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Abstract 

 

The scope of the review is to discuss the current state of knowledge and 

lessons learned on biofouling of membrane separators being used for microbial 

electrochemical technologies (MET). It is illustrated what crucial membrane features 

have to be considered and how these affect the MET performance, paying particular 

attention to membrane biofouling. The complexity of the phenomena was 

demonstrated and thereby, it is shown that membrane qualities related to its surface 

and inherent material features significantly influence (and can be influenced by) the 

biofouling process. Applicable methods for assessment of membrane biofouling are 

highlighted, followed by the detailed literature evaluation. Finally, an outlook on e.g. 

possible mitigation strategies for membrane biofouling in MET is provided.  

 

Keywords: membrane; biofouling; ion transport; mass transfer; microbial 

electrochemical technology; microbial fuel cell   
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1. Introduction 

 

Microbial fuel cells (MFC) are among microbial electrochemical technologies 

(MET) that generate electrical energy from the biological decomposition of organic 

matter (Logan et al., 2006; Schröder et al., 2015; Zhang et al., 2016). MFC resemble 

classical chemical fuel cells (FC), for instance, fed with hydrogen and oxygen. In both 

types of electrochemical cells, at the anode fuel oxidation and at the cathode oxygen 

reduction take place. Both electrodes have to be connected via an external circuit in 

order to allow electron transfer and energy harvesting. Consequently, adequate 

passage of ions between anode and cathode is necessary to assure charge 

balancing (Santoro et al., 2017). Using membranes or other separators divides the 

electrochemical cell into an anode and a cathode half-cell and yields a two-chamber 

configuration (Du et al., 2007). In many cases, conventional membrane materials for 

proton exchange membrane (PEM) FC such as Nafion are employed in MFC, as well 

(Harnisch et al., 2008; Kokabian and Gude, 2015). Although there are similarities 

between FC and MFC, they are significantly different. The biggest difference is the 

catalyst in MFC, i.e. electrochemically active bacteria (EAB) that oxidize organic 

compounds and transfer the electrons directly or indirectly to the anode (Pant et al., 

2010). Therefore, MFC compared to FC have to operate at different physical and 

chemical conditions, e.g. neutral pH or ambient temperature. 

It seems evident that materials are not similarly suitable for MFC and FC. For 

instance, the above-mentioned membrane material, Nafion, had been previously 

exploited for FC (Kraytsberg and Ein-Eli, 2016; Peighambardoust et al., 2010) and 

was thereafter adopted for MFC (seen as a FC-derivative technology) (Harnisch et 

al., 2008; Rozendal et al., 2006). Nafion was considered for long time as the primary 
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reference material for two-chamber MFC (Bakonyi et al., 2018). However, the 

deployment of Nafion and other ion exchange membrane materials in MFC has 

revealed severe weaknesses, such as low proton selectivity, high gas and substrate 

crossover, high fabrication cost (Chae et al., 2014; Park et al., 2017). Furthermore, 

membrane fouling both in chemical and biological terms (biofouling) is one of the 

most critical issues, although its importance has not yet been sufficiently addressed 

in MFC (Choi et al., 2011; Ghasemi et al., 2013; Rahimnejad et al., 2014; Xu et al., 

2012). The definition of fouling according to IUPAC is “loss of performance of 

a membrane due to the deposition of suspended or dissolved substances on its 

external surfaces, at its pore openings, or within its pores” (IUPAC, 1997). 

Nowadays, apart from MFCs, many other potential technologies derived from the 

MET platform are being under intense research such microbial electrolysis cell (Zhen 

et al., 2017) or microbial desalination cell (Kim and Logan, 2013), where membrane 

biofouling could be serious threat, as well. 

Consequently, in this review, it will be discussed what membrane properties 

should be taken into account and how these can influence the efficiency of MET 

operation, with priority given to biofouling. Thereafter, methods for characterization of 

membrane biofouling are assessed. This is followed by critical assessment of recent 

developments on membranes for various MET. Finally, future considerations 

regarding possible mitigation strategies are presented. To our knowledge, this topic 

has not yet been specifically reviewed.      
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2. Role of membranes in microbial electrochemical technologies and the 

adverse effect of biofouling 

 

In most cases, membrane separators applied in MET are chemically-

synthetized from polymers (Bakonyi et al., 2018, Koók et al., 2019a). In addition to 

those, ceramics (Khalili et al., 2017; Pasternak et al., 2016; Yang et al., 2016a; 

Winfield et al., 2016) as well as (more affordable) materials fabricated with the aid of 

natural substances (Hernández-Flores et al., 2016; Kondaveeti et al., 2018; Winfield 

et al., 2014) are found as alternatives. Regardless of the material the membrane is 

made of, it has to fulfill several key-properties (Bakonyi et al., 2018; Daud et al., 

2015; Yang et al., 2019) in terms of mass transfer between the electrodes, and ionic 

conductivity or low membrane resistance (that contributes to the total internal cell 

resistance). Even if a membrane shows advantageous initial properties, its stability in 

longer-terms remains of concern due to chemical as well as biological fouling, 

induced by the interaction of the membrane with certain foulants (Tan et al., 2017).  

Chemical fouling: Fouling can be caused by chemicals (e.g. nutrients, 

minerals, salts) present in the liquid media (for MFC mostly on the anode facing side 

of the membrane). Among these, ionic species play a role in ensuring the good 

electrolytic conductivity, however, they can also have an adverse effect by occupying 

the oppositely charged functional groups of ion exchange membranes. In this case, 

the transport of ionic substances between the electrode compartments is hindered. 

This finally causes deterioration of the membrane performance. Additionally, multi-

valent ions i.e. Mg2+ and Ca2+ and their occasional precipitation (e.g. CaCO3, 

Mg(OH)2) can cause serious operating issues in MET coupled with desalination and 

reverse electrodialysis (Mei and Tang, 2018; Ping et al., 2013; Vermaas et al., 2013; 



6 
 

Yang et al., 2019). For instance, divalent cations can form precipitates with naturally-

occurring organic matter in water resources and thus contribute to the development 

of compact fouling layers on the membrane (Luo et al., 2012ab; Zhang et al., 2017b, 

2018). Furthermore, they can enhance bio-flocculation, which is one of the key-

mechanisms of membrane fouling. In essence, as explained by Kim and Jang (2006), 

multi-valent ions can bridge bacterial extracellular polymeric substances (EPS), 

resulting afterwards in the aggregation and stabilization of biopolymers as well as 

microbes. 

