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Abstract 

Characterizing the developmental trajectories of cognitive functions such as learning, memory 

and decision making across the lifespan faces fundamental challenges. Cognitive functions 

typically encompass several processes that can be differentially affected by age. 

Methodological issues also arise when comparisons are made across age groups that differ in 

basic performance measures, such as in average response times (RTs). Here we focus on 

procedural learning – a fundamental cognitive function that underlies the acquisition of 

cognitive, social, and motor skills – and demonstrate how disentangling subprocesses of 

learning and controlling for differences in average RTs can reveal different developmental 

trajectories across the human lifespan. Two hundred-seventy participants aged between 7 and 

85 years performed a probabilistic sequence learning task that enabled us to separately 

measure two processes of procedural learning, namely general skill learning and statistical 

learning. Using raw RT measures, in between-group comparisons, we found a U-shaped 

trajectory with children and older adults exhibiting greater general skill learning compared to 

adolescents and younger adults. However, when we controlled for differences in average RTs 

(either by using ratio scores or focusing on a subsample of participants with similar average 

speed), only children (but not older adults) demonstrated superior general skill learning 

consistently across analyses. Testing the relationship between average RTs and general skill 

learning within age groups shed light on further age-related differences, suggesting that 

general skill learning measures are more affected by average speed in some age groups. 

Consistent with previous studies of learning probabilistic regularities, statistical learning 

showed a gradual decline across the lifespan, and learning performance seemed to be 

independent of average speed, regardless of the age group. Overall, our results suggest that 

children are superior learners in various aspects of procedural learning, including both general 
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skill and statistical learning. Our study also highlights the importance to test, and control for, 

the effect of average speed on other RT measures of cognitive functions, which can 

fundamentally affect the interpretation of group differences in developmental, aging and 

clinical psychology and neuroscience studies.  

 

Keywords: procedural learning, skill learning, statistical learning, baseline reaction time, 

cognitive functions, memory, aging, developmental psychology, clinical neuroscience 
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Introduction 

 Procedural learning is a fundamental cognitive function that facilitates efficient 

processing of and automatic responses to complex environmental stimuli, supporting efficient 

adaptation to the changing environment. Procedural learning underlies the acquisition of new 

cognitive, social, and motor skills [1-4]; it is therefore a critical function across the human 

lifespan. It is a widely held view that procedural learning is most effective in childhood; 

nevertheless, acquiring new skills such as learning languages or learning to use new devices 

and applications are also possible throughout adulthood. These lifelong learning abilities are 

increasingly sought out in the workplace as they contribute to economic competitiveness. 

Additionally, it has been shown that at least in some cases learning new skills can serve as a 

shield against age-related cognitive decline [5-7]. Despite the ubiquitous nature of procedural 

learning throughout the human lifespan, how learning is affected by age is not yet fully 

understood.  

 Previous research on age-related changes in procedural learning reported mixed 

findings. Pioneering studies found comparable performance in children and young adults [8-

10], while more recent evidence suggests age-related differences in learning. Some of these 

more recent studies showed that young adults outperform children [11-13], while others found 

better learning performance in childhood than in adults [14-16]. Aging studies also yielded 

heterogeneous results, with older adults exhibiting weaker [17-19], comparable [11,20,21], or 

in some cases even better [22] learning performance than younger adults. The theoretical 

frameworks of age-related changes also reflect this heterogeneity. 1) The developmental 

invariance model claims age independence in procedural learning [23]. 2) The inverted U-

shape model argues that a peak in learning performance should occur in young adulthood 

[13]. 3) The 'children better' model claims that children should exhibit superior learning 
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performance compared to adolescents and adults [14,24]. Thus, in summary, both empirical 

findings and theoretical frameworks present a puzzle of age-related differences in procedural 

learning. A possible solution to this puzzle may lie in taking into account the multifaceted 

nature of learning. Here, we aim to disentangle different processes underlying procedural 

learning that can contribute to a better understanding of age-related differences in skill 

learning.  

Procedural learning is a multifaceted cognitive function that encompasses multiple 

processes. A critical process within procedural learning is how our brain extracts and learns 

the structures of the environment, including repeated sequences and occurrence statistics of 

perceptual stimuli (typically termed as sequence-specific and statistical learning, respectively) 

[20,25-27]. Here we refer to learning these structures as task-specific learning since the to-be-

learned structures may be specific to a given environment, and more specifically, to a given 

task. In contrast to task-specific learning, some more general processes also contribute to 

procedural learning, including faster processing of and responding to the perceptual stimuli, 

and faster matching of the corresponding responses to those stimuli (i.e., improved 

visuomotor coordination) as the task progresses [28,29]. We refer to these processes as task-

general learning or general skill learning as these processes may be relatively independent of 

the specific stimulus structure. Disentangling task-specific and task-general effects has posed 

a challenge to numerous procedural learning tasks [such as in finger sequence tapping and in 

variants of the Serial Reaction Time (SRT) task; 30,31], and a failure to separately assess 

these processes may at least partially explain the contradictory findings of age-related 

differences in procedural learning.  

To demonstrate how task-specific and task-general learning can contribute to 

procedural learning, take an example of learning to drive a car. In this case, task-general or 

general skill learning includes efficient perceptual processing of our environment (e.g., road 
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signs, and other cars on the road), a fast motor system to plan and execute movements, and 

efficient coordination between the perceptual and motor system. In contrast, task-specific or 

sequence-specific learning, involves the serial ordering (sequencing) of several actions during 

driving; for instance, when waiting at the red light that turns green (processing of a visual 

stimulus) we press the clutch pedal with the left foot (motor response), then shift gear with the 

right hand, and finally press the gas with the right foot. Clearly, the efficient visuomotor 

processing and coordination is as critical for successful driving as is knowing and performing 

the planned actions in the appropriate serial order. Since these lower level processes show 

clear age-related differences [e.g., children are generally slower than adolescents and young 

adults, 14,32], it is reasonable to assume that age-related differences also emerge in task-

general learning, which relies on these lower level processes. Consequently, if various tasks 

depend on task-specific vs. task-general learning processes to a different degree and their 

contributions to performance cannot be disentangled in these tasks, this may explain a 

significant portion of the mixed findings of age-related differences in procedural learning. 

