
J. Leroux and J.-F. Raskin (Eds.): Tenth International Symposium
on Games, Automata, Logics, and Formal Verification (GandALF’19).
EPTCS 305, 2019, pp. 169–182, doi:10.4204/EPTCS.305.12

© Kitti Gelle & Szabolcs Iván
This work is licensed under the
Creative Commons Attribution License.

On the Order Type of Scattered Context-Free Orderings*

Kitti Gelle
University of Szeged, Hungary

kgelle@inf.u-szeged.hu

Szabolcs Iván
University of Szeged, Hungary

szabivan@inf.u-szeged.hu

We show that if a context-free grammar generates a language whose lexicographic ordering is well-
ordered of type less than ω2, then its order type is effectively computable.

1 Introduction

If an alphabet Σ is equipped by a linear order <, this order can be extended to the lexicographic ordering
<ℓ on Σ∗ as u <ℓ v if and only if either u is a proper prefix of v or u = xay and v = xbz for some
x,y,z ∈ Σ∗ and letters a < b. So any language L ⊆ Σ∗ can be viewed as a linear ordering (L,<ℓ). Since
{a,b}∗ contains the dense ordering (aa+ bb)∗ab and every countable linear ordering can be embedded
into any countably infinite dense ordering, every countable linear ordering is isomorphic to one of the
form (L,<ℓ) for some language L ⊆ {a,b}∗. A linear ordering (or an order type) is called regular or
context-free if it is isomorphic to the linear ordering (or, is the order type) of some language of the
appropriate type. It is known [2] that an ordinal is regular if and only if it is less than ωω and is context-
free if and only if it is less than ωωω

. Also, the Hausdorff rank [13] of any scattered regular (context-free,
resp.) ordering is less than ω (ωω , resp) [10, 8].

It is known [9] that the order type of a well-ordered language generated by a prefix grammar (i.e. in
which each nonterminal generates a prefix-free language) is computable, thus the isomorphism problem
of context-free ordinals is decidable if the ordinals in question are given as the lexicograpic ordering of
prefix grammars. Also, the isomorphism problem of regular orderings is decidable as well [15, 3]. At the
other hand, it is undecidable for a context-free grammar whether it generates a dense language, hence
the isomorphism problem of context-free orderings in general is undecidable [7].

Algorithms that work for the well-ordered case can in many cases be “tweaked” somehow to make
them work for the scattered case as well: e.g. it is decidable whether (L,<ℓ) is well-ordered or scat-
tered [6] and the two algorithms are quite similar.

In this paper we continue to explore the boundary of decidability of the isomorphism problem of
context-free orderings. We show that if the order type o(L) of a context-free language L is known to
have the form ω × k+n for some integers k and n, then k and n can be effectively computed. The main

building block for proving this is a decision procedure for solving o(L(X))
?
=ω for each nonterminal X ,

and a recursive algorithm that terminates for languages of order type less than ω2.

2 Notation

A linear ordering is a pair (Q,<), where Q is some set and the < is a transitive, antisymmetric and
connex (that is, for each x,y ∈ Q exactly one of x < y, y < x or x = y holds) binary relation on Q. The pair

*Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT is acknowledged. Szabolcs Iván was supported
by the János Bolyai Scholarship of the Hungarian Academy of Sciences. Kitti Gelle was supported by the ÚNKP-19-3-SZTE-86
New National Excellence Program of the Ministry of Human Capacities.

http://dx.doi.org/10.4204/EPTCS.305.12
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

170 On the Order Type of Scattered Context-Free Orderings

(Q,<) is also written simply Q if the ordering is clear from the context. A (necessarily injective) function
h : Q1 → Q2, where (Q1,<1) and (Q2,<2) are some linear orderings, is called an (order) embedding if
for each x,y ∈ Q1, x <1 y implies h(x)<2 h(y). If h is also surjective, h is an isomorphism, in which case
the two orderings are isomorphic. An isomorphism class is called an order type. The order type of the
linear ordering Q is denoted by o(Q).

For example, the class of all linear orderings contain all the finite linear orderings and the orderings
of the integers (Z), the positive integers (N) and the negative integers (N−) whose order type is denoted
ζ , ω and −ω respectively. Order types of the finite sets are denoted by their cardinality, and [n] denotes
{1, . . . ,n} for each n ≥ 0, ordered in the standard way.

The ordered sum ∑x∈Q Qx, where Q is some linear ordering and for each x∈Q, Qx is a linear ordering,
is defined as the ordering with domain {(x,q) : x ∈ Q,q ∈ Qx} and ordering relation (x,q) < (y, p) if and
only if either x < y, or x = y and q < p in the respective Qx. If each Qx has the same order type o1 and Q

has order type o2, then the above sum has order type o1 ×o2. If Q = [2], then the sum is usally written as
Q1 +Q2.

If (Q,<) is a linear ordering and Q′ ⊆ Q, we also write (Q′,<) for the subordering of (Q,<), that is,
to ease notation we also use < for the restriction of < to Q′.