Biological fouling can be defined as: fouling arising from biological processes 

(Guo et al., 2012). It has been widely emphasized that microorganisms can attach to 

the membrane surface to form a biofilm (Chae et al., 2008; Saeed et al., 2015). The 

biofilm layer can make the membrane substantially thicker and consequently, 

increase its resistance to mass transfer and ion transport (Sulonen et al., 2016). Both 

effects limit the operating efficiency of MET. Depending on the interactions between 

biofilm and membrane, the material may be impaired due to biological attacks, 

leading also to deterioration of mass- and charge transfer properties. In addition to 

membranes, the biofouling can hit hard on other architectural components too, such 

as cathodes (Oliot et al., 2016a). 

Actually, the mass- and charge transfer in MET with membranes is mainly 

governed by (i) diffusion (due to concentration differences in the two compartments) 

and (ii) migration, induced by the electric field (Hedbavna et al., 2016; Luo et al., 

2018; Sleutels et al. 2017). For instance, Harnisch et al. (2009a) did modelling of ion 

transfer across ion exchange membranes in MET. The ion fluxes associated with 

diffusion and migration terms were evaluated based on the 1-D form of Nernst-Planck 

equation, whereas the mass transfer via convection was neglected. Nevertheless, in 
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case of MET combined with membrane processes, e.g. reverse electrodialysis or 

forward osmosis, convective flow could be relatively more substantial and taken into 

account. For the above reasons, it is needed to pay attention to biofouling issues in 

MET and understand what factors influence this process. Here it has to be noted that, 

numerous aspects of (bio)fouling mechanisms described for membrane processes 

such as membrane bioreactors (MBRs), may be analogous for MET, too (Yuan and 

He, 2015) especially in cases when MET are coupled with MBRs (Cheng et al., 

2018). In MBRs, important fouling mechanisms originate from adhesion/deposition 

and subsequent rise of mass transport resistance (e.g. leading to increased filtration 

resistance). As for adhesion/deposition process, interfacial interactions between 

foulants and the membrane can be decisive (Teng et al., 2018a, 2019; Qu et al., 

2018). Further mechanisms linked to mechanisms driven by the electrochemical 

potential (linked to foulant/cake layer filtration) also play a role in the build-up of 

filtration resistance (Chen et al., 2016a; Teng et al., 2018b; Zhang et al., 2013). 

Interestingly on the biofouling aspect, as reviewed by Jia et al. (2016), the integration 

of electrochemical cell with MFC-biosensor could be a promising way to monitor 

biofouling potential of resources such as seawater based on the availability of 

assimilable organic carbon  (Quek et al., 2015).  

 

3. Background and mechanism on membrane biofouling in MET 

 

3.1. Membrane-associated aspects 

 

Biofouling is caused by biofilm growth on the membrane surface. This, 

however, is affected by certain membrane properties, such as its physical structure, 
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particularly the surface morphology. From this viewpoint, roughness of membrane 

surface is a notable parameter to deal with. As summarized by Williams (2014), this 

membrane feature is linked to the measure of surface texture and signifies to what 

extent the membrane surface deviates from an ideally smooth one. In fact, surface 

roughness will largely influence how the membrane behaves under given 

environmental circumstances and basically, with the increment of surface roughness, 

more space (area) becomes potentially available for microbes to invade and colonize 

the membrane (Zhong et al., 2012). This situation represents a bigger threat for the 

occurrence of biofouling and subsequently, membranes with smoother surface 

characteristics should be preferred for MET. This is supported by the conclusions of 

relevant literature reports, saying that membrane separators with more uniform, flat 

surface topology are expected to be more resistant to the development of biofilms 

(Dhar and Lee, 2013). Besides that, the porosity and pore size of the membrane can 

also matter. It is known from literature that on the top of non-porous membranes, 

porous micro- or ultrafiltration ones could be employed in MET. It should be taken 

into account that higher porosity – meaning larger pore volume compared to the total 

volume of the membrane (Smolders and Franken, 1989) – and larger pore size may 

provoke more intense biofilm formation. As a matter of fact, pores could be obvious 

places for microorganisms to settle and reproduce themselves, leading to clogging 

(Lim et al., 2012). Certainly, pores can be plugged not only by microorganisms but 

also by penetration and accumulation of organic/inorganic substances found in the 

compartments.  

Moreover, among membrane qualities, the wettability also deserves attention. 

Wettability refers to the hydrophilicity (or hydrophobicity) of the material, which is a 

function of its chemical composition and describes the affinity to water. Obviously, 
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hydrophilic membrane separators reflect a better potential to withstand biofouling, as 

explained by the findings of research studies. As a matter of fact, according to 

Elangovan and Dharmalingam (2016), microbes and biological macromolecules, e.g. 

EPS ascribed to their relatively hydrophobic features, have less preference to make 

connections with hydrophilic membrane surfaces (in comparison with hydrophobic 

ones). This can be attributed to the lack of thermodynamic benefit originating from 

low interfacial energy between the cells/components and the membrane surface. 

Besides that, as deduced by Kim et al. (2014), the adhesion of hydrophobic foulants 

to the hydrophilic membrane surface can be suppressed thanks to existing steric 

hindrances. For the record, hydrophilic membranes tend to have a lower ohmic 

resistance (Oliot et al., 2016b). 

In addition to the already evaluated membrane properties, the role of 

membrane surface charge needs to be outlined as it is also a factor that influences 

the interaction of membranes and (bio)fouling agents (Zinadini et al., 2017). As 

reported, highly negative surface charges are considered advantageous to 

counteract biofouling (Kim et al., 2014). The key reason seems to be the electrostatic 

repulsion force evolving between the biological cells (carrying in general an overall 

negative charge) and the negatively charged membrane surface.  

