the expected size of the one-neighborhood of a set of vertices
of size m is (|V | −m)µ. The following is a routine observation that the actual
size deviates largely from this expectation with a very low probability.

Lemma 2. For every δ > 0 there exists a K = K(δ) such that for any p =
p(ℓ) > K

ℓ in G(ℓ, p) we have that

P

[

∃S ∈
(

V

m

)

: |N (1)(S)| < (1− δ)µ(ℓ −m)

]

< e−
δ2

4
µℓ,

where m = ⌊1/p⌋ and µ = µ(p) = mp(1− p)m−1.
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Proof For an arbitrary set S ⊂ V of size m and vertex x ∈ V \ S, the
probability that x has exactly one neighbor in S is µ. The random variable
∣

∣N (1)(S)
∣

∣ is the sum of ℓ−m mutually independent characteristic variables and
its expectation is µ(ℓ−m). Hence by the Chernoff bound and the union bound
we have

P

[

∃S ∈
(

V

m

)

: |N (1)(S)| < (1− δ)µ(ℓ−m)

]

<

(

ℓ

m

)

e−
δ2

2
µ(ℓ−m)

≤
(

(eK)
1

K e−
δ2

3
µ
)ℓ

,

and the bound follows if K is sufficiently large. �

Let us choose δ = δ(ε) > 0 such that it satisfies

1 + ε

− ln(1 − µ(p))
>

1

− ln(1 − (1− δ)µ(p))
+ δ (1)

and assume K = K(δ) from the Lemma 2 satisfies K > 100 so we can also use
Lemma 1. Assuming p = p(n) satisfies np → ∞ (or even the weaker condition
p > K∗

n for K∗ = eK/δ) we give a deterministic algorithm which a.a.s. constructs

a conflict-free coloring of G(n, p) using (1+ ε) ln(np)
− ln(1−µ) colors. In this algorithm

d(Gi) denotes the degeneracy of the graph Gi, i.e., the largest minimum degree
a non-empty subgraph of Gi has.

Algorithm CFC(G, p, δ)
Input: graph G, V (G) = [n], p ∈ [0, 1], δ > 0.

Set G1 := G, n1 := n, i := 1, m =
⌊

1
p

⌋

, µ = mp(1− p)m−1, K = K(δ) > 100.

while ni > ln lnn and p > K
ni

do

select an independent set Si by starting with Si = ∅ and iteratively adding

the smallest vertex in NGi
(Si) until either NGi

(Si) = ∅ or |Si| = m.

Color vertices in Si with color i, color vertices in N
(1)
Gi

(Si) with color 0,

define Gi+1 := Gi −
(

Si ∪N
(1)
Gi

(Si)
)

, ni+1 := |V (Gi+1)|, i := i+ 1

Color Gi properly using d(Gi) + 1 new colors.

Notice that all executions of the main while-loop of the algorithm use a
separate color and only color 0 is used in many executions. Note also that this
color 0 is a “filler color” as it is never used as the unique color in the closed
neighborhood of some vertex to ensure the conflict-free property of the coloring
is obtained.

Let I be the last value of the index i in the algorithm. Clearly the algorithm
colors all vertices with I + d(GI)+ 1 colors. To see that this coloring is conflict-
free let w ∈ V (G) be an arbitrary vertex and let i be the largest index with
w ∈ V (Gi). If i < I, then there is a unique vertex in N [w] of color i (which
may or may not be w itself). If i = I, then w has unique color in N [w].

To finish the proof it is enough to bound the values of I and d(GI) a.a.s.
We start with I. Note that for any 1 ≤ i ≤ I the sets S1, . . . , Si−1 selected
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by the algorithm, and hence the vertex set V (Gi) as well, depend only on the
edges incident to S1 ∪ · · · ∪ Si−1. Thus, given any way the main while-loop is
executed for the first i− 1 times, the graph Gi is still a random graph G(ni, p).