How can age-related differences in these lower level (perceptual-motor) processes 

affect task-general and task-specific learning? It has been suggested that slower responses 

generally provide 'more room to improve' during practice [e.g., 33,34]. According to this 

argument, participants with initially slower response times should exhibit a greater speed-up 

(i.e., task-general learning) during practice compared to others with initially faster response 

times. Since children and older adults typically show slower responses than younger adults, 

this should result in greater task-general learning in the former two age groups. The 

predictions for how age-related differences in lower level processes should affect task-specific 

learning are less clear. It is possible that participants with generally slower response times 

exhibit greater task-specific learning, although this possibility seems more plausible if task-

general and task-specific learning processes cannot be properly teased apart. Testing these 
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possibilities can have important consequences for developmental and aging studies as they 

can lead to fundamentally different interpretations by disentangling genuine age-related 

differences in procedural learning from purely methodological (measurement) issues. 

Importantly, however, these possibilities have not yet been directly and systematically tested, 

particularly from a lifespan perspective. 

In the present study, we use a procedural learning task – the Alternating Serial 

Reaction Time (ASRT) task – that enables us to distinguish between task-specific and task-

general learning [35,36] in order to separately probe their developmental trajectories and their 

relationships with average speed across the human lifespan. In this four-choice perceptual-

motor reaction time task, visual stimuli appear on the screen following an alternating 

sequential pattern that is repeatedly presented throughout the task [18,37]. Participants are 

required to respond to these stimuli by pressing the corresponding response keys on a 

keyboard as fast and as accurate as they can. The repeating alternating sequence results in 

some stimulus combinations (so-called triplets) being more frequent than others, and during 

practice participants learn to differentiate between these more frequent and less frequent 

stimulus combinations [often referred to as triplet or statistical learning; 28,38,39]. At the 

same time, independent of task-specific learning, participants become generally faster as the 

task progresses (often referred to as general skill learning). This general speed-up during 

practice may be attributed to the processes described above, including faster processing of the 

visual stimuli, and faster matching of the corresponding response keys to those stimuli as the 

task progresses [28,29]. Thus, in the ASRT task, triplet or statistical learning captures task-

specific learning, and the general speed-up during task captures task-general learning.  

Procedural learning across the human lifespan has been previously probed with the 

ASRT task in one study, focusing on the age-related differences in task-specific learning [14]. 

This study showed a gradual decline across the lifespan in triplet learning with best learning 
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performance in children. Additionally, a U-shaped developmental trajectory of average speed 

(i.e., RTs averaged for the entire learning session) was also reported: consistent with previous 

observations, children and older adults exhibited generally slower responses than adolescents 

and young adults. This study, however, did not directly test task-general learning and the 

relationship between average speed and learning. Here, we aim to address these gaps in a new 

sample of participants (N = 270) aged between 7 and 85 years. 

The aims of the present study are thus twofold. First, we aimed to examine age-related 

differences in general skill learning across the human lifespan. Second, we also aimed to test 

the argument of whether generally slower RTs are associated with greater general skill 

learning in different developmental stages across the lifespan. We used several approaches to 

achieve these aims focusing both on between-group and within-group differences. Namely, 

age-related differences in general skill learning were tested using both raw RT learning scores 

as well as ratio scores that can potentially control for differences in average RTs across age 

groups. Additionally, an alternative approach is also presented whereby age-related 

differences in general skill learning are compared in a subsample of participants whose 

average RTs are similar across age groups. While these approaches explore between-group 

differences in general skill learning and its potential relationship with average speed, direct 

evidence for such relationship can be better obtained from within-group comparisons. To this 

end, we performed correlation analyses between average RTs and general skill learning 

indices (both raw RT and ratio scores) separately for each age group. Finally, we also report 

age-related differences in triplet learning and test for a relationship between average RTs and 

task-specific learning. Beyond allowing for a comparison of how average RTs may affect 

task-general vs. task-specific learning, the presentation of triplet learning results provides a 

direct replication test of Janacsek et al.'s [14] study, promoting reproducible research.  
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Materials and methods 

Participants 

Two hundred-seventy participants aged between 7 and 85 years took part in the experiment. 

They were assigned to nine age groups (n = 30 in each group). Fourteen participants were 

excluded based on their slower response times or lower accuracy during the whole experiment 

(3 SDs outliers) compared to their respective age group. The final sample consisted of 256 

participants. Mean and standard deviation for age and education, and gender ratio for all age 

groups is presented in Table 1. None of the participants suffered from any developmental, 

psychiatric or neurological disorders. All participants gave signed informed consent (parental 

consent was obtained for children), and they received no financial compensation for their 

participation. The study was approved by the ethics committee of Eötvös Loránd University 

(Approval Number: 201410) and was conducted in accordance with the Declaration of 

Helsinki. 

 

Table 1. Demographic data (means, standard deviations, and proportions) for all age groups. 