 

3.2. Microbiology-related considerations 

 

Apart from the inherent membrane traits assessed in Section 3.1., a range of 

microbiology-associated factors also governs biofouling. First, EPS can be identified 

as organic foulant (Lin et al., 2014). As it was outlined by researchers such as Miskan 

et al. (2016) and Nguyen et al. (2012), EPS – acting as biological glue (Flemming 
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and Wingender, 2001; Flemming, 2016) – promote the arrangement of microbes into 

aggregates and in that way, take part in the formation of biofilms. Hence, the 

determined amounts/concentrations of EPS on the membrane can be seen as 

indicators for biofouling. Alternatively, indirect measurement of the microbial activity 

on the membrane surface such as dehydrogenase activity (DA) (Reddy et al., 2010) 

gives indications concerning the severity of biofouling. As biofilm formation is a 

consequence of microbiological growth, methods directly quantifying the cell number 

(Heidrich et al., 2016) or the protein mass could be applied (Qiao et al., 2017). Here, 

it should be underlined that the growth of microorganisms depends on the 

environmental conditions such as the actual redox potentials in the system. Actually, 

membranes can be described by quite distinct mass transport properties especially 

the diffusion coefficients (D) of ions and other chemicals, e.g. oxygen diffusion (Do), 

which is directly proportional to the membrane thickness and the oxygen mass 

transfer (Chae et al., 2008; Kim et al., 2007). Therefore, membranes demonstrating 

lower Do could be more suitable for MFC in order to maintain anaerobic conditions in 

the anodic compartment and preserve EAB, e.g. Geobacter sp. (Logan and Regan, 

2006; Kim et al., 2015). In other words, the use of such membrane separators should 

therefore enhance the electrochemical performance of the whole MFC (Bakonyi et 

al., 2018; Koók et al., 2017a). Apart from the case of EAB, it is reasonable to assume 

that the extent of oxygen transfer through the membrane affects microorganisms 

growing on the membrane surface (Kokko et al., 2018). Accordingly, a membrane 

with higher dissolved oxygen flux can select more aerobic microorganisms on the 

membrane (Leong et al., 2013). Thus, advanced molecular biological tools to analyze 

microbial community structures can be helpful to investigate what microorganisms 

are attached on membranes of MET (Kouzuma et al., 2018; Saratale et al., 2017ab). 
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This could facilitate the understanding of plausible cross-effects, in particular 

membrane properties and underlying microbial consortia. In addition to oxygen 

transport, following the transfer of ions- and protons could also provide 

complementary information to evaluate the membrane behavior and its change over 

time (Bakonyi et al., 2018). 

Thus, studying the impacts of various membrane separators in MET could be 

suggested to better elaborate how much the actual type of membrane affects the 

system behavior both in electrochemical and microbiological terms (Sotres et al., 

2015). Feasible techniques possibly used for this purpose will be interpreted in the 

following section. 

 

4. Methods for the evaluation of membrane biofouling in microbial 

electrochemical technologies  

 

This section introduces methods that could be used to investigate membrane 

properties, particularly those that are considered to influence its biofouling 

resistivity/sensitivity (as detailed in Sections 2 and 3). These parameters could be 

helpful to make implications regarding the expected behavior of membranes, e.g. for 

a preliminary ranking of the materials. The comparative assessment of new and used 

membranes, based on these factors, can assist the explanation of biofouling 

phenomena and its effects on MET performance.  
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4.1. Methods for assessing membrane surface morphology, roughness, 

pore size, porosity, wettability 

 

The surface typology/morphology of a given membrane can be studied by 

scanning electron microscopy (SEM). Visualization at different points of cell operation 

could reveal the existence of biofouling layer on the membrane surface (Miskan et 

al., 2016). In addition, SEM may show the difference in the extent of surface 

roughness for various virgin membranes (Ghasemi et al., 2016). Further technologies 

for membrane surface image analysis, with different topological resolution, are the 

use of non-contact profilometer in the (sub)mm-scale (Elangovan and Dharmalingam, 

2016, 2017; Prabhu and Sangeetha, 2014; Venkatesan and Dharmalingam, 2015a) 

and Atomic Force Microscopy (AFM) for nm-scale (Ghasemi et al., 2012; Leong et 

al., 2015; Lim et al., 2012; Mokhtarian et al., 2013; Rahimnejad et al., 2012; Zinadini 

et al., 2017).  

Other intrinsic traits of a membrane separator for MET, such as mean and 

maximum pore size could be measured by filtration velocity and bubble point 

methods, while porosity can be examined with gravimetric methods, as demonstrated 

by Huang et al. (2017). As mentioned earlier, membrane wettability is an important 

factor to influence biofouling. It reflects the ability of a liquid to wet a surface 

(Gugliuzza, 2015) and can be associated with the surface tension. To characterize 

these measures, the contact angle between a liquid droplet and a solid surface could 

be used. This will express whether the solid material – here the membrane – is rather 

hydrophilic or hydrophobic (Huang et al., 2017; Jebur et al., 2018) and can be gained 

using a goniometer (Kim et al., 2014). 
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4.2. Methods for assessing membrane surface charge, ion exchange 

capacity, water uptake, thickness  

 

The surface charge of a membrane can be determined by the surface zeta 

potential, which can be extracted from electro-kinetic experiments (Hurwitz et al., 

2010).  

Actually, zeta potential measurements may derive from electrophoretic light 

scattering (ELS) method, as reported by Kim et al. (2014), who characterized the 

surface charge for a set of ultrafiltration membranes in MFC. The ion exchange 

capacity (IEC), as substantial attribute of (ion exchange) membrane separators is 

commonly examined with titration techniques (Hwang and Ohya, 1998; Venkatesan 

and Dharmalingam, 2015b; Xu et al., 2012). In the work of Xu et al. (2012), IEC for 

membranes was gained by Eq. 1. 

 

IEC = (A x B) M-1           (1) 

 

where IEC is given in the unit of mmol g-1, A and B denote the added titrant volume 

(dm3) and its molar concentration (mmol dm-3), respectively, while M designates the 

dry weight of the membrane sample (g).  