Now we estimate the probability that
∣

∣

∣N
(1)
Gi

(Si)
∣

∣

∣ < (1− δ)µ(ni −m). This can

happen either with |Si| = m or with |Si| < m. The probability of the former is
bounded by Lemma 2, while the latter implies that Si is dominating in Gi, the
probability of which is bounded by Lemma 1. Using the explicit bounds in the
lemmas and the fact that the sizes of the graphs considered are decreasing and
lower bounded by a super-constant function of n we conclude that a.a.s. in no
iteration do we have either of these anomalies:

I−1
∑

i=1

e−δ2µni/4 + 0.9ni ≤
n
∑

ℓ=ln lnn

e−δ2µℓ/4 + 0.9ℓ = o(1).

Thus a.a.s. we must have ni+1 ≤ (1 − (1− δ)µ)ni for each i < I. Using n1 = n
and nI−1 > K/p we have a.a.s.

I <
ln(np/K)

− ln(1− (1 − δ)µ)
+ 2.

It remains to show that a.a.s. d(GI) < δ ln(np) and using the defining in-
equality (1) for δ the upper bound in Theorem 1 follows. We use again the
observation that independent of the executions of the while-loop GI is a ran-
dom graph G(nI , p) with nI being small enough to trigger one of the halting
conditions.

If we have p ≤ K/nI , then the expected degree of any vertex in G(nI , p) is
less than K. Hence either a.a.s. d(GI) ≤ K by the results of Pittel, Spencer, and
Wormald [8] and Łuczak [6] and we are done as K < δ ln(np), or nI is bounded
by a constant, in which case we can color GI with nI ≤ δ ln(np) colors. If,
however, p > K/nI we must have nI ≤ ln lnn to halt the while-loop, so we
have ln(np) > ln(Kn/nI) = Ω(lnn). Thus we have d(GI) < nI < δ ln(np) if n
is large enough.

Note that the ln lnn bound in the halting condition of the algorithm can be
replaced by any function that tends to infinity and is o(lnn).

Furthermore, observe that if d(GI) < δ ln(np) (which happens a.a.s.), one
can efficiently color GI with δ ln(np) colors properly. A linear time algorithm
for coloring GI with at most d(GI) + 1 colors first iteratively removes a lowest
degree vertex from the graph, then colors them greedily in the reverse order.
Hence, the running time of the algorithm CFC is linear in the size of the input
graph.

2.2 Lower bounds

Tardos and Pach [7] used the concept of universality to show the lower bound
χCF

(

G
(

n, 1
2

))

= Ω(lnn). A graph G is called k-universal if for all sets B ⊆
A ⊆ V (G) with |A| ≤ k there exists a vertex x ∈ V (G) \A with N(x)∩A = B.
We introduce a similar concept, which is more closely related to the idea of
conflict-free coloring. We call a graph G (k, f)-spoiling, if for any k disjoint
subsets A1, . . . , Ak ⊆ V (G) with |Ai| ≤ f for every i ∈ [k], there exists a vertex
x ∈ V (G)\⋃i Ai such that for each Ai we have |N(x)∩Ai| 6= 1, and for each Ai
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with |Ai| = f , |N(x)∩Ai| ≥ 2. The vertex x is called a f -spoiler for (A1, . . . , Ak)
and we say that (A1, . . . , Ak) is spoiled by x. We call a graph k-spoiling, if it is
(k, f)-spoiling for some f .

The following observation just serves to give an intuition for the concept.

Observation 1. A 2k-universal graph G is (k, 2)-spoiling and consequently k-
spoiling.

The next lemma is the essence of all lower bounds in Theorem 1.

Lemma 3. If G is k-spoiling, then χCF (G) > k.

Proof Let G be (k, f)-spoiling for some f and consider an arbitrary
k-coloring χ of V (G). We need to show that it is not conflict-free. We define
subsets A1, . . . , Ak ⊆ V (G). For each color i which is used less than f times by
χ, we define Ai to be the whole color class χ−1({i}). For each color i which is
used on at least f vertices by χ, we set an arbitrary f -subset of vertices with
color i to be Ai. Since G is (k, f)-spoiling we find a vertex x which is an f -
spoiler for these sets. Clearly, N [x] has no unique color, showing that χ is not
conflict-free. �

We first prove the tight lower bound of Theorem 2 via studying the spoilers
of G(n, p) for p ≥ 1

2 . Comparing the bound of Theorem 3 of Wieland and God-
bole [11] and Glebov, Liebenau, and Szabó [5] with the bound in the following
lemma finishes the proof.