Group Age Gender Education 

7-8-year-old (n=26)  7.92 (0.27) 13 M / 13 F  2.00 (0.00) 

9-10-year-old (n=28)  9.79 (0.42) 13 M / 15 F  4.00 (0.27) 

11-13-year-old (n=30) 12.10 (0.61) 13 M / 17 F  6.00 (0.00) 

14-15-year-old (n=30) 14.55 (0.57) 13 M / 17 F  8.10 (0.40) 

16-17-year-old (n=30) 16.56 (0.54) 13 M / 17 F 10.12 (0.45) 

18-29-year-old (n=30) 21.64 (2.93) 12 M / 18 F 14.52 (2.05) 

30-44-year-old (n=30) 36.67 (3.81) 12 M / 18 F 14.73 (2.93) 

45-60-year-old (n=26) 51.65 (4.46) 6 M / 20 F 13.56 (4.62) 

61-85-year-old (n=26) 66.04 (5.84) 5 M / 21 F 12.92 (3.92) 
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Task and procedure 

We used the ASRT task [18,37] where a stimulus (a dog’s head) appeared in one of the four 

empty circles arranged horizontally on a computer screen. Participants were instructed to 

respond to the stimulus events by pressing the corresponding response keys (Z, C, B or M on 

a QWERTY keyboard) as fast and accurately as they could. The ASRT task consisted of 20 

blocks with 85 key presses in each block. The first five responses of each stimulus block 

served for practice only (and were excluded from the analyses), and then the eight-element 

alternating sequence (e.g., 2R1R3R4R, where numbers refer to the four locations on the 

screen, and 'R' refers to a randomly selected location out of the four possible ones) was 

repeated ten times within a block. The stimulus remained on the screen until participants 

pressed the correct response key, and the next stimulus appeared 120 ms after the correct 

response. Between blocks, participants received feedback on the screen about their overall 

reaction time (RT) and accuracy. The computer program generated a different repeating 

ASRT sequence of the four locations for each participant using a permutation rule such that 

each of the six unique permutations of the four repeating events occurred with equal 

probability [for more details see e.g., 28,40]. 

  In this study we focused on the following measures derived from the ASRT task: 1) 

average RTs, defined as the average speed across the entire task; 2) general skill learning, 

defined as the RT change from the beginning to the end of the task; and 3) triplet learning, 

defined as faster responses for more frequent stimuli compared to the less frequent ones [see 

e.g., 28].  
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Statistical analysis 

Data preprocessing, calculation of the ASRT measures of interest and statistical analyses 

followed the procedures outlined in previous ASRT studies [18,28,37,41,42]. Briefly, the 20 

blocks of the ASRT task were organized into four segments (called epochs), each consisting 

of five blocks (i.e., Blocks 1-5 corresponds to Epoch 1, Blocks 6-10 corresponds to Epoch 2, 

etc.). We calculated the median RTs of correct responses separately for high- and low-

frequency triplets, for each epoch and for each participant.  

First, to test age-related differences in general skill learning (and triplet learning) 

across age groups, the RT values described in the previous paragraph were submitted to a 

mixed-design ANOVA with EPOCH (1 to 4) and TRIPLET TYPE (high- vs. low-frequency) 

as the within-subject factor, and GROUP (9 age groups) as the between-subject factor. In this 

ANOVA, the main effect of GROUP can reveal differences across age groups in average 

speed, the main effect of EPOCH can reveal general skill learning, and the EPOCH x GROUP 

interaction can reveal differences in general skill learning across age groups. Since the 

primary focus of this paper is on general skill learning, first we report these main effects and 

interaction in the Results section. The remaining main effects and interactions involving the 

TRIPLET factor will be reported in a later section of the Results since those are related to 

triplet learning.  

Second, to test age-related differences in general skill learning while controlling for 

group differences in average RTs, we calculated general skill learning ratio scores. Namely, 

for each participant, the average RT of Epoch 4 was subtracted from the average RT of Epoch 

1 (which provides the raw RT difference score of general skill learning) and then divided by 

the average RT of that participant in the entire task. An advantage of such a ratio score is that 

it can be interpreted as a percentage change in RTs during practice relative to one's average 
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speed. This ratio score was submitted to a Univariate ANOVA with GROUP (9 age groups) 

as the between-subject factor.  

For all ANOVAs, Greenhouse-Geisser epsilon (ε) correction was used when 

necessary. Original df values and corrected p values (if applicable) are reported together with 

partial eta-squared (ηp
2
) as the measure of effect size. Post-hoc analysis was conducted by 

Fisher’s LSD pairwise comparisons. 

Third, to gain a better understanding of between- and within-group heterogeneity, we 

also present individual data for average RTs and general skill learning indices (raw RT 

difference, ratio score), with quadratic model fitting. Additionally, the relationship between 

average RTs and learning measures was tested by Pearson correlation analyses for each age 

group separately. Within each age group, we also compared whether average RTs showed a 

smaller correlation with the general skill ratio score than with the general skill raw RT 

difference using Fisher's Z-test and controlling for multiple comparisons with Bonferroni 

correction. These analyses can reveal whether the argument of 'slower RTs provide more 

room to improve' is supported within age groups and whether the relationship between 

average RTs and general skill learning changes across age groups. Moreover, these analyses 

can also reveal whether (and in which age groups) the ratio scores is adequate for controlling 

for average RT differences.  

Fourth, we also explored an alternative, complementary approach to test the potential 

age-related differences in general skill learning while controlling for the average RTs. 

Namely, we selected a subsample of participants that exhibited similar average RTs, 

irrespective of their age groups. Thus, we asked whether participants in different age groups 

exhibit comparable degree of general skill learning if their average RTs are similar. To put it 

differently: if a 9-year-old child is as fast as a 16-year-old adolescent, do they exhibit a similar 

degree of general skill learning? Due to the fact that young adults are, on average, faster than 
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children and older adults, this selection criterion necessarily leads to the inclusion of faster 

participants in children and older adult groups and slower participants in the young adult 

groups relative to their respective age groups. Nevertheless, it still may provide valuable 

information for the relationship between age and general skill learning while controlling for 

the average RTs. 