The membrane thickness (L), does affect the membrane resistance in a 

considerable manner. One approach to determine and monitor this parameter in MET 

was presented by Miskan et al. (2016), who observed the change of membrane 

samples in different periods of MFC operation (2, 4 and 6 months) by SEM and 

evaluated how L was varied.  Apart from visualization-based methods, the membrane 

thickness is obtainable by using micrometer screw gage, as reported by Wang et al. 
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(2015). The water uptake characteristic of a particular membrane material is also a 

significant feature. The amount of water absorbed by a membrane separator in the 

course of MET operation can result in swelling, consequently, increasing the 

thickness and hence the membrane resistance. Moreover, membrane swelling is an 

important issue in a membrane electrode assembly (MEA) MET because it may lead 

to serious performance deterioration by delaminating electrode from the MEA (Chae 

et al., 2014). Water uptake also influences proton conductivity of the membrane, 

since water molecules can participate in conveying them across the membrane if it is 

properly hydrated (Daud et al., 2019). Therefore, the water uptake property should be 

a subject of interest and could be calculated from immersion method, which 

considers the weight of membrane before and after hydration (Venkatesan and 

Dharmalingam, 2015b).  

 

4.3. Methods for assessing the membrane resistance 

 

Technical solutions to determine the (ohmic) membrane resistance are based 

on electrochemical impedance measurements (EIS). Mostly, EIS is done with a 

potentiostat equipped with a frequency response analyzer. In this case the 

impedance is examined by applying a constant voltage perturbation signal, typically 

with an amplitude of ±10 mV over a defined frequency range, e.g. between 100 Hz 

and 1MHz (Elangovan and Dharmalingam, 2016) or 10 kHz to 100 mHz (Zhang et 

al., 2009). The impedance Z is determined by measuring the phase shift and the ratio 

of the amplitude difference (modulus |Z|) between perturbation (voltage) and 

relaxation (current) signal. Alternatively to potentiostat, Choi et al. (2011) applied an 



15 
 

LCR meter to examine the ohmic resistance of membranes, based on voltage 

perturbation measurements.  

As described by Zhang et al. (2009), EIS can be used to reveal the ohmic 

resistance of the electrolyte in microbial fuel cells assembled (i) with and (ii) without 

membrane separator (as solid electrolyte). From the differences of those two values, 

membrane resistance could be reported (Zhang et al., 2009). Fig. 1 shows an 

exemplary Nyquist Plot for illustration. Apart from that, two-electrode measurements 

are widely used for determining the solid + liquid electrolyte resistance, when the 

anode is used as working, while the cathode plays the role of both the reference and 

counter electrodes (Wei et al. 2013). By analyzing the obtained EIS plots, the total 

internal resistance can be separated to solid + liquid electrolyte, charge transfer and 

diffusion resistance components (Nam et al. 2010). 

 

4.4. Proton conductivity of membranes  

 

The efficient charge balancing (ion and proton transfer) of the membrane is 

one of the most essential requirements to achieve good operational performance in 

MET (Bakonyi et al., 2018). In real applications, the widely used PEMs are not ideally 

selective to proton as they allow the passage of various ions at the same time. 

Related to this, it was shown that the transport of H+ in MFC plays a minor role at this 

charge balancing process, because of their significantly (4 - 5 orders of magnitude) 

lower concentration compared to other ions in the systems (Rozendal et al., 2006; 

Zhao et al., 2006). Although, once the amount of cations in the cathode chamber is 

high enough, transport of protons becomes energetically more favorable (Sleutels et 

al., 2017). In case of the occurrence of membrane biofouling, meaning that the 
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movement of ions and protons is getting physically obstructed, the membrane can 

lose some of its attractiveness (Kim et al., 2016). Therefore, the ion and proton 

conductivity of a particular membrane is a quality that is worthy to be monitored. 

 For instance, specific ionic conductivity measurements can be performed by 

experimental arrangement following Eq. 2 (Xu et al., 2012):  

 

σ = L (R x S)-1           (2) 

 

where σ, L, R and S are assigned for the conductivity (S cm-1), the distance between 

the electrodes (cm), the membrane resistance (Ω) and the area of the membrane 

(cm2), respectively. 

 

4.5. Mass transport properties 

 

4.5.1. Proton mass transfer 

 

It is important to complement the characterization of a membrane with proton 

mass transfer properties, since these are significantly related to the pH-splitting 

phenomena. The pH-splitting does refer to the accumulation of protons in the anode 

chamber and hydroxides in the cathode chamber, as charge balancing ion transfer is 

realized by other ions than H+/ OH- (Li et al., 2011; Sleutels et al., 2017). In order to 

describe H+ mass transfer, the methodology detailed by Zhang et al. (2009) seems to 

be applicable. In brief, the tests should be carried out in an abiotic, dual-chambered 

cell with a pH sensor installed into one side to be able to record the pattern of pH 
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changes between the two compartments adjusted to different initial pH values, as 

described by Eq. 3. 

 

𝑘𝐻 = −
𝑉

2𝐴𝑡
∙ ln[

(𝐶1,0+𝐶2,0−2∙𝐶2)

𝐶1,0−𝐶2,0
]        (3)

      

where V is the liquid volume, A is the membrane surface area, C1,0 and C2,0 are the 

initial proton concentrations in the chambers with neutral and elevated pH 

(considered as cathode and anode chambers, respectively), while C2 is the proton 

concentration in the anode solution at time t. After multiplying kH with the membrane 

thickness, the proton diffusion coefficient of a particular membrane can be displayed 

(Bakonyi et al., 2018). Alternative to Eq. 3., the so-called transport number (or 

transference number) can be derived (Harnisch et al., 2008), which shows the “the 

part of the current that is transported through the electrolyte due to the motion of the 

ionic species” according to Oliot et al. (2016b). Such an approach was applied by 

Park et al. (2017) to characterize the proton transport through membrane in two-

chambered bioelectrochemical reactors. 