A linear ordering (Q,<) is called dense if it has at least two elements and for each x,y ∈ Q where
x < y there exists a z ∈ Q such that x < z < y. A linear ordering is scattered if no dense ordering can be
embedded into it. It is well-known that every scattered sum of scattered linear orderings is scattered, and
any finite union of scattered linear orderings is scattered. A linear ordering is called a well-ordering if
it has no subordering of type −ω . Clearly, any well-ordering is scattered. Since isomorphism preserves
well-orderedness or scatteredness, we can call an order type well-ordered or scattered as well, or say that
an order type embeds into another. The well-ordered order types are called ordinals. For any set Ω of
ordinals, (Ω,<) is well-ordered by the relation o1 < o2 ⇔ “o1 can be embedded injectively into o2 but
not vice versa”. The principle of well-founded induction can be formulated as follows. Assume P is a
property of ordinals such that for any ordinal o, if P holds for all ordinals smaller than o, then P holds
for o. Then P holds for all the ordinals.

For standard notions and useful facts about linear orderings see e.g. [13] or [14].
Hausdorff classified the countable scattered linear orderings with respect to their rank. We will use

the definition of the Hausdorff rank from [8], which slightly differs from the original one (in which H0

contains only the empty ordering and the singletons, and the classes Hα are not required to be closed
under finite sum, see e.g. [13]). For each countable ordinal α , we define the class Hα of countable linear
orderings as follows. H0 consists of all finite linear orderings, and when α > 0 is a countable ordinal,
then Hα is the least class of linear orderings closed under finite ordered sum and isomorphism which
contains all linear orderings of the form ∑i∈Z Qi, where each Qi is in Hβi

for some βi < α .
By Hausdorff’s theorem, a countable linear order Q is scattered if and only if it belongs to Hα for

some countable ordinal α . The rank r(Q) of a countable scattered linear ordering is the least ordinal α

with Q ∈ Hα .
As an example, ω , ζ , −ω and ω + ζ or any finite sum of the form ∑

i∈[n]
oi with oi ∈ {ω ,−ω ,1} for

each i ∈ [n] each have rank 1 while (ω +ζ)×ω has rank 2.
Let Σ be an alphabet (a finite nonempty set) and let Σ∗ (Σ+, resp) stand for the set of all (all nonempty,

resp) finite words over Σ, ε for the empty word, |u| for the length of the word u, u · v or simply uv for
the concatenation of u and v. A language is an arbitrary subset L of Σ∗. We assume that each alphabet is
equipped by some (total) linear order. Two (strict) partial orderings, the strict ordering <s and the prefix
ordering <p are defined over Σ∗ as follows:

Kitti Gelle & Szabolcs Iván 171

• u <s v if and only if u = u1au2 and v = u1bv2 for some words u1,u2,v2 ∈ Σ∗ and letters a < b,

• u <p v if and only if v = uw for some nonempty word w ∈ Σ∗.

The union of these partial orderings is the lexicographical ordering <ℓ=<s ∪<p. We call the language
L well-ordered or scattered, if (L,<ℓ) has the appropriate property and we define the rank r(L) of a
scattered language L as r(L,<ℓ). The order type o(L) of a language L is the order type of (L,<ℓ). For

example, if a < b, then o
(

{akb : k ≥ 0}
)

=−ω and o
(

{(bb)ka : k ≥ 0}
)

= ω .

When ρ is a relation over words (like <ℓ or <s), we write KρL if uρv for each word u ∈ K and v ∈ L.
An ω-word over Σ is an ω-sequence a1a2 . . . of letters ai ∈ Σ. The set of all ω-words over Σ is

denoted Σω . The orderings <ℓ and <p are extended to ω-words. An ω-word w is called regular if
w = uvω = uvvvv . . . for some finite words u ∈ Σ∗ and v ∈ Σ+. When w is a (finite or ω-) word over Σ

and L ⊆ Σ∗ is a language, then L<w stands for the language {u ∈ L : u < w}. Notions like L≥w, L<sw are
also used as well, with the analogous semantics.

A context-free grammar is a tuple G = (N,Σ,P,S), where N is the alphabet of the nonterminal sym-

bols, Σ is the alphabet of terminal symbols (or letters) which is disjoint from N, S ∈ N is the start symbol

and P is a finite set of productions of the form A → α , where A ∈ N and α is a sentential form, that is,
α = X1X2 . . .Xk for some k ≥ 0 and X1, . . . ,Xk ∈ N ∪Σ. The derivation relations ⇒, ⇒ℓ, ⇒∗ and ⇒∗

ℓ

are defined as usual (where the subscript ℓ stands for “leftmost”). The language generated by a gram-
mar G is defined as L(G) = {u ∈ Σ∗ | S ⇒∗ u}. Languages generated by some context-free grammar
are called context-free languages. For any set ∆ of sentential forms, the language generated by ∆ is
L(∆) = {u ∈ Σ∗ | α ⇒∗ u for some α ∈ ∆}. As a shorthand, we define o(∆) as o(L(∆)). A language L is
prefix (or prefix-free) if there are no words u,v ∈ L with u <p v. A context-free grammar G = (N,Σ,P,S)
is called a prefix grammar if L(A) is a prefix language for each A ∈ N. When X ,Y ∈ N ∪Σ are symbols
of a grammar G, we write Y � X if X ⇒∗ uY v for some words u and v; X ≈ Y if X � Y and Y � X both
hold; and Y ≺ X if Y � X but not X � Y . A production of the form X → X1 . . .Xn with Xi ≺ X for each
i ∈ [n] is called an escaping production.

A regular language over Σ is one which can be built up from the singleton languages {a}, a ∈ Σ

and the empty language /0 with finitely many applications of taking (finite) union, concatenation KL =
{uv : u ∈ K,v ∈ L} and iteration K∗ = {u1 . . .un : n ≥ 0,ui ∈ K}. For standard notions on regular and
context-free languages the reader is referred to any standard textbook, such as [11].