Fifth, we also report age-related differences in triplet learning based on the main 

ANOVA described above (focusing on the main effect of TRIPLET and the interactions 

involving the TRIPLET factor [14,43]) and test for a relationship between average RTs and 

triplet learning (using Pearson correlation analyses). As described in the Introduction, beyond 

providing a comparison of how average RTs may affect task-general vs. task-specific 

learning, we find the presentation of triplet learning results important as it can provide a direct 

replication test of Janacsek et al.'s [14] study, promoting reproducible research. 

 

Results 

Are there age-related differences in average RT and general skill 

learning? 

The mixed-design ANOVA revealed a significant main effect of GROUP (F(1, 247) = 

28.858, ηp
2
 = 0.483, p < .001) as the average RTs differed significantly across age groups (Fig 

1A). The LSD post hoc test revealed gradually faster RTs between 7 and 15 years of age (ps < 

.023), similarly fast RTs between 15 and 29 years of age (ps > .600), and then gradually 

slower RTs between 30 and 85 years of age (ps < .060). These results confirm a U-shaped 

developmental trajectory in average RTs across the lifespan [14]. 
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 Regarding general skill learning, the ANOVA revealed a significant main effect of 

EPOCH (F(3, 741) = 191.197, ηp
2
 = 0.436, p < .001), with significantly faster RTs as the task 

progressed. More importantly, the EPOCH × GROUP interaction was also significant (F(24, 

741) = 5.484, ηp
2
 = 0.151, p < .001), suggesting significantly different general skill learning 

across age groups (Fig 1B). The LSD post-hoc test comparing the RT differences between 

Epoch 1 and 4 across age groups revealed that the 7-8-year old age group exhibited the 

greatest general skill improvement (Fig 1C), significantly differing from all other age groups 

(ps < 0.004) except for the 61-85-year old group (p = .134). The 9-10- and 11-13-year-old 

groups showed a smaller improvement, with no difference between the two groups (p = .277). 

From adolescence to late adulthood, the degree of general skill learning further decreased 

compared to the younger age groups, with no group differences between 14 and 60 years of 

age (ps > .409). The 61-85-year-old group's general skill learning differed significantly from 

that of the groups between 11 and 60 years of age (ps < .016).  
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Fig 1. Average RTs and general skill learning across the lifespan. Average RTs refer to the RTs of all correct 

responses averaged over the entire task (A). General skill learning refers to the RT changes occurring during the 

time course of the task (B), which can be quantified as the RT difference between Epoch 1 and Epoch 4 (C). 

Group averages are presented in panel A-C, and individual data separately for each age group are presented in 

panel D-E. Error bars indicate standard error of mean (SEM). 

  

To gain a better understanding of between- and within-group differences, individual data for 

each participant in each age group are presented in Figs 1D and 1E. In line with the ANOVA 

results, a quadratic fit for the average RTs explains a large proportion (47.5%) of variability 

across age groups (Fig 1D). Interestingly, the quadratic fit for the general skill learning (Fig 

1E) is substantially weaker compared to the average RT fit, explaining only 18.7% of 

variability across age groups. After excluding the three slowest participants from the 7-8 and 

61-85-year-old groups, the fit is only slightly better, 20.9%, still well below of that for the 

overall RTs. (Note that excluding these participants affected the ANOVA results of general 
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skill learning reported above only in that the 7-8-year-olds showed significantly greater 

learning compared to all age groups, including the 61-85-year-olds as well, ps <.023). 

 Both the developmental trajectories of group averages (Fig 1AC) as well as the 

quadratic fits for average RTs and general skill learning (Fig 1DE) seem to support the 

argument that if someone is slower, then there is more room to improve during practice. 

Those age groups that exhibit slower average RTs seem to show greater general skill learning 

(i.e., more speed-up from Epoch 1 to Epoch 4). Nevertheless, the substantially weaker 

quadratic fit for general skill learning compared to the average RTs suggests that (between- or 

within-group) differences in average RTs alone may not be sufficient to explain differences in 

general skill learning. In the next steps, first we focus on between-group differences, and then 

we will test the within-group associations between average RTs and general skill learning. 

 

Are there age-related differences in general skill learning when 

average RT differences are controlled for? 

The Univariate ANOVA on the general skill ratio score yielded a significant main effect of 

GROUP (F(8, 247) = 4.602, ηp
2
 = 0.130, p < .001), suggesting differences in general skill 

learning across age groups (Fig 2A). Based on the LSD post hoc test, the 7-8-year-old group 

showed the highest general skill ratio score (23.6% improvement relative to their average 

RTs) that was significantly different from that of all other age groups (ps < .043). The 9-10- 

and 11-13-year-old groups exhibited a smaller improvement (17.9% and 16.2%, respectively), 

with no difference between the two groups (p = .532). The degree of general skill learning 

exhibited a further decrease after that age, and remained comparable between 14 and 85 years 

of age (ps > 0.126; except for the 18-29 vs. 61-85-year-old groups: p = .057).  
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 The individual data of the ratio scores are presented in Fig 2B. Although the quadratic 

fit for the general skill ratio scores was weaker than that for the average RTs and for the raw 

RT difference of general skill learning, it still explained 12.5% of variability across age 

groups. This is in line with the ANOVA results of significant group differences, existing 

mainly between children (particularly 7-8-year-olds) and the other age groups.  