 

4.5.2. Bulk ions and substrates 

 

The characterization of ions that also contribute to the electro-neutralizing 

charge transfer can be done by calculating their mass transfer coefficients (𝑘𝐼/𝑆) 

based on the ion concentration in the compartment with high ion activity (CS,0) and in 

the receiving compartment with low ion activity (CS), according to Eq. 4 (Xu et al., 

2012). 
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𝑘𝐼/𝑆 = −
𝑉

2𝐴𝑡
ln[

(𝐶𝑆,0−2𝐶𝑆)

𝐶𝑆,0
]         (4) 

 

This method can be used for quantifying the mass transfer of any ionic species 

present in the system. In two-chamber MFC where EAB are present and fed in the 

anode compartment, the transfer of (biodegradable) substrate from the anode to the 

cathode compartment because of concentration differences will result in loss and 

therefore, in a decreasing activity of the EAB in the anode half-cell. Substrate 

leakage may promote microbiological proliferation and hence, the contamination of 

the cathode-side by biological agents, leading to increased biofouling on the cathode-

facing surface of the membrane and the cathode electrode too, as well as mixed 

potential formation and internal currents (Harnisch et al., 2009b). Analogously, this 

applies to MET where EAB are located at the cathode (systems with biocathode) and 

materials are lost to the anode side across the membrane. For instance, Ping et al. 

(2013) investigated microbial desalination cells (containing a pair of AEM and CEM 

as well as seawater in between those) during long-time operation (8 months). It was 

found that in addition to deposited particles, some amount of microbes could be even 

found attached to the CEM’s cathode-facing side (tap-water catholyte), as well, while 

the middle-chamber facing side of the CEM was also biofouled, and even the 

presence of fungi could be observed. Meanwhile, the anode was strongly biofouled. 

Hence, it is a possible scenario that biofouling also occurs on the membrane surface 

that is not in direct contact with the EAB- and substrate-rich compartment. 
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4.5.3. Oxygen mass transfer 

 

The capability of a membrane to transport oxygen affects the dissolved 

oxygen concentration in the anode chamber of a MFC (Mohamed et al., 2016). 

Therefore, membranes being more permeable to (dissolved) oxygen will promote the 

growth of aerobic strains on its surface. These types of bacteria, in general, can be 

attributed with shorter duplication time and greater biomass yield in comparison with 

less oxygen-tolerant/more anaerobic ones. Hence, it might be assumed that 

membranes leading to larger oxygen fluxes (from the aerated cathode to the non-

aerated anode) are more prone to biofouling and accumulate more biomass on the 

surface. 

To determine the oxygen mass transfer coefficient (kO) of a separator, the 

procedures suggested by Kim et al. (2007) and Chae et al. (2008) could be followed. 

Basically, kO is produced by experimental data fitted into Eq. 5. 

 

𝑘𝑂 = −
𝑉

𝐴𝑡
ln[

(𝐶0−𝐶)

𝐶0
]           (5) 

 

where V is the liquid volume, A is the membrane surface area, C0 and C are the 

dissolved oxygen concentrations (i) in the oxygen saturated cathode half-cell and (ii) 

in the anode chamber at time t, respectively. Afterwards, by combining membrane 

thickness (L) with kO (Eq. 6), the oxygen diffusion coefficient is obtained.  

 

𝐷𝑂 = 𝑘𝑂𝐿            (6) 
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4.6. Membrane biofouling characterization 

4.6.1. Chemical composition 

 

Various authors, for example Miskan et al. (2016), Mohamed et al. (2016), 

Kondaveeti et al. (2018) and Xu et al. (2012) communicated that Fourier-Transform 

Infrared Spectroscopy (FT-IR) can be used to follow the biofouling process in MET. 

Analyzing the FT-IR spectra can help to (i) evaluate some of the main biopolymers in 

the biofouling layer (Miskan et al., 2016), (ii) reveal the potential modifications of 

membrane’s chemical structure (Mohamed et al., 2016) and (iii) describe the 

characteristics of contaminants found on the membrane surface (Kondaveeti et al., 

2018) or in other words, characterize the fouling layer (Xu et al., 2012). Moreover, 

Energy Dispersive X-ray spectrometry (EDX) is a measurement technology to get 

insight regarding the microscopic structure and inorganic elemental composition of a 

membrane, e.g. its cation content after use in MET (Choi et al., 2011; Rozendal et al., 

2006; Xu et al., 2012). 

 

4.6.2. Quantification of EPS 

 

As noted above, EPS play a key-role in the membrane biofouling process. 

EPS, in accordance with Jiang et al. (2010), can cover a range of constituents, in 

particular high molecular-weight polymers, e.g. saccharides and proteins. Therefore, 

the carbohydrate and protein portions of EPS are distinguished and analyzed 

separately. Determination of EPS on the membrane requires their extraction first 

(Kim et al., 2014). Thereafter, carbohydrates can be quantified by phenol/sulfuric-acid 

method, while proteins can be measured for example via the Lowry method based on 
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bovine serum albumin (BSA) standard or other ready-made test kits i.e. micro BCA 

protein assay (Jiang et al., 2010; Kim et al., 2014). 

 

4.6.3. Evaluation of the microbial community 

 

Biofouling is a consequence of biofilm formation on the membrane, which can 

be depicted as a mass of microorganisms in an adhered, consistent structure. For 

instance, Heidrich et al. (2016) underlined that methods for quantification of selected 

microbes include (i) quantitative polymerase chain reaction (qPCR) as well as (ii) 

fluorescence in situ hybridization (FISH). In addition, Kim et al. (2014) did total cell 

counting in MFC with Confocal Laser Scanning Microscopy (CLSM) and DAPI (4'6-

diamidino-2-phenylindole) staining. CLSM could also be applied to study biofilm 

structure (Xu et al., 2012), for instance, living and dead cells in anode biofilms of 

microbial electrochemical devices (Sun et al., 2015).  

Biomass/cell quantity can be related with the total protein content, e.g. in 

samples drawn from a surface of a membrane. As reported by Qiao et al. (2017), the 

procedure to determine proteins can rely on the colorimetric Bradford Protein Assay 

and the Lowry method (Xu et al., 2012).  

 To enrich the information about biofilms on membranes in MET, it is also 

worthy to address who they are. For instance, works of Zhi et al. (2014) and Saratale 

et al. (2017ab) provide details of the microbiological and molecular biological tools for 

studying microbial communities, particularly species abundance and population 

dynamics. For imaging and analyzing microbes and their properties, the use of (laser-

based) flow-cytometry technique can be a feasible approach. Mainly, it can 

characterize samples (wastewaters, electrode-surface biofilms) in the aspects of 
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physiological heterogeneity and population dynamics (Harnisch et al., 2011). It 

evaluates the microbial community structures and activity (both qualitatively and 

quantitatively) in using almost real-time. The summary of the mentioned methods for 

(bio)fouled membrane as well as fouling layer characterization is provided in form of 

Fig. 2. 