Linear orderings which are isomorphic to the lexicographic ordering of some context-free (regular,
resp.) language are called context-free (regular, resp.) orderings.

3 If o(L)< ω2, then o(L) is computable

In this section we consider a context-free grammar G = (N,Σ,P,S) which contains no left recursive
nonterminals, and generates a(n infinite) scattered language such that for each X ∈ N, X is usable and
L(X) is an infinite language of nonempty words, moreover, each nonterminal but possibly S is recursive
and there is no left recursive nonterminal (that is, X ⇒+ uXv implies u 6= ε). Any context-free grammar
can effectively be transformed into such a form, see e.g. [9].

The section is broken into two parts: the first subsection contains some technical decidability lemmas,
while the second one contains the main result that if we know that o(L)< ω2 for a well-ordered context-
free language L (so that the Hausdorff-rank of L is at most one), then o(L) is effectively computable. This
computability is already known for so-called ordinal grammars which generate a well-ordered language
such that for each nonterminal X , L(X) is a prefix language [9]. However, this is a serious restriction and

172 On the Order Type of Scattered Context-Free Orderings

makes many proofs easier since if K is a prefix language, then o(KL) = o(L)×o(K) for any language L.
This does not hold for arbitrary languages since e.g. o(a∗) =ω , o(b) = 1 and o(a∗b) =−ω , o(a∗a∗)=ω ,
o((ac)∗) = ω and o((ac)∗(b+ab)) = ω +(−ω) so a more careful case analysis is required. The reader
is advised to skip the first subsection at first read – the proofs of the second part extensively refer to the
lemmas of the first part.

3.1 Some technical lemmas

For an ω-word w, let Pref(w)⊆ Σ∗ stand for the set of the finite prefixes of w. For each u = a1 . . .ak ∈ Σ∗

and v = b1 . . .bt ∈ Σ+ let Mu,v denote the automaton (without specified final states) depicted in Figure 1.

qεstart qa1 · · · qu qub1 · · · quv

q<s

q>s

Q<p

a1 a2 ak b1 b2 bt−1

bt

σ < a1
σ < a2 σ < b1

σ < b2
σ < bt

σ > a1

σ > a2 σ > b1

σ > b2

σ > bt

σ

σ

Figure 1: The automaton Mu,v

Proposition 1. For any words u ∈ Σ∗ and v ∈ Σ+, the languages Pref(uvω), {w ∈ Σ∗ : w <s uvω} and

{w ∈ Σ∗ : uvω <s w} are regular.

Proof. Let u = a1 . . .ak and v = b1 . . .bt for the integers k ≥ 0, t > 0 and letters ai,b j and consider the
automaton Mu,v given in Figure 1. Then, by setting q<s

(q>s
, respectively) for the unique accepting state

we recognize {w ∈ Σ∗ : w <s uvω} ({w ∈ Σ∗ : uvω <s w}, resp.), and by setting Q<p as the set of final
states we recognize Pref(uvω).

Lemma 1. For each sentential form α with L(α) being infinite, we can generate a sequence w0,w1, . . . ∈
L(α) and a regular word w ∈ Σω satisfying one of the following cases:

i) w1 <s w2 <s . . . and w =
∨

i≥0
wi

ii) w1 >s w2 >s . . . and w =
∧

i≥0
wi

iii) w1 <p w2 <p . . . and w =
∨

i≥0
wi

Proof. By the pumping lemma of context-free languages, as L(α) is infinite, one can generate a word
u ∈ L(α) and a partition u = u1u2u3u4u5 such that |u2u4| ≥ 1 and for each n ≥ 0, the word u1un

2u3un
4u5 is

in L(α).
Based on the relative order of the five subwords we consider the following cases:

Kitti Gelle & Szabolcs Iván 173

1. There exists an n0 such that u3u
n0
4 <s u2u3u

n0
4

Let us define the sequence as wn = u1u
n0+n
2 u3u

n0+n
4 u5. Let us fix n and let m denote m = n0 + n.

Here we get that wn <s wn+1 if and only if u3um
4 u5 <s u2u3um+1

4 u5, which is true since u3u
n0
4 <s

u2u3u
n0
4 implies u3u

n0
4 x <s u2u3u

n0
4 y for any x,y ∈ Σ∗, thus in particular for x = un

4u5 and y = un+1
4 u5

as well.

Hence the type of the sequence is of i) and the supremum is w =
∨

i≥0
wi = u1uω

2 . (Observe that

u2 6= ε as that could not satisfy u3u
n0
4 <s u2u3u

n0
4).

2. There exists an n0 such that u2u3u
n0
4 <s u3u

n0
4

Again, u2 cannot be the empty word. Similarly to the first case, let us define the sequence as
wn = u1u

n0+n
2 u3u

n0+n
4 u5 and fix n and let m denote m = n0 +n.

Here we get that wn+1 <s wn if and only if u2u3um+1
4 u5 <s u3um

4 u5, which is true since u2u3u
n0
4 <s

u3u
n0
4 implies u2u3u

n0
4 x <s u3u

n0
4 y for any x,y ∈ Σ∗, thus in particular for x = un+1

4 u5 and y = un
4u5

as well. So we get that the type of the sequence is ii) (with order type of −ω) and the infimum is
w =

∧

i≥0
wi = u1uω

2 .

3. For each n it holds that u3un
4 ≤p u2u3un

4 and u4 6= ε

In this case u3uω
4 = u2u3uω

4 .