 Comparing the raw RT difference and the ratio score as measures of general skill 

learning, a considerable difference can be observed in their developmental trajectories: While 

the 61-85-year-old group seems to have greater general skill learning than the groups between 

11 and 60 years of age based on the raw RT difference between Epoch 1 and Epoch 4 (Fig 

1C), this greater improvement largely disappears when the ratio score is used (there is only a 

trend level difference compared to the 18-29-year-old group). This result suggests that in the 

61-85-year-old group the observed RT changes during the task may be more affected by the 

participants' average speed compared to the other age groups, and thus may reflect other 

processes as well, over and beyond those related to general skill learning. 

 

 

Fig 2. General skill learning ratio scores across the lifespan. The ratio scores for group averages (A) and 

individual data (B) are presented. The ratio score can be interpreted as a percentage change in performance (e.g., 

the 7-8-old age group exhibited an approximately 23% speed-up from Epoch 1 to Epoch 4 relative to their 

average speed during task). Error bars indicate standard error of mean (SEM).  
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 A similar approach to control for differences in average RTs is to use the average RT 

of Epoch 1 instead of the average RT of the entire task when calculating the ratio scores. This 

approach has been previously used in the study of procedural learning to control for RT 

differences across groups [e.g., 33,44]. In this case, performance at the beginning of the task 

(i.e., in Epoch 1) is set to the same level for all participants (the value of 1) and performance 

changes during the remaining of the task (i.e., in Epochs 2 to 4 in this case) are relative 

changes compared to the performance in Epoch 1. This score can also be interpreted as a 

percentage change similar to the one used above. We re-ran our analysis with this score and 

obtained almost identical results as the ones reported above (with small differences in 

numerical values only).  

 

Are larger average RTs associated with greater general skill 

learning within age groups? 

In the next step, we tested the relationship between average RTs and the degree of general 

skill learning using Pearson correlation analyses for each age group separately. These 

analyses revealed that, in all age groups, average RTs showed a weaker correlation with the 

general skill ratio score than with the general skill raw RT difference (based on comparing 

correlations using Fisher's Z-test and controlling for multiple comparisons with Bonferroni 

correction, all Zs > 2.96, all ps < .003). This suggests that the ratio score may be a less biased 

measure of general skill learning than the raw RT difference score, although some 

developmental differences may also be present. The Pearson correlation analyses revealed a 

moderate positive relationship between average RTs and the raw RT difference of general 

skill learning between 7 and 13 years of age, between 18 and 44 years of age, as well as in the 

61-85-year-old group (Table 2). This relationship was eliminated in the groups between 7 and 
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13 years of age when the ratio score of general skill learning was used. The ratio score may be 

less effective in controlling for this relationship in adulthood as the average RTs still 

remained positively correlated with the general skill ratio score in the 30-44-year-old group 

(and on trend level in the 18-29- and 61-85-year-old groups). It is also important to note that 

there was no relationship between average RTs and general skill learning (either the raw or 

the ratio score) in the 14-15 and 16-17-year-old groups, suggesting that the relationship itself 

may change in different developmental stages. Similarly, there was no relationship between 

average RTs and general skill learning in the 45-60-year-old group either.  

 

Table 2. Relationship between average RTs and indices of general skill (raw RT difference and ratio 

scores) and triplet learning for each age group.  

Group 

General skill 

learning (raw RT 

difference) 

General skill learning 

(ratio score, relative to 

average RT) 

Triplet learning 

7-8-year-old r = .582, p = .002 r = .260, p = .200 r = .233, p = .253 

9-10-year-old r = .556, p = .002 r = .258, p = .184 r = .237, p = .225 

11-13-year-old r = .476, p = .008 r = .306, p = .101 r = .158, p = .405 

14-15-year-old r = .302, p = .105 r = .127, p = .502 r = -.043, p = .820 

16-17-year-old r = .238, p = .205 r = .036, p = .852 r = .020, p = .917 

18-29-year-old r = .416, p = .022 r = .319, p = .085 r = .189, p = .317 

30-44-year-old r = .624, p < .001 r = .500, p = .005 r = .293, p = .116 

45-60-year-old r = -.007, p = .973 r = -.120, p = .558 r = .136, p = .508 

61-85-year-old r = .546, p = .004 r = .381, p = .055 r = .057, p = .781 

Note. Pearson correlation coefficients are reported. Significant correlations (p < .05) are highlighted with a 

darker gray background, and trend level correlations (p < .1) are highlighted with a lighter gray background. 

 

Overall, based on the correlation analysis, there appears to be a positive relationship between 

average RTs and raw RT changes during task in most age groups, and the ratio score of 

general skill learning can help decrease or eliminate this relationship. 
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Do participants in different age groups exhibit comparable degree 

of general skill learning if their average RTs are similar? 

To answer this question, based on the individual data of each age group (cf. Fig 1D), we 

selected a subsample of participants whose average RTs were between 400 and 550 ms. The 

RT range seemed to provide an appropriate balance between maximizing the sample size in 

each age group and minimizing the potential average RT differences in group averages. Table 

3 shows to what percentiles of the original sample the selected range of 400-550 ms 

corresponds.  

 

Table 3. Minimum and maximum values, mean, standard deviation (SD) and percentiles of average RTs 

and general skill learning for each age group. 