Lemma 4. The graph G(n, p) with 1/2 ≤ p < 1 is a.a.s. k-spoiling for k =
⌊

lnn−2 ln lnn+ln ln 1

1−p
−ln 3

− ln(1−p)

⌋

.

Proof We show that G(n, p) is a.a.s. (k, 3)-spoiling. Take any set A ⊆ V
with |A| ≤ 3 and x ∈ V \ A. For A = ∅ we cannot have |N(x) ∩ A| = 1. For
|A| = 1 we have

P[|N(x) ∩ A| 6= 1] = 1− p,

for |A| = 2 we have

P[|N(x) ∩ A| 6= 1] = 1− 2p(1− p) ≥ 1− p,

and finally for |A| = 3 we have

P[|N(x) ∩ A| ≥ 2] = 1− 3p(1− p)2 − (1− p)3 ≥ 1− p.

Then for any family A = {A1, . . . , Ak} of k sets of size at most f = 3, the

probability that a fixed vertex x ∈ V \⋃k
i=1 Ai is a spoiler is

P[x is a spoiler for A] ≥ (1− p)k.

Thus

P

[

A is not spoiled by any x ∈ V \
k
⋃

i=1

Ai

]

≤
(

1− (1− p)k
)n−3k

.

7



There are at most (n+ 1)3k ways A can be selected, so by the union bound we
have

P[G(n, p) is not (k, 3)-spoiling ] ≤ (n+ 1)3k exp
(

−(n− 3k)(1− p)k
)

≤ exp

(

3
lnn− 2 ln lnn+ ln ln 1

1−p − ln 3

− ln(1− p)
lnn− n

3 ln2 n

−n ln(1− p)
+ o(1)

)

= o(1),

assuming p ≤ 1− 1
n . Otherwise k = 0 and the statement of the lemma becomes

trivial, since every graph is 0-spoiling. �

The next lemma provides the lower bound in Theorem 1 when p ≤ 1
2 .

Lemma 5. For every ε > 0 there exists a constant K = K(ε) such that

for all p with K/n ≤ p ≤ 1/2, the graph G(n, p) is a.a.s. k-spoiling for

k =
⌊

(1 − ε) ln(np)
− ln(1−µ)

⌋

.

Proof Similarly to the last section, we fix m =
⌊

1
p

⌋

. We show that

G(n, p) is a.a.s. (k, 6m)-spoiling. First we observe that for any fixed S ⊂ V of
size at most 6m and a fixed vertex x ∈ V \ S, the probability that x spoils S
is at least 1 − µ. Note that 1 − µ is exactly the probability if |S| = m and by
the definition of µ as a maximum it is at least this much for other sizes strictly
below 6m. A simple way to see the bound for |S| = 6m is to partition S into
six parts of size m each. The probability that x has exactly one neighbor in
any one of them is µ, these events are independent, so the probability that this
holds for at least two of them is exactly 1 − (1 − µ)6 − 6µ(1 − µ)5. Since we
have µ > e−1 this is larger than 1− µ.

Note that k < 3 ln(np) since µ > 1/e. First we fix a family A of k disjoint sets
of size at most 6m each and estimate the probability that no vertex x ∈ V \⋃A
is a spoiler for it.

P
[

∄x ∈ V \
⋃

A : x spoils A
]

≤
(

1− (1− µ)k
)n−|⋃A|

≤ exp
(

−n

2
(1− µ)k

)

≤ exp

(

− (np)ε

2p

)

,

where in the second inequality we use the fact that |⋃A| ≤ 6mk < n/2 for K
large enough.

The union bound for the probability that this happens for any family A of
k sets of size at most 6m each is enough now to finish the proof:

P
[

∃A∀x ∈ V \
⋃

A : x does not spoil A
]

<





∑

i≤6m

(

n

i

)





k

exp

(

− (np)ε

2p

)

< (np)6mk exp

(

− (np)ε

2p

)

< exp

(

18 ln2(np)

p
− (np)ε

2p

)

= o(1).
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3 Graphs with large conflict-free chromatic num-

ber

In this section we show the existence of n-vertex graphs G with χCF (G) =
Ω(ln2 n). This gives the correct order of magnitude of χCF (n) and proves The-
orem 4.