Let us fix N =
⌈

|u2|
|u4|

⌉

+ 1 and the sequence as wn = u1uN+n
2 u3uN+n

4 u5. Furthermore, let x ∈ Σ∗ be

the unique word with u3uN
4 x = u2u3uN

4 . That is, x is the unique suffix of uN
4 of length |u2|. Hence,

for any n ≥ N we also have u3un
4x = u2u3un

4 for the same x (as we know that u3un
4 ≤p u2u3un

4, their
length differ by |u2|, and the latter word ends with uN

4).

We have three subcases:

(a) It holds that u3uN
4 u5 <s u2u3uN+1

4 u5

First observe that as u2u3uN+1
4 u5 = u3uN

4 xu4u5, the assumption of the subcase yields u5 <s

xu4u5. Then for each m ≥ N we have u3um
4 u5 <s u3um

4 xu4u5 = u2u3um
4 u4u5 = u2u3um+1

4 u5,
implying u1um

2 u3um
4 u5 <s u1um+1

2 u3um+1
4 u5. So the sequence is of type i) and its supremum

is either u1uω
2 (if u2 is nonempty) or u1u3uω

4 (otherwise).

(b) It holds that u2u3uN+1
4 u5 <s u3uN

4 u5

First since u2u3uN+1
4 u5 can be written as u3uN

4 xu4u5, the assumption of the subcase yields
xu4u5 <s u5. Then for each m ≥ N we have u3um

4 xu4u5 = u2u3um
4 u4u5 = u2u3um+1

4 u5 <s

u3um
4 u5, so we get a sequence of words such that u1um+1

2 u3um+1
4 u5 <s u1um

2 u3um
4 u5. Hence,

the sequence is of type ii) with the infimum of either u1uω
2 (if u2 is nonempty) or u1u3uω

4
(otherwise).

(c) It holds that u3uN
4 u5 <p u2u3uN+1

4 u5

In this case for each m ≤ N we have u3um
4 u5 <p u2u3um+1

4 u5, so we get an ascending prefix
chain. Hence the order type of this sequence of iii) is ω with the supremum of either u1uω

2
(if u2 is nonempty) or u1u3uω

4 (otherwise).

4. It holds that u3 <p u2u3 and u4 = ε

Note that u2 cannot be empty in this case.

We have three subcases:

(a) It holds that u3u5 <s u2u3u5

174 On the Order Type of Scattered Context-Free Orderings

In this case for each n ≤ 0 we have u1un
2u3u5 <s u1un+1

2 u3u5 iff u3u5 <s u2u3u5 which is
the assumption of this subcase. So we get that the sequence type is i) and the supremum is
w = u1uω

2 .

(b) It holds that u2u3u5 <s u3u5

Here, similarly to the previous case for each n ≤ 0 we have u1un+1
2 u3u5 <s u1un

2u3u5 iff
u2u3u5 <s u3u5, which is implied by the assumption. Hence we have an infinite descending
chain with the sequence type of ii) and infimum w = u1uω

2 .

(c) It holds that u3u5 <p u2u3u5

In the last case since u3u5 <p u2u3u5, for each n ≤ 0 we have u1un
2u3u5 <p u1un+1

2 u3u5 which
is a prefix chain with sequence type of iii) and supremum w = u1uω

2 .

Observe that it is also decidable which (sub)case applies: first we check for the condition of Case 4
(which is clearly decidable). Then, if that condition does not hold, we check whether u3uω

4 = u2u3uω
4

holds. As equality of regular words is decidable, this can be done, and if they are the same, then we again
have three sub-conditions concerning finite words. Otherwise, if u3uω

4 6= u2u3uω
4 , then either u3uω

4 <s

u2u3uω
4 , that is, u3u

n0
4 <s u2u3u

n0
4 for some n0, or u2u3uω

4 <s u3uω
4 , in which case u2u3u

n0
4 <s u3u

n0
4 for

some n0. But since we know that one of these two cases has to hold, we only have to iterate through
all the integers n and compare u3un

4 with u2u3un
4 and eventually there will be an n for which these two

become comparable by <s. (A more efficient algorithm also exists, e.g. by analyzing the direct product
automaton Mu3,u4 ×Mu2u3,u4 .)

We recall the following characterizations of those context-free grammars generating a scattered (or
well-ordered) language from [1]:

Theorem 1 ([1]). Assume G = (N,Σ,P,S) is a context-free grammar such that each nonterminal is

usable, ε-free and there are no left-recursive nonterminals. Then

• L(G) is scattered if and only if for each recursive nonterminal X there exists a word uX ∈ Σ+ such

that whenever X ⇒+ uXα for some u ∈ Σ∗, α ∈ (N ∪Σ)∗, then u ∈ u+X .

• If L(G) is scattered and X ≈ X ′ are recursive nonterminals, then there exists a word uX ,X ′ <p uX

such that whenever X ⇒+ uX ′α for some u ∈ Σ∗, α ∈ (N ∪Σ)∗, then u ∈ u∗X uX ,X ′ .

• L(G) is well-ordered if and only if it is scattered and for each recursive nonterminal X, L(X)<ℓ uω
X .

Moreover, for each X ,X ′ the words uX and uX ,X ′ are effectively computable and it is decidable whether

L(X) is scattered, or well-ordered.

Proposition 2. If L(X) is well-ordered for the recursive nonterminal X, then
∨

L(X) = uω
X .