Group 

7-8-

year-

old 

9-10-

year-

old 

11-13-

year-

old 

14-15-

year-

old 

16-17-

year-

old 

18-29-

year-

old 

30-44-

year-

old 

45-60-

year-

old 

61-85-

year-

old 

A
v

er
a

g
e
 R

T
s 

(m
s)

 

 

Min 410 399 385 332 339 325 345 357 377 

 

Max 1050 793 617 505 508 522 656 728 1246 

 

Mean 660 551 482 403 408 418 474 557 737 

 

SD 155 111 51 46 49 52 76 80 257 

P
er

ce
n

ti
le

s 

5 435 405 395 335 339 331 357 386 381 

10 489 424 429 348 349 343 378 454 406 

25 558 453 441 369 364 374 414 516 499 

50 611 555 473 397 402 426 466 547 754 

75 736 611 519 424 449 453 525 612 910 

90 932 751 552 483 488 484 578 665 1131 

95 1025 787 586 497 502 520 628 719 1220 

G
en

er
a

l 
sk

il
l 

le
a

rn
in

g
 (

ra
w

 

R
T

 d
if

fe
r
en

ce
) 

(m
s)

 

 
Min -88 8 0 -1 -6 -11 -21 -33 -59 

 
Max 522 240 176 197 112 123 281 191 708 

 
Mean 161 101 79 54 49 44 58 61 129 

 
SD 116 63 40 40 30 35 64 56 164 

P
er

ce
n

ti
le

s 5 -45 13 10 4 1 -7 -19 -23 -43 

10 41 20 28 12 7 1 -15 -4 -10 

25 110 64 56 27 24 16 21 18 9 

50 158 78 75 50 50 40 42 49 94 
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75 183 135 102 68 70 65 85 85 184 

90 305 225 149 94 96 89 144 162 333 

95 487 238 163 166 106 123 231 183 597 

G
en

er
a

l 
sk

il
l 

le
a

rn
in

g
 

(r
a

ti
o

 s
co

re
) 

 
Min -.163 .018 .001 -.003 -.012 -.030 -.049 -.051 -.065 

 
Max .533 .419 .341 .390 .244 .278 .427 .357 .605 

 
Mean .236 .179 .162 .132 .120 .101 .115 .110 .155 

 
SD .138 .099 .078 .089 .068 .077 .110 .095 .160 

P
er

ce
n

ti
le

s 

5 -.088 .026 .024 .012 .002 -.019 -.046 -.036 -.048 

10 .069 .042 .061 .030 .020 .002 -.031 -.006 -.015 

25 .175 .116 .118 .064 .062 .032 .048 .034 .014 

50 .222 .168 .160 .123 .133 .093 .096 .097 .123 

75 .313 .229 .210 .165 .169 .155 .157 .160 .246 

90 .419 .330 .271 .244 .214 .207 .274 .252 .384 

95 .508 .406 .337 .369 .231 .268 .376 .324 .536 

 

 Since the number of participants by groups is relatively low and unequal, standard 

statistical analyses may be less reliable here. Therefore, in Fig 3 we present the same group 

averages for this subsample as the ones presented in Figs 1A-C and 2A for the whole sample 

in order to enable qualitative comparison between the pattern of results. Fig 3A suggests that, 

with this approach, group differences in average RTs can be at least partly eliminated. 

Importantly, some age differences in general skill learning still remained (Figs 3B-D). To 

support the qualitative interpretation of these results, we compared the ratio score across age 

groups, focusing primarily on the 7-8- and 61-85-year-olds. This analysis revealed greater 

general skill ratio scores for the 7-8-year-olds compared to the 61-85-year-olds (p = .035). 

Additionally, the 61-85-year-old group's general skill ratio score did not differ significantly 

from those between 14 and 60 years of age (ps > .125). Although this statistical analysis 

should be treated carefully because of the low and unbalanced sample sizes across groups, it 

is important to highlight that the results presented here (both qualitatively and quantitatively) 

support the interpretation of age-related differences in general skill learning obtained in the 

whole sample. Specifically, children (particularly 7-8-year-olds) seem to show better general 

skill learning compared to later ages, and this advantage cannot be explained by their overall 
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slower response speed, as it persists even after controlling for the average RTs. In contrast, 

older adults may not show better general skill learning, and the observed greater RT changes 

during task may be due to other factors, including overall slower response speed, as their 

advantage diminishes when average RTs are controlled for. 

 

 

Fig 3. Average RTs (A) and general skill learning (B-D) across the lifespan for a subsample of the 

participants to control for age-related average RT differences. Only those participants are included in this 

subsample whose average RTs are between 400 and 550 ms. For details on the measures presented here see the 

legend of Fig 1. Error bars indicate standard error of mean (SEM). 
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Are there age-related differences in triplet learning? Additionally, 

is there a relationship between triplet learning scores and average 

RTs? 

Although it is not of the main interest of the current paper, we briefly report the results of 

triplet learning as well (Fig 4). The main ANOVA (described in the Statistical analysis 

section) revealed a significant a main effect of TRIPLET (F(1, 247) = 228.365, ηp
2
 = 0.480, p 

< .001), with significantly faster RTs for more frequent triplets compared to the less frequent 

ones. The TRIPLET × GROUP interaction was also significant (F(8, 247) = 2.598, ηp
2
 = 

0.078, p = .010). The LSD post hoc test revealed a pattern similar to the one reported in the 

Janacsek et al. [14] study, with similar triplet learning performance in the 7-13 age range (ps 

>.490) that was significantly higher than the learning scores in the 14-85 age range (p < .001). 

The TRIPLET × EPOCH interaction was also significant (F(3, 741) = 8.013, ηp
2 = 0.031, p < 

.001), indicating that participants' triplet knowledge increased as learning progressed (from 

6.5 ms in Epoch 1 to 15 ms in Epoch 4). The TRIPLET × EPOCH × GROUP interaction was 

not significant (p = .579), suggesting that the time course of triplet learning was similar in all 

age groups.   
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Fig 4. Statistical learning across age groups. Triplet learning score was quantified as an RT difference for low- 

and high-frequency triplets, averaged across the entire task. Larger values represent better learning performance. 

Error bars indicate standard error of mean (SEM). 