 

5. Biofouling experiences with membrane separators  

 

Biofouling normally occurs on the side of the membrane that is in touch with 

the compartment containing the biological catalysts. Accordingly, research strategies 

should focus on the (i) development of new materials and/or (ii) the improvement of 

existing ones to withstand against such effects thanks to better surface properties. 

Particular examples are listed in Table 1. Accordingly, one plausible direction could 

be seen in the preparation of organic-inorganic combined materials. As concluded by 

Venkatesan and Dharmalingam (2015b), hydrophilic inorganic composite particles, 

e.g. TiO2 incorporated in PEM could be useful to improve resistance of the 

membranes against biofouling. In their study (Venkatesan and Dharmalingam, 

2015b), it was observed that sulfonated poly-ether-ether-ketone (SPEEK) 

membranes made with TiO2 metal oxide (7.5 %) enhanced the hydrophilic feature of 

the resulting membrane and consequently, reduced the adhesion of bacteria to its 

surface. This was confirmed by counting the E. coli cells (used as indicator for 

biofouling) on the membranes. SPEEK – TiO2 membranes showed an order of 

magnitude lower E. coli absorption than simple SPEEK or Nafion membranes. The 

hybrid membranes also exhibited less significant cation transfer and in that way, were 

considered to decrease the threat of salt precipitation, which is also advantageous 
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from a biofouling aspect (Venkatesan and Dharmalingam, 2015b). Interestingly, for 

SPEEK membranes, Ghasemi et al. (2016) found that the degree of sulfonation (DS) 

may have an influence on the type of fouling that the membrane suffers from. It 

seemed from SEM image analysis that lower DS (20.8 %) caused mineral, while 

higher DS (63.6 %) rather microbiological fouling. However, Lim et al. (2012) 

experienced certain adverse effect of mixing SPEEK (3 %) with poly(ether sulfone) 

(PES) due to higher surface roughness, which has made this material to be a 

potential target for microbial adhesion and consecutive biofilm formation.  

As a new attempt to substitute expensive fluorine-based Nafion membranes, 

sulfonated hydrocarbon-based ion-conducting polymers have been actively studied. 

Leveraged by such characteristics, Chae et al. (2014) developed sulfonated 

polyether ether ketone (SPEEK)-based composite PEM with polyimide nanofiber 

supporter. Although SPEEK exhibits higher proton exchange capacity than Nafion, it 

has several physically instability (e.g. high swelling, dimensional change). This 

problem was solved by embedding the polyimide nanofiber in the center of SPEEK 

as a supporting structure to reinforce the dimensional stability (Chae et al., 2014). In 

addition to SPEEK, sulfonated poly(arylene ether sulfone) (SPAES) has been 

considered as an efficient hydrocarbon-based proton-conducting block copolymer 

(Park et al., 2017). These SPEEK- and SPAES composite PEMs exhibited an 

improved proton selectivity while excluding other competing cations (Ca2+, Mg2+, 

NH4
+, etc.), and less substrate crossover through PEM as well. Such enhanced 

performance was attributed to a well-defined microstructure that has narrow, 

branched, tortuous ion-conducting hydrophilic channels, compared to that of Nafion. 

These reduced crossovers for both substrate and divalent cations can lead to 

conditions that are more favorable to mitigate biofouling. 
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Another approach was demonstrated by Choi et al. (2013), who fabricated 

membrane separators from nonwowen fabric and poly[2,5-benzimidazole] (ABPBI). It 

turned out from the experiments that in comparison with Nafion, the nonwoven fabric-

based material showed better resistance against biofouling in an MFC for a period of 

more than 300 days.  

Furthermore, Kim et al. (2014) have revealed that coverage of ultrafiltration 

membrane (UF) by polydopamine led to substantial increase of biofouling resistance. 

The authors showed that the reason was primarily linked to the alteration of 

membrane surface charge, resulting in the increment of electrostatic repulsion forces 

between the membrane surface and the bacteria. Similarly, beneficial impact 

ascribed to enhanced electrostatic repulsion forces was reported by Huang et al. 

(2017) employing a conductive flat microfiltration membrane comprising of 

polyvinylidene fluoride, N-methyl- 2-pyrrolidone, polyvinyl pyrrolidone and reduced 

graphene oxide (RGO) on stainless steel mesh base. In addition, the authors noted 

the advantage of membrane’s more hydrophilic nature, which had contributed to the 

biofouling mitigation as well (Huang et al., 2017).  

In another work by Angioni et al. (2016), the modification of Nafion polymer 

turned also out to be efficient for improving the membrane material and reduce 

biofouling in MFC. As it was elaborated, the silica-based, functionalized fillers added 

to Nafion helped to achieve more negative membrane surface charges and hence 

the composite membranes were more successful to tackle the biofouling phenomena 

in MFC. Mokhtarian et al. (2013) demonstrated that the proper combination of Nafion 

with polyaniline could actually decrease the surface roughness of the membranes 

attained and accordingly, this material was more resistive to biofouling due to the less 

available surface area for bacterial attachment.  
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Apart from these, authors such as Chen et al. (2012) and Tao et al. (2015) 

emphasized that polyvinyl alcohol (PVA) is sufficiently hydrophilic, relatively easy to 

be film casted, cost effective, environmentally gentle and therefore, assumed to 

increase biofouling resistance of membranes. Moreover, Hou et al. (2014) explained 

that PVA membranes can be made proton conductive by attaching negatively 

charged functional groups into its structure. Results in MFCs operated with PVA-

based membrane separators have been published by Khilari et al. (2013) and Zhang 

et al. (2017a). The authors added graphene oxide (GO) to the polymer matrix 

comprising of PVA and silicotungstic acid. By optimizing the membrane recipe, the 

power production in MFCs could be significantly enhanced and at the same time, 

biofouling was suppressed. Zhang et al. (2017a) also mentioned certain self-cleaning 

effect of membranes prepared with PVA, polyvinylidene fluoride and cotton fabric 

(referred originally as PVAc-g-PVDF coated cotton fabric), which may have 

contributed to the anti-biofouling property of the material in microbial fuel cell. 