Proof. By Theorem 1, L(X)<ℓ uω
X . Since X is recursive and all the nonterminals are usable, there exists

some derivation of the form X ⇒ uXv for some words u,v ∈ Σ∗ and so u = um
X for some m > 0. Since X

is usable, there exists some word w ∈ L(X) and so for each n > 0, the word um·n
X wvn is in L(X) and is still

upperbounded by uω
X . As the supremum of these words is uω

X , we got the claimed result.

We call an infinite language L ⊆ Σ∗ a prefix chain if for each u,v ∈ L, either u ≤p v or v ≤p u, that is,
L is totally ordered by the prefix relation, or equivalently, L ⊆ Pref(w) for some ω-word w. Clearly, any
language L is either a prefix chain or contains two words u,v with u <s v. Note that if L is a prefix chain,
then o(L) = ω .

Lemma 2. It is decidable for each nonterminal X whether L(X) is a prefix chain.

Kitti Gelle & Szabolcs Iván 175

Proof. By Lemma 1 we can effectively generate an infinite sequence w0,w1, . . ., either ascending or
descending, belonging to L(X) along with its limit, which is of the form uvω for some u ∈ Σ∗, v ∈ Σ+.
Now if the sequence is either a >s-chain or a <s-chain, then L(X) cannot be a prefix chain.

Otherwise, the sequence itself is a prefix chain and its limit is uvω , hence the whole language L(X)
is a prefix chain if and only if L(X)⊆ Pref(uvω) which can be effectively decided since Pref(uvω) is a
regular language.

Lemma 3. If L is a context-free language with o(L) = ω , then
∨

L is a computable regular word.

Proof. Applying Lemma 1 we can generate a (necessarily increasing) sequence w0 < w1 < .. . of words
belonging to L along with their supremum uvω . Since the order type of L is also ω , its supremum has to
coincide by uvω .

Lemma 4. Let X be a nonterminal such that L(X) is not a prefix chain and α be a sentential form with

L(α) being infinite. Then o(Xα) is an infinite order type different from ω .

Proof. Since L(X) is not a prefix chain and is infinite, there exists u,v∈ L(X)with u<s v. Then uL(α)<s

vy for any member y of L(α), hence each such vy has infinitely many lower bounds in L(Xα), thus o(Xα)
cannot be ω .

The last lemma of the subsection is a bit technical:

Lemma 5. If L1 ⊆ Pref(uvω) is a context-free prefix chain with order type ω for some words u ∈ Σ∗ and

v ∈ Σ+ and L2 ⊆ Σ∗ is a context-free language with order type ω , then it is decidable whether there exists

some w1 ∈ L1, u′ ∈ Σ∗ and a ∈ Σ with w1u′ <p uvω , w1u′a <s uvω and u′a <p

∨

L2.

Proof. Let us write u = a1 . . .ak and v = b1 . . .bt and consider the automaton Mu,v of Figure 1. For each
state q of Mu,v, let Lu,v(q) stand for the (regular) language {w ∈ Σ∗ : qε ·w = q}.

Let Q1 ⊆ Q<p
be the set of those states q for which L1 ∩Lu,v(q) is nonempty. Since each Lu,v(q) is

regular, Q1 is computable, moreover, q ∈ Q1 if and only if qε ·w = q for some w ∈ L1.
Now by Lemma 3 we can compute the regular word u2vω

2 =
∨

L2 and consider the direct product
automaton M = Mu,v ×Mu2,v2 where in Mu2,v2 we use the primed version q′ of each state q.

We claim that there exists words w1,u
′ and a letter a satisfying the conditions of the lemma if and

only if a state of the form (q<s
,q′) is reachable from a state (p,q′ε) in M for some q′ ∈ Q′

<p
and p ∈ Q1.

Indeed: assume (p,q′ε) ·w = (q<s
,q′) for such states: let us choose p,q′ and w so that |w| is the

shortest possible. Since p ∈ Q1 and q<s
/∈ Q1, w = u′a for some word u′ ∈ Σ∗ and a ∈ Σ. Then, q′ε ·u

′ ∈
Q′
<p

, since both q′<s
and q′>s

are trap states in Mu2,v2 . Since w is a shortest possible word and q<s
, q>s

are
trap states in Mu,v, we get that p ·u′ ∈ Q<p

. Since p ∈ Q1, there is some word w1 ∈ L1 with qε ·w1 = p.
Thus, this choice of w1,u

′ and a satisfies the conditions of the lemma.
And similarly, given w1 ∈ L1, u ∈ Σ∗ and a ∈ Σ satisfying the conditions we can define p = qε ·w1,

q′ = q′ε ·u
′a.

3.2 The main decision procedures

In this part we flesh out the “top-level” results leading to the aforementioned computability result: that
the order type of well-ordered context-free languages with Hausdorff-rank at most 1 is computable.

The main building block is the result that it is decidable for any context-free language L whether
o(L) = ω holds.

176 On the Order Type of Scattered Context-Free Orderings

Lemma 6. If α = X1X2 is a sentential form and for each 1 ≤ i ≤ 2 we know whether o(Xi) = ω holds or

not, then it is also effectively computable whether o(α) is ω .

Proof. Clearly, if o(X1) or o(X2) is some infinite order type different from ω , then o(α) is also such an
order type and we can stop. Also, if X1 ∈ Σ, then o(α) = o(X2) and we are done. We can also decide
whether L(X1X2) is well-ordered and if not, it cannot be ω and we can stop.