 

Additionally, we tested the relationship between average RTs and triplet learning scores in 

each age group separately, and found no significant correlation between these measures in 

either age group (Table 2). Thus, it seems that while general skill learning may be correlated 

with average RTs in some developmental stages, supporting the claim of 'slower RTs, thus 

more room to improve', triplet learning scores appear to be unrelated to average RTs.  

 

Discussion 

Our study aimed to examine age-related differences in general skill learning across the 

human lifespan and test the argument of whether generally slower response times are 

associated with greater general skill learning in different developmental stages. We employed 

the ASRT task, which probes procedural learning, and enables us to disentangle task-general 
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(i.e., general skill) learning from task-specific learning of probabilistic regularities (i.e., 

statistical learning). A large sample of participants aged between 7 and 85 years were tested 

on this task. We found a U-shaped developmental trajectory of general skill learning, assessed 

by raw RT changes during the task, with children and older adults exhibiting greater learning 

than adolescents and young adults. This developmental trajectory was paralleled with a U-

shaped lifespan trajectory of average RTs, lending support to the 'more room to improve' 

argument from a between-group perspective. Nevertheless, our more detailed analyses of both 

between-group and within-group differences suggest a more complex relationship between 

average speed and general skill learning across the human lifespan. Importantly, the superior 

general skill learning of children (particularly that of the 7-8-year-olds) was consistently 

demonstrated across different analysis approaches, while the older adults' general skill 

learning decreased to the level of young adults when differences in average speed were 

controlled for. Finally, task-specific triplet learning showed a gradual decline across the 

lifespan, and learning performance seemed to be independent of average speed, regardless of 

the age group. Overall, our results suggest that children are superior learners in various 

aspects of procedural learning, including both task-specific and task-general processes of 

learning. 

We used three different approaches to test the lifespan trajectory of general skill 

learning. Using raw RT measures, we observed a U-shaped trajectory with children and older 

adults exhibiting greater general skill learning compared to adolescents and younger adults. In 

contrast, when we used RT ratio scores [which is a common approach to control for 

differences in average speed across groups; see e.g., 44,45], the developmental trajectory was 

no longer U-shaped. Our results showed an advantage for children compared to adults, while 

the older adults (the 61-85-year-old group) no longer exhibited greater general skill learning 

compared to the younger adults, suggesting that the greater speed-up observed in raw RT 
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measures may due to different factors in children vs. older adults, even if both age groups 

show slower average speed compared to young adults. Additionally, as a third approach, we 

tested age-related differences in a subsample of participants whose average RTs were similar 

across age groups. Even though the selection of such subsample may have induced some bias 

(as faster participants of the children and older adult groups and slower participants of the 

adolescent and young adult groups were included in this analysis), it still may help provide a 

deeper insight into age differences in general skill learning while controlling for average RT 

differences. This analysis further confirmed the ratio score results of the whole sample: the 7-

8-year-old group exhibited the greatest general skill learning (approximately 20%, 

comparable to the ratio score of the whole sample of this age group), and then gradually 

smaller improvements were observed from childhood to adulthood. The 61-85-year-old group 

did not exhibit greater general skill learning than any other adult group. Thus, overall, 

children (especially the 7-8-year old age group) exhibited superior general skill learning 

consistently across analyses. This finding suggests a heightened ability to acquire new skilled 

behaviors in this developmental stage that cannot be explained by the generally slower 

responses in childhood.  

It is a typically observed pattern in developmental, aging and clinical neuroscience and 

psychology studies that groups with different average speed (e.g., children/older adults vs. 

young adults, or patient vs. control groups) are compared on different RT measures [14,46-

49]. In these group comparisons the difference in average speed poses a great challenge to 

disentangle its effect from other RT measures, such as those related to learning (e.g., speed-up 

as learning progresses), in order to unravel the more fine-grained group differences in 

cognitive functions. To better understand the extent of this challenge, here we tested the 

argument of whether generally slower response times are associated with greater general skill 

learning (i.e., slower average RTs provide 'more room to improve') in different developmental 
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stages. The between-group comparisons showed a similar U-shaped lifespan trajectory both 

for average speed and general skill learning measured by raw RTs, which can easily be 

viewed as support for the 'more room to improve' argument. However, our more detailed 

analyses of both between-group and within-group differences suggest a more complex 

relationship between average speed and general skill learning across the human lifespan. In 

between-group comparisons, as discussed above, children showed superior general skill 

learning performance compared to other age groups even when average speed across groups 

was controlled for, either by using ratio scores or in the analysis of a subsample with similar 

average speed. These results suggest that differences in average speed alone cannot, at least 

fully, explain the observed differences in general skill learning across the lifespan. 

Moreover, when we tested the relationship between average speed and general skill 

learning within age groups, we found correlations in age groups 7 to 13, 18 to 44, and 61 to 85 

years but not in adolescents (aged 14 to 17 years) or in middle aged participants (aged 45 to 

60 years), suggesting that the relationship between average speed and general skill learning 

(measured by raw RT differences) is not universal. Importantly, the use of ratio scores for 

general skill learning appeared to efficiently control for the differences in average speed in 

children as the correlation between average speed and general skill learning disappeared in the 

7-13-year-old age groups when such ratio scores were used. In contrast, ratio scores seemed 

less efficient in controlling for average speed differences in adulthood (particularly in the 30-

44-year-old group). These findings have important implications for developmental, aging and 

clinical studies comparing groups with different average speed: they highlight the importance 

of testing the relationship between average speed and other RT measures of interest, and the 

need for finding measures that can efficiently control for differences in average speed while 

not inducing other biases in group comparisons.  
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In the current study we also found age-related differences in task-specific triplet 

learning: the lifespan trajectory resembled a gradual decline across age groups with children 

exhibiting the best learning performance. This finding provides a direct replication of the 