As for experiences with various kinds of membrane-equipped MET, results 

from osmotic MFCs can be highlighted. This system combines the benefits of MFCs 

(in terms of electricity production) and the osmotic pressure-driven water purification 

technologies reported data for fouling (mostly inorganic, but containing biopolymers 

as well) in osmotic MFCs equipped with forward osmosis membranes (FO) (Zhang et 

al., 2011; Zhu et al., 2016). Actually, it was found that fouling – in addition that water 

flux across the fouled membrane was close to zero – promoted the power generation 

efficiency of osmotic MFC compared to the outcomes of pristine membranes. At a 

first glance, this could be quite unexpected considering the usual feedback related to 

biofouling in MET. Nevertheless, it has been turned out by measuring the flux of 

charge carriers across the membrane that fouling enhanced the ion diffusion and ion 
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exchange mechanisms, resulting in accelerated flux of protons and ions (Zhu et al. 

2016). 

Yang et al. (2016b) also communicated that the water flux via cellulose 

acetate-based FO membrane was decreased by 50 %. In the same study, it was 

demonstrated that the use of silver nanoparticle – polydopamine coating (to modify 

the FO membrane) was effective to retard biofouling. The mechanism was explained 

by the anti-microbial effect of silver and the negatively-charged, hydrophilic 

environment of the membrane caused by polydopamine (Yang et al., 2016b). It is 

worth to mention that although the surface roughness of the modified FO membrane 

was considered theoretically more favorable for cell attachment, it seemed to be 

diminished by the surface charge, hydrophilicity and anti-microbial effect of the silver 

nanoparticles. In accordance with the conclusion of the authors two particular 

questions should be addressed: (i) the effectiveness of anti-microbial effect related 

with the silver content of the membrane in long term studies and (ii) the stability of 

silver-containing FO membrane such as silver loss during application. The positive 

influence of Ag content in membranes towards better anti-(bio)fouling was also 

reported by Zhang et al. (2019) in an electrically-assisted membrane filtration 

process. In the context of such membranes, the release of silver nanoparticles (SiNP) 

from membranes could be a concern since this may affect EAB. Though the exact 

mechanism behind the anti-microbial action of SiNP is not yet clarified, proposed 

theories were outlined by Prabhu and Poulose (2012). 

  



27 
 

6. Outlook on possible approaches to mitigate membrane biofouling in 

microbial electrochemical technologies 

 

Although in some applications such as microbial recycling cells the deposition 

of salt and biofouling in microporous layers are viewed as advantages (Goglio et al., 

2019), membrane biofouling in MET represents mostly a remarkable issue for long-

term, efficient system performance (Aryal et al., 2018; Chen et al., 2016b; Liu et al., 

2017). Therefore, the used membranes have to be engineered towards more 

convincing anti-fouling characteristics. In summary, to increase the chance of 

counteracting membrane biofouling in MET, membrane separators should have (i) 

smoother surface, (ii) negative surface charge (to aid electrostatic repulsion force), 

(iii) advantageous inner structure (in terms of the presence/absence of pores and 

their size/volume) and (iv) hydrophilic character (as implied in Fig. 3). Certainly, the 

efficiency of a membrane from a biofouling-resistance viewpoint will be determined 

together by these inner qualities of the material. To make a confidential ranking 

among different membranes, experiments will be required under identical 

experimental settings in MET. 

 In order to create membranes – typically made of polymer materials that are 

the most widespread in MET (Bakonyi et al., 2018) – with better potential to 

overcome biofouling, Leong et al. (2013) have introduced some possible directions to 

improve anti-microbial as well as anti-adhesion routes. These include mean specific 

chemical modifications to reduce bacterial proliferation or to suppress the attachment 

of foulants to the membrane surface, respectively (Leong et al., 2013).  

So far, as evaluated in Section 5, several research strategies have been 

communicated to make membranes in MET more effective against biofouling. These 
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attempts resulted in (i) the use of hydrocarbon-based ion conducting materials 

prepared with SPEEK and SPAES (Venkatesan and Dharmalingam, 2015b; Ghasemi 

et al., 2016; Lim et al., 2012; Chae et al., 2014; Park et al., 2017), (ii) the modification 

of Nafion (Angioni et al., 2016; Mokhtarian et al., 2013), (iii) the support of cheap 

material with ion-specific conductor (Choi et al., 2013; Chae et a., 2014), (iv) the 

improvement of micro- and ultrafiltration membranes (Huang et al., 2017; Kim et al., 

2014) and (v) the fabrication of membranes containing silver nanoparticles (Yang et 

al., 2016b). 

Although these approaches are highly promising and show how membranes 

have been upgraded to diminish biologically-induced fouling in MET, establishment of 

further concepts can be suggested to broaden this field and provide more options for 

anti-fouling membrane construction. To facilitate this progress, lessons and 

experiences with biofouling from other membrane-related areas might be taken into 

account. An interesting and quite new approach is the deployment of ionic liquid-

containing membranes (Fig. 4). It has been proved that certain supported ionic liquid 

membranes (prepared with imidazolium and methyl trioctylammonium cations and 

with [PF6]-, [BF4]-, [Cl]- and [NTf2]- anions, by using polyamide supporting layer) 

(ILMs) were applicable in MFCs to substitute Nafion PEM (Hernández-Fernández et 

al. 2015; Koók et al., 2017ab, 2019b). On that matter, Jebur et al. (2018) found 

notable anti-microbial effect of imidazolium cation-based hydrophilic (with [Cl]- and 

[Br]- anions) and hydrophobic (with [NTf2]- anion) ILMs using PTFE supporting layer 

and various test microorganisms. Hence, proper selection of ionic liquids and their 

use may be a feasible way to fabricate membranes with adequate antimicrobial 

properties. Accordingly, more work is encouraged in this topic to get more information 

about the feasibility of ILM in MET.  
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However, it is presumable for most strategies aiming to overcome biofouling 

that they are unable to ensure full success over longer time. In other words, adhesion 

and accumulation of biofoulants on the membrane are only a question of time and 

therefore, it may rather be the question how to increase the lifetime of membranes in 

MET. For instance, Kim et al. (2014) studied polydopamine coated ultrafiltration 

membranes in microbial fuel cells and showed that longer-term suppression of 

biofouling in such systems was rather unlikely. Thus, apart from the development of 

new, high-performance membranes, attention could also be paid to end-of-pipe 

solutions e.g. membrane cleaning. Though the specific topic of membrane cleaning 

for MET is currently underdeveloped, approaches demonstrated in membrane 

bioreactors (Lin et al. 2013; Wang et al., 2014) may be adapted to two-chambered 

MET to recover (bio)fouled membranes. This step may need case specific 

optimization according to the actual material properties in order to find a procedure 

that does not attack the chemical structure of the membrane but at the same time, is 

effective enough to play its part in membrane regeneration (Aslam et al., 2018). 