To show the statement, we construct an n-vertex graph G using random
methods. The vertex set is partitioned into classes L1, . . . , Lk of size n

k each,
with k = ⌊lnn⌋. The edges will be selected at random, independently of each
other. To define the probabilities we let the weight of a vertex x ∈ Li be

wx = 0.99i.

The probability of an edge between vertices x ∈ Li and y ∈ Lj is equal to

P[xy ∈ E(G)] := wxwy = 0.99i+j.

The weight of a set S ⊆ V is defined to be the sum of the weights of its
elements,

w(S) =
∑

v∈S

wv.

For a vertex coloring χ we say that vertex v takes care of itself if the color
of v is unique in N [v], i.e. every u ∈ N(v) has a color different from χ(v). We
say that a color class S takes care of a vertex x if x ∈ N (1)(S). The crucial
probability, denoted by p(x, S), that a vertex x ∈ Li is taken care of by a color
class S not containing x is equal to

p(x, S) = P[|N(x) ∩ S| = 1] =
∑

s∈S

P[N(x) ∩ S = {s}]

=
∑

s∈S

wswx

∏

y∈S\{s}
(1− wywx)

< wx

∑

s∈S

ws exp



−
∑

y∈S\{s}
wywx





= wx

∑

s∈S

ws exp (−w(S)wx + wswx)

≤ wxw(S)e
−wxw(S)+0.99.

Note that since the function ze−z has a unique maximum at z = 1, we always
have p(x, S) < e−0.01. If χ is a conflict-free coloring, then every vertex is taken
care of either by itself or by a color class not containing this vertex.

We call a set heavy if its weight is larger than
√
n, otherwise we call it light.

Note that since any vertex has weight at least 0.99lnn > n−0.02, we obtain for
any light color class S

|S| < w(S)n0.02 < n0.52.
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In the following lemma we list three properties, which hold a.a.s. for our
random G and, together, imply that no conflict-free coloring exists with o

(

ln2 n
)

colors. As usual, α(G) denotes the independence number of G, i.e. the size of a
largest independent set.

Lemma 6. For G the following three properties hold a.a.s.

(i) α(G) ≤ n0.6.

(ii) For every heavy set S ⊆ V , we have
∣

∣N (1)(S)
∣

∣ < n0.6.

(iii) Let r =
⌊

10−5 ln2 n
⌋

. For all pairwise disjoint light sets S1, . . . , Sr ⊆ V ,

we have
∣

∣

⋃r
i=1 N

(1)(Si)
∣

∣ < n− n0.7.

Proof Since the probability for each pair of vertices to be an edge of
G is at least 0.992 lnn, the largest independent set is at most as large as it
is in G(n, 0.992 lnn). It is well-known (see, for example Theorem 11.25 (ii) in
Bollobás’s book [3] for more details) that for 2.27/n ≤ p ≤ 1/2, a.a.s. the

largest independent set in G(n, p) has size at most 2 ln(np)
p . Thus, the largest

independent set in G a.a.s. has size at most 2
ln(0,992 lnnn)

0,992 lnn < n0.6.

For the second statement fix a subset S ⊆ V with weight at least n0.5 and a
set A ⊆ V \ S with at least n0.6 elements. We estimate the probability that all
elements x ∈ A are in the one-neighborhood of S.

P
[

N (1)(S) ⊇ A
]

=
∏

x∈A

p(x, S)

≤
∏

x∈A

wxw(S)e
−wxw(S)+1

<
(

n0.48 exp
(

−n0.48 + 1
))n0.6

= exp
(

−n1.08(1 + o(1))
)

.

(Here we used that wxw(S) > 0.99lnnn0.5 > n0.48 and that ze−z is decreasing
in the interval [1,∞).) Summing up over all the at most 2n ·2n choices of S and
A we obtain that the probability that (ii) fails tends to 0.

For the third part fix subsets S1, . . . , Sr with w(Si) ≤ √
n and B with

|B| = n0.7. We estimate the probability that all x ∈ V \ B are in the one-
neighborhood of at least one of the Si.