So we can assume that X1 ∈ N and thus L(X1) is infinite and hence o(X1) = ω by assumption. Let
L1, L2 and L respectively stand for L(X1), L(X2) and L(X1X2).

If X2 ∈ Σ, then we have several subcases:

1. If there exists a word u ∈ L1 and some letter a < X2 with ua being a prefix of infinitely many words
in L1, then uX2 is strictly larger than each of these words v, and so vX2 <s uX2 as well, thus o(L)
cannot be ω but some other infinite order type (as uX2 ∈ L is preceded by infinitely many members
of L).

2. Otherwise, let u ∈ L1. It suffices to show that there are only finitely many elements in L which are
smaller than uX2. Assume vX2 ∈ L is so that vX2 <p uX2 then v <p u as well, and as u has only
finitely many proper prefixes, we have that there can only be a finite number of such words v. Now
if vX2 <s uX2, then either v <ℓ u (that’s again a finite number of possibilities, as o(L1) = ω implies
that any word u ∈ L1 has only a finite number of lower bounds in L1) or u <ℓ v. Thus, in this case
(as vX2 <s uX2 rules out the possibility of u <s v) it has to hold that u <p v and v = uax for some
a < X2. There are only finitely many possible choices for such letters a < X2 and by assumption
(see the condition of the previous subcase), for each such letter, ua can be a prefix of only finitely
many words v ∈ L1.

Thus, uX2 is larger than only a finite number of members of L for each u ∈ L1, and o(L) = ω in
this case.

We still have to show that it is decidable which of the two cases holds. Observe that if ua is a prefix of
infinitely many words in L1 for some word u ∈ L1 and letter a < X2, then no word w ∈ L1 can satisfy
ua <s w as then the order type of L1 could not be ω . Thus, ua <p

∨

L1 in this case for some word u ∈ L1

and letter a < X2. On the other hand, if ua <p

∨

L1 for some word u ∈ L1 and letter a < X2, then for any
w ∈ L1 with ua <ℓ w we cannot have ua <s w since in that case ua <s

∨

L1 would hold since w <ℓ
∨

L1.
Hence, whenever ua <ℓ w for some word w ∈ L1, then ua is a prefix of w. Since the order type of L1 is
assumed to be ω , and ua is a prefix of

∨

L1, there has to be an infinite number of such words w.
Thus, if X2 ∈ Σ, then o(L) is not ω if and only if ua <p

∨

L1 for some u ∈ L1 and a < X2. This
condition is decidable:

∨

L1 is a computable regular word u1vω
1 by Lemma 3 and we only have to check

whether the language L1a∩Pref(u1vω
1) is nonempty for some letter a < X2 and the latter is a regular

language by Proposition 1.
If X2 ∈ N, and thus o(X2) = ω , then we again have several cases:

3. If there exist words u,v ∈ L1 with u <s v, then by Lemma 4 we get o(L) is some infinite order type
different than ω .

4. Otherwise, L1 is an infinite prefix chain, that is, L1 ⊆ Pref(uvω) for some words u ∈ Σ∗, v ∈ Σ+.

We have several subcases.

(a) Assume
∨

L1 <ℓ
∨

L. Since both are ω-words, we have <s here. Thus there exists some
w = w1w2 ∈ L, w1 ∈ L1, w2 ∈ L2 with

∨

L1 <s w. Since L1 is an infinite prefix chain, there
exists some w′

1 ∈ L1, w′
1 <p

∨

L1 and |w′
1|> |w|, yielding w′

1 <s w. So w′
1L2 <s w, thus w ∈ L

has an infinite number of lower bounds in L and o(L) 6= ω in this subcase.

Kitti Gelle & Szabolcs Iván 177

(b) Assume there exists some w1 ∈ L1 such that w1 ·
∨

L2 <ℓ
∨

L1. Again, both being ω-words
this has to be a <s relation. This means that there exists some w′

1 ∈ L1 with w1 ·
∨

L2 <s w′
1

and so w1 ·L2 <s w′
1y for any member y of L2, thus again, o(L) 6= ω in this case.

(c) Assume none of the previous conditions hold:
∨

L ≤ℓ
∨

L1 (hence
∨

L1L2 =
∨

L1 = uvω as
well) and for each w1 ∈ L1 we have

∨

L1 ≤ℓ w1 ·
∨

L2.
We claim that in this case o(L) = ω if and only if for each w1 ∈ L1 and w <p uvω with
w1 <p w there exist only finitely many words w2 ∈ L2 such that w1w2 <s w.
For one direction, assume the latter condition holds. It suffices to show that for each w<p uvω

there exist only finitely many many words w1 ∈ L1, w2 ∈ L2 with w1w2 <ℓ w, since (as the
supremum of these words is

∨

L1L2 = uvω) this yields that each prefix of o(L) is finite, thus
o(L) = ω . So let w1w2 <ℓ w. Since w1 ∈ L1 and L2 ⊆ Pref(uvω), and w <p uvω , we either
have w1 <p w or w ≤p w1. The latter would contradict to w1w2 <ℓ w, hence we have w1 <p w.
Thus, there are only finitely many options for choosing such a word w1 ∈ L1. Clearly, for each
fixed w1 ∈ L1 there are only finitely many options for choosing words w2 with w1w2 <p w

and by the condition there are only finitely many words w2 ∈ L2 with w1w2 <s w, hence in
total, there are only finitely many words in L1L2 preceding w, showing o(L) = ω .
For the other direction, assume the latter condition does not hold. Then there exists some
w1 ∈ L1, w <p uvω with w1 <p w such that w1w2 <s w for infinitely many words w2 ∈ L2. In
this case we can write w2 = w′