However, if cleaning is proven insufficient, then from time to time, membrane 

replacement is inevitable, adding an extra cost to the process (Ho et al., 2017).  

Under any conditions, the assessment of MET operation in the light of 

relationships between the actual membrane type and the microbial community 

growing on it can be important to manage the biofouling problem Sánchez (2018). 

 

7. Conclusions 

 

We have illustrated that membrane biofouling is a crucial issue in MET. It was 

overviewed what membrane properties (e.g.  mechanical stability or mass transfer) 
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are influenced by biofouling phenomena. Conversely, we deduced how certain 

membrane features (mainly surface morphology, charge, structure and hydrophilicity) 

affect the formation of biofouling layers. Accordingly, two-sided approach – 

considering the interrelation of membrane properties and biofouling – was suggested 

to address its complexity. Biofouling monitoring methods (in terms of fouling layer 

chemical composition, microbial community) were presented and possible directions 

in membrane development (such as the promising employment of ionic liquids) to 

counteract biofouling were demonstrated. 
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Table 1 – Biofouling experiences with membranes/separators applied in MET. 1 

 2 

Type of MET Membrane/Separator Inoculum 
Assessment of 

membrane biofouling 
Reason behind biofouling 

mitigation effect 
Reference 

            

MFC SPEEK/TiO2 composite E. coli 

The number of cells 
on membrane surface 

was evaluated by 
hemocytometer-

method 

The addition of TiO2 to 
SPEEK polymer enhanced 

the hydrophilicity of the 
material 

Venkatesan and 
Dharmalingam 

(2015b) 

            

MFC 
SPEEK with various 
degree of sulfonation 

Anaerobic Sludge 
The membranes were 

examined by SEM 

Lower degree of polymer 
sulfonation seemed to 

influence positivetly the 
membrane resistivity against 

biofouling 

Ghasemi et al. 
(2016) 

            

MFC SPEEK/PES composite Anaerobic Sludge 
The membranes were 

observed by SEM 

Polymers with smaller pore 
size, lower porosity and 
smoother surface are 
favorable to deal with 

biofouling. 

Lim et al. (2012) 

            

MFC 
Non-woven fabric filter 

(NWF) 
Wastewater 

Sludge 
NWF was studied by 

SEM 

NWF was not effective to 
withstand biofouling (>300 
days), but still maintained 
ion transport in its fouled 
form thanks to existing 

microscale interstitial access 
paths 

Choi et al. (2013) 
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MFC 
Polydopamine coated 

UF-M 
Anaerobic Sludge 

EPS concentrations 
and total cell 

numbers were 
determined from the 

membranes 

PD-coated UF-M can more 
effectively retain EPSs and 
bacterial cells because of 

increased hydrophilicity- and 
more negative surface 

charge 

Choi et al. (2013) 

            

MFC 

conductive, flat 
microfiltration 

membrane 
(PVDF/NMP/PVP/RGO) 

Effluent of 
established-MFC 

The biofouling layer 
attached to the 
membrane was 

observed by confocal 
laser scanning 

microscopy (CLSM) 

Reduced membrane 
biofuling was observed as a 

result of  enhanced 
hydrophilicity and greater 

electrostatic repulsion forces 

Huang et al. (2017) 

            

MFC 

Nafion modified with 
silica-based, 
organically-

functionalized 
mesostructured fillers 

Wastewater 
Sludge 

The membranes were 
analyzed by SEM 

Higher electrostatic 
repulsion forces led to 
decreased membrane 

biofuling 

Angioni et al. 
(2016) 

            

MFC Nafion/PANI composite Anaerobic Sludge 
The membranes were 

subjected to SEM 

Smoother membrane 
surface was accompanied 

by weaker biofouling 
compared to plain Nafion 

Mokhtarian et al. 
(2013) 

            

MFC 
PVAc-g-PVDF-coated 

cotton fabric  
Anaerobic Sludge 

MFC with various 
membranes were 

assessed based on 
power generation 

"Self-cleaning" property of 
PVAc-g-PVDF-coated cotton 
fabric maintained the pores 

unblocked and thus, 
defended the membrane 

from biofouling 

Zhang et al. (2017) 
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Osmotic 
MFC 

Silver nanoparticle-
polydopamine coated 

forward osmosis 
membrane 

Anaerobic Sludge 

Total direct cell count 
as well as EPS 

analysis on the fouled 
membrane surfaces 

were performed 

Mitigated membrane 
biofouling was associated 

with the antibacterial impact 
of silver nanoparticles (+ 
enhanced hydrophilicity) 

Yang et al. (2016b) 

            

            
 3 
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Fig. 1 – Exemplary Nyquist plot of an electrode immersed in an electrolyte (R||C 4 

Element + electrolyte resistance) with Rpol: polarization resistance, Cdl: double layer 5 

capacity, Rel: electrolyte resistance, adapted from Hamann et al. (2007) 6 

 7 

 8 

  9 



54 
 

Fig. 2 – Summary of membrane and fouling layer characterization methods. 10 

 11 

 12 

  13 
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Fig. 3 – The formation process of chemical and biofouling highlighting the main 14 

causes and effects, and the crucial membrane features affecting the resistance of the 15 

membrane against fouling. 16 

 17 

 18 
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Fig. 4 – Scheme of the structure of supported ionic liquid membranes (SILM). 20 

 21 
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