For this we first show that
∑r

i=1 p(x, Si) > 0.01 lnn for at most half of the
vertices x ∈ V . Indeed, otherwise

n

2
· 0.01 lnn ≤

∑

x∈V

r
∑

i=1

p(x, Si)

=
r
∑

i=1

∑

x∈V

p(x, Si)

≤ r (100e+ 100 + 200)
n

lnn
,

contradicting the definition of r. For the last estimate we used that for a fixed
color class Si,

∑

x∈V p(x, Si) ≤ n
lnn

∑∞
j=1 zje

−zj+1, where zj is a geometric
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progression with quotient 0.99. The terms of the sum for zj ≤ 1 can be estimated
by ezj and hence this part is at most e

1−0.99 = 100e. The sum of the terms for

zj ≥ 2 can be estimated by 100
∫∞
1

ze−z+1dz = 200. And finally the sum of the
terms for 1 < zj < 2 can be estimated by 100, since there are at most 100 such
zj ’s, and for each of them the value of the function is at most 1.

Let V ′ ⊆ V be the set of those vertices x ∈ V for which
∑r

i=1 p(x, Si) ≤
0.01 lnn. Then by the above |V ′| ≥ n/2.

P[∀x ∈ V \B ∃i with |N(x) ∩ Si| = 1] =
∏

x∈V \B

(

1−
r
∏

i=1

(1− p(x, Si))

)

≤ exp



−
∑

x∈V ′\B

r
∏

i=1

(1− p(x, Si))





≤ exp



−
∑

x∈V ′\B
e−5

∑r
i=1

p(x,Si)





≤ exp
(

−
(n

2
− n0.7

)

e−0.05 lnn
)

≤ exp
(

−n0.95(1/2− o(1))
)

Here we used that in the range of our interest, i.e. for 0 < z = p(x, Si) < e−0.01,
we have 1− z > e−5z.

The sets S1, . . . Sr and B with the given properties can be chosen at most
(

n

n0.7

)

(

(n+ 1)
√
n
)r

= eO(n
0.7 lnn)

ways, where we first choose a set B of size n0.7 from V , and then choose one by
one the vertices forming the sets S1, . . . , Sr. Hence with probability tending to
1 the third condition holds. �

Finally, we show how the above properties imply the existence of graphs
without a conflict-free coloring with 10−5 ln2 n colors.

Proof of Theorem 4. Let us take a graph G having properties (i) − (iii) of
Lemma 6 with a sufficiently large vertex set. Take an arbitrary r-coloring c of
G, where r =

⌊

10−5 ln2 n
⌋

as in the lemma. We prove that c is not a conflict-free
coloring. We define the following sets:

• The set of all vertices that take care of themselves, that is

T = {x ∈ V : ∀y ∈ N(x), c(x) 6= c(y)}
• The set of all vertices that are taken care of by a heavy color class, that is

H =
{

x ∈ V : ∃z ∈ N(x) :
∣

∣c−1(c(z))
∣

∣ >
√
n ∧ ∀y ∈ N [x] \ {z}, c(z) 6= c(y)

}

• The set of all vertices that are taken care of by a light color class, that is

L =
{

x ∈ V : ∃z ∈ N(x) :
∣

∣c−1(c(z))
∣

∣ ≤ √
n ∧ ∀y ∈ N [x] \ {y}, c(z) 6= c(y)

}

.

If c were a conflict-free coloring, then V = T ∪H ∪ L.
Vertices taking care of themselves. A set of vertices that take care of them-

selves and have the same color must form an independent set in G. Hence by (i)
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any color class can contain at most n0.6 vertices that take care of themselves.
So |T | ≤ rn0.6.

Vertices taken care of by heavy color classes. Fix a heavy color class S. By
(ii) at most n0.6 vertices are taken care of by S. Hence |H | ≤ rn0.6.

Vertices taken care of by light color classes. Let S1, . . . , Sr∗ be the light color
classes of χ. By (iii) at most n − n0.7 vertices are taken care of by the Si’s.
Hence |L| ≤ n− n0.7.