2ax and w = w1w′
2by uniquely for some letters a < b and words

w′
2,x,y. Since there are only finitely many options for the fixed words w and w1 to choose w′

2,
b and a, for some pair a< b of letters and word w′

2 with w1w′
2b ≤p w there are infinitely many

words w2 ∈ L2 such that w′
2a ≤p w2. Let L′

2 ⊆ L2 denote the (infinite) set of these words and
let w′

1 ∈ L1 be some word in L1 with |w′
1| ≥ |w1w′

2b|. Since L1 is an infinite prefix chain, such
a word w′

1 exists and w1w′
2b ≤p w′

1, thus w1L′
2 <s w′

1, and so w1L′
2 <s w′

1y for an arbitrary
member y of L2, and so w′

1y is preceded by infinitely many words in L, yielding o(L) 6= ω .

We still have to show that the condition of Subcase (c) is decidable. We claim that the condition
does not hold if and only if there exists some w1 ∈ L1 and words u′ ∈ Σ∗, a ∈ Σ with w1u′ <p uvω ,
w1u′a <s uvω and u′a <p

∨

L2. Indeed, if w1,u
′,a are such objects, then there is a unique letter

b ∈ Σ with w1u′b <p uvω . Now we can choose w = w1u′b as the condition u′a <p

∨

L2 implies the
existence of infinitely many words w2 ∈ L with u′a ≤p w2. The other direction is already treated
in the proof of Subcase (c).

The condition in this form is decidable due to Lemma 5.

As we covered all the possible scenarios, and in each case we got decidability, we proved the lemma.

Corollary 1. Assume α =X1 . . .Xn is some sentential form where for each Xi we know whether o(Xi) =ω

holds. Then we can decide whether o(α) = ω holds.

Proof. We can assume that α /∈ Σ∗ (otherwise o(α) = 1 and we can stop). Using the standard construc-
tion of introducing fresh nonterminals Y1, . . .Yn−1 and productions Y1 → X1Y2, Y2 → X2Y3,. . . , Yn−1 →
Xn−1Xn we can successively decide for Yn−1,Yn−2, . . . ,Y1 whether o(Yi) = ω ; if for any of them we have
that o(Yi) is some other infinite order type, then so is o(Y1) = o(α), otherwise o(α) = ω .

Theorem 2. It is decidable for each recursive nonterminal X whether o(X) = ω holds.

Proof. By our assumptions of G, L(X) is infinite. In the first step, we decide whether L(X) is well-
ordered. If not, then o(X) is clearly not ω and we can stop.

178 On the Order Type of Scattered Context-Free Orderings

From now on, we know that L(X) is well-ordered. Next, we decide whether L(X) contains two words
u,v with u <s v. If not, then L(X) is a prefix chain and then o(X) = ω . So we can assume that there exist
members u0 <s v0 of L(X). By u0 <s v0 <ℓ

∨

L(X) = uω
X (by Proposition 2), we get that u0 <s uω

X .
Now, we check whether there exists a sentential form β containing at least one nonterminal with

X ⇒+ uXβ for some u ∈ u+X . (Such a β exists if and only if there is a production of the form X ′ → αX ′′γ

with X ′ ≈ X ′′ ≈ X and with γ containing at least one nonterminal.) If so, then L(β) is infinite, moreover,
uu0L(β)<s uv0w for any member w of L(β). Since uu0L(β)⊆ L(X) and uv0w ∈ L(X), we get that L(X)
has some element preceded by an infinite number of other members of L(X), hence o(X) cannot be ω .

Hence we can assume that whenever X ⇒+ uXβ , then β ∈ Σ∗ and u ∈ u+X .
By induction, we can decide for each nonterminal Y ≺ X whether o(Y) = ω or not. Since into ω no

other infinite order type can be embedded, if there exists some Y ≺ X with o(Y) 6= ω , we can conclude
o(X) 6= ω as well. So we can assume o(Y) = ω for each Y ≺ X .

Now let us consider an escaping production X ′ → α with X ′ ≈ X such that α contains at least one
nonterminal, thus L(α) is infinite. By Corollary 1, we can effectively decide whether o(α) = ω or not –
if not, then o(X) again cannot be ω and we can stop. Hence, we can assume that for any such escaping
production, o(α) = ω as well. By Lemma 1, we can generate a sequence w0,w1, . . . belonging to L(α)
which is either an ascending or a descending chain. Since L(α) can be embedded into L(X ′), it has to be
well-ordered as well, ruling out the possibility of being a descending chain. Thus, we can compute the
supremum w =

∨

wi of the sequence as well, which, as o(α) = ω , has to be
∨

L(α).
Clearly, w =

∨

L(α) ≤
∨

L(X ′) = uω
X ′ as L(α) ⊆ L(X ′), so either w = uω

X ′ or w <s uω
X ′ . If w <s uω

X ′ ,
that is, w <s uN

X ′ for some N > 0, then, as L(X ′) contains some word x beginning with uN
X ′ , we get that

L(α) is an infinite subset of L(X ′) strictly smaller than some member of L(X ′), hence o(X ′), hence also
o(X) are also greater than ω in that case as well and we can stop.