Janacsek et al. [14] study in a new, independent sample of participants, suggesting, that at 

least in learning probabilistic regularities, children show an advantage compared to other age 

groups. This result supports the 'children better' theoretical framework in contrast to other 

models that emphasize developmental invariance or peak learning performance in young 

adulthood [8,23,32,50]. Additionally, the current study enabled us to test, in the same sample 

of participants, whether average speed is similarly related to general skill learning vs. triplet 

learning in order to gain a better understanding of the relationship between various aspects of 

procedural learning. Interestingly, while average speed showed a positive relationship with 

general skill learning (see above), no such relationship was observed with triplet learning in 

any of the age groups. This may emerge from the fact that triplet learning scores are computed 

as difference scores between RTs for high- vs. low-frequency triplets [18,37]. Thus, if 

someone is, on average, slower than others, s/he will show slower responses to both triplet 

types throughout the task, but the RT difference to these triplets (i.e., how much faster they 

respond to high- vs. low-frequency triplets) seems to be independent of the average speed of 

participants. This result is in line with findings of Török et al. (2017) showing that such triplet 

learning measures are resistant to factors that affect general performance changes, such as 

fatigue effects [51]. Thus, overall, the triplet learning measure appears to be a well-designed, 

reliable tool for testing the learning of probabilistic regularities [51,52], and is well-suited for 

group comparisons, even if average speed differs across groups. In contrast, other RT 

measures (e.g., general skill learning measures) may be more sensitive to average speed 

differences across participants and groups.  
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 Although we found better learning performance in children, it is important to note that 

children do not universally show an advantage compared to adults [11,53], and other factors 

should also be taken into account to gain a better understanding of procedural learning across 

the lifespan. Such factors may include the structure to be learned in the task (e.g., 

triplets/statistics, probabilistic or deterministic sequences) [11,25,26,52], their presentation 

parameters (e.g., simultaneous or sequential) [36], stimulus timing, task length, fatigue effects 

[31,51], or the ratio of motor vs. perceptual components of learning [29,54,55]. Future studies 

should systematically test these potential factors. Our study highlights the importance of using 

tasks that are able to assess different aspects of procedural learning, including the 

differentiation of performance changes that are related to general skill learning (i.e., task-

general learning) vs. those related to learning the structure embedded in the task (i.e., task-

specific learning). Moreover, the relationship between learning measures and average speed 

should also be tested and appropriately controlled for, when comparing groups with different 

average speed. Such research approach could significantly advance our understanding of 

differences in procedural learning across the lifespan. 

 Additionally, our study has important implications for a wide range of clinical 

populations, including neurodevelopmental (e.g., dyslexia, autism, ADHD, Tourette 

Syndrome) and neurodegenerative disorders (e.g., Mild Cognitive Impairment, Alzheimer's 

disease) as well as psychiatric conditions (e.g., schizophrenia, depression, bipolar disorder). 

These clinical populations typically exhibit slower responses compared to the 

healthy/typically developing control groups [38,46-49,56-58]. Understanding the relationship 

between average speed and aspects of procedural learning in different developmental stages 

can help formulate predictions for and test how various clinical conditions alter these 

processes, taking age-related differences into account as well. In the current study, we 



30 

 

reported detailed parameters of average speed and general skill learning for each age group 

separately that can be used as reference in future clinical studies.  

Here we focused on reaction time measures and their developmental trajectories across 

the lifespan. Although it is out of the scope of the current paper, it is important to note that 

accuracy measures can also be analyzed in at least some tasks of procedural learning. The 

patterns of overall accuracy and changes in accuracy during learning may exhibit different 

developmental trajectories and different within-group relationships compared to the reaction 

time measures. For example, children tend to have lower, whereas older adults tend to have 

higher overall accuracy than young adults, thus, average accuracy and average speed seems to 

show different lifespan trajectories [8,14,42]. It is reasonable to assume that the mechanisms 

related to average accuracy as well as to the changes in accuracy during learning are, at least 

partly, different from the mechanisms related to average speed and its changes (speed-up) 

during learning. Accuracy measures may be more closely related to attention and action 

selection functions, such as selectively attending to the target stimuli and selecting the 

appropriate responses to those stimuli. In contrast, reaction time measures usually include 

correct responses only, and thus, the attentional and action selection processes may affect 

these measures to a smaller extent. Instead, the average speed and the speed-up due to practice 

typically observed in procedural learning tasks may be more closely related to achieving 

greater automaticity that is a hallmark of skilled behaviors [59,60]. Future studies should 

directly test these possible mechanisms and their differential contributions to accuracy and 

reaction time measures.  
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Conclusions 

To summarize, children (especially the 7-8-year-olds) exhibited superior general skill 

learning consistently across analyses, suggesting a heightened ability to acquire new skilled 

behaviors in this developmental stage, which extends the 'children better' theoretical 

framework of procedural learning [14] to include both task-general and task-specific 

processes. Our study highlights the importance of disentangling these processes of procedural 

learning as they may be differentially affected by age or clinical conditions [see e.g., 8,35,46] 

and may be differentially related to average speed. Here we presented two approaches to 

control for average speed differences across groups: using ratio scores and testing a 

subsample of participants with similar average speed. Overall, the argument that slower 

average speed provides 'more room to improve' seems to be not universally true: some age 

groups across the lifespan and some measures of learning (task-general but not task-specific 

learning) seem to be more affected by average speed. Thus, our findings highlight the 

importance to test, and control for, the effect of average speed on other RT measures of 

cognitive functions, which can fundamentally affect the interpretation of group differences in 

developmental, aging and clinical psychology and neuroscience studies. 
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