Thus, |T ∪H ∪ L| < n = |V |, and c is not conflict-free. This concludes the
proof that c is not a conflict-free coloring. �

4 Remarks and open problems

Radio networks. Recently, Noga Alon pointed out to us that the lower bound
from Theorem 4 is similar to the one obtained by Alon, Bar-Noy, Linial, and
Peleg [1]. Here we discuss briefly the relation of the two results. The notation
in [1] is different from the one we use here, as they look at a much more applied
problem. Creating a small dictionary between their and our notations, they
speak about processors when we have vertices, a radio network is what we call
a graph, transmitting at step i corresponds to having color i, and the transmis-

sion itself is a color class. The problem they analyze is the following. At the
beginning, one processor (the sender) has a message M , and the process stops
when M is delivered to every processor of the network. The communication in
the network works as follows: in step i, every processor from transmission Ti

that already received M sends it to all adjacent processors. A processor receives

a message in a given step if precisely one of its neighbors transmits in this step.
If none of its neighbors transmits, it hears nothing. If more than one neighbor
transmits, a collision occurs and the processor hears only noise. A sequence
of transmissions is a broadcast schedule for the sender s in a network if after
applying the transmissions, every processor in the network has a copy of the
message. Alon, Bar-Noy, Linial, and Peleg [1] showed that the shortest length
of a broadcast schedule is Ω(ln2 n) for some radio networks with n processors.
The matching upper bound of O(ln2 n) for any radio networks with n processors
was established earlier Bar-Yehuda, Goldreich, and Itai [2].

On the one hand, Alon et al. [1] do not restrict a processor to be part of
only one transmission, while in our setting, a vertex has exactly one color. On
the other hand, in our setting we do not have any scheduling structure, and a
vertex does not have to wait until it receives the message to “transmit”. Hence,
none of the lower bounds implies the other immediately. However, observe that
in the proof of Theorem 4 we do not use the fact that color classes are disjoint.
Consequently our construction gives a common generalization of Theorem 2.1
of [1] and our Theorem 4, as follows.

Let us denote by χ′
CF (n) the smallest integer such that every graph G on

n vertices satisfies the following. There exists a family F ⊆ 2V (G) of subsets
of V (G) of size |F| ≤ χ′

CF (n) such that for every vertex x ∈ V (G), there
exists a set F ∈ F with |NG(x) ∩ F | = 1. Both our paper and [1] deal with
problems with further requirements on the family F . We insist that they form
a partition of the vertex set, whereas Alon et al. require an ordering of the sets
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in F with certain properties to exist. Proving a lower bound for χ′
CF therefore

implies the corresponding lower bounds in both papers. The construction in [1]
has chromatic number 2, so it does not provide a meaningful lower bound for
χ′
CF ≤ χCF ≤ χ(G). The proof of Theorem 4 does work in this more general

scenario and shows a lower bound of order ln2 n. The corresponding upper
bound follows either from [7] or [2].

Theorem 5. χ′
CF (n) = Θ(ln2 n).

Open problems. At the two extreme values of p the trivial upper bounds
given by the chromatic number and the domination number plus one are tight.
For the very sparse range of p = o(1/n) the random graph G(n, p) is a.a.s. a
tree, hence both χ(G(n, p)) and χCF (G(n, p)) are a.a.s. 2. On the other end for
p ≥ 1

2 we showed that |χCF −D| ≤ 3. The particular questions which remain
to be answered:

- In what range is χCF (G(n, p)) = D(G(n, p)) + 1 a.a.s.?
- In what range χ(G(n, p)) = χCF (G(n, p)) a.a.s.? In particular we would be

interested in where the threshold of 3-conflict-free colorability is and how much
it is different, if at all, from the threshold of 3-colorability.

- Does χCF (G(n, p)) behave in a unimodal way? For example one might
consider the median function and ask whether it is unimodal.

It is an interesting general question to characterize those graphs where equal-
ity holds for χCF (G) = χ(G) or χCF (G) = D(G) + 1.

By the concentration results of [11, 5] we have the concentration of
χCF (G(n, p)) on two values a.a.s. whenever χCF (G(n, p)) = D(G(n, p)) + 1.
For what range of p does the two-values-concentration hold a.a.s.? We have a
concentration on three values a.a.s. whenever ln 3/ ln(1 − p) ≈ 0. In the worst

case, when p = 1/2, we have concentration on 5 values a.a.s. For p ≥
√
5−1
2 , we

have concentration on four values a.a.s. (For this we need to consider the (k, 2)-
spoiling property and adapt the proof of Lemma 4.) It would be interesting to
obtain a concentration on 2 values for a wider range of p.
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useful comments. Furthermore, we are grateful to Noga Alon for drawing our
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