Hence, we can assume that for each escaping production X ′ → α with X ′ ≈ X and with α containing
some nonterminal we have

∨

L(α) = uω
X ′ , and o(α) = ω . As any finite union of linear orderings of order

type ω is still ω if the suprema of the orderings coincide, we get that if α1, . . . ,αt are all the alternatives

for some nonterminal X ′ ≈ X , then o
(

⋃

i∈[t]
L(αi)

)

= ω with supremum uω
X ′ .

We claim that in this case o(X) = ω . Since
∨

L(X) = uω
X , it suffices to show for each fixed w <p uω

X

that L(X)<ℓw is finite. Since there is only a finite number of prefixes of w, this is equivalent to state
the finiteness of L(X)<sw. Each word w′ ∈ L(X) can be factored as w′ = un

X uX ,X ′zv for some integer
n ≥ 0, nonterminal X ′ ≈ X and words z,v ∈ Σ∗ such that z ∈ L(α) for some sentential form α for which
X ′ → α is an escaping production. If w′ <s w, then we have an upper bound for n, which in turn places
an upper bound for |v| since there are no left-recursive nonterminals. Hence, there are only finitely many
possibilities for choosing n, X ′, α and v and it suffices to see that for each such choice, the number of
possible words w′ is finite.

So let us write w as w = un
X uX ,X ′w1. The condition w′ = un

X uX ,X ′zv <s un
X uX ,X ′w1 = w is equivalent to

zv <s w1 for the fixed words v and w1. Let us assume that there are infinitely many such words w′ <s w

under the chosen values of n, X ′, α and v. This entails zv <s w1 for an infinite number of words z ∈ L(α).
Now as zv <s w1 can happen if either z <s w1 or z <p w1 and w1 = zw′

1 for some v <s w′
1 and this latter

case can hold only for a finite number of words z (as there are only finitely many prefixes of w1), there
has to be an infinite number of words z in L(α) with z <s w1 for the finite prefix w1 of uω

X ′ . Let L′ be
the (infinite) set of these words z. Then we have

∨

L′ ≤ℓ w1 but since L′ is infinite and of order type ω

(as o(α) = ω as well),
∨

L′ is an ω-word, thus
∨

L′ <s w1 <p uω
X ′ . Moreover, as o(α) = ω and L′ is an

infinite subset of L(α), it has to be the case that
∨

L′ =
∨

L(α) so
∨

L(α)<s uω
X ′ which is a contradiction

as we know that
∨

L(α) = uω
X ′ . Hence there can be only a finite number of possible words z, showing our

Kitti Gelle & Szabolcs Iván 179

claim that o(X) = ω .

Combining Theorem 2 and Corollary 1 we get:

Corollary 2. It is decidable for each sentential form α whether o(α) = ω holds. Also, it is decidable

whether o(L(G)) = ω holds.

Proof. The first statement is a direct consequence of Theorem 2 and Corollary 1. Now if the start

symbol S of G is recursive, then o(L(G))
?
=ω is decidable by Theorem 2. Otherwise, if α1, . . . ,αk are

the alternatives of S, then o(L(G)) = ω if and only if o(αi) = ω for each i ∈ [k] generating an infinite
language and moreover,

∨

L(αi)=
∨ ⋃

i∈[k]
L(αi) for each i∈ [k] with L(αi) being infinite. These conditions

are decidable by Corollary 2 and Lemma 3.

Now we are ready to show the main result of the paper:

Theorem 3. There exists an algorithm which awaits a context-free grammar G = (N,Σ,P,S) generat-

ing a well-ordered language and if o(L(G)) < ω2, then returns o(L(G)) (otherwise enters an infinite

recursion).

Proof. We claim that the following algorithm correctly computes o(L(G)) and terminates whenever
o(L(G))< ω2:

1. If L(G) is finite, then return its size.

2. If o(L(G)) = ω , then return ω .

3. Generate a sequence w0 < w1 < .. . of members of L(G) and their supremum uvω .

4. If L(G)≥uvω is nonempty, then compute o1 = o(L(G)<uvω) and o2 = o(L(G)>uvω) recursively and
return o1 +o2.

5. Otherwise, uvω =
∨

L(G). For each n ≥ 0 in increasing order, test whether o(L(G)>wn
) = ω holds.

If so, then compute o1 = o(L(G)≤wn
) recursively and return o1 +ω . Otherwise increase n.

Let us consider an example run of the above algorithm first, then we prove its correctness and conditional
termination.

Let the language L be a∗+bnan +c. It has the order type ω ×2+1, since the lexicograpical ordering
of the words of L looks like ε ≤ℓ a ≤ℓ aa ≤ℓ aaa ≤ℓ . . .≤ℓ ba ≤ℓ bbaa ≤ℓ bbbaaa ≤ℓ . . .≤ℓ c.

First, we check the finiteness of the language. Since L is not finite, we check whether it has the order
type ω . Since it is not ω , we generate an infinite sequence of words of L and its supremum. Let us
say we generate the sequence ba < b2a2 < .. . < bnan < .. . with its supremum bω . Now we check that
whether the language L contains any word which is lexicographically greater than this supremum. Since
L≥bω = c is nonempty, we compute o(a∗ + bnan) and o(c) recursively (and at the end, we return their
sum).

So we compute o(K) for K = a∗+bnan, which should be ω ×2. Since it is not finite and also not ω ,
we try to cut it and generate a sequence again. Say we generate the sequence a < aa < ba < b2a2 < .. . <
bnan < .. . of its members, with its supremum bω (note that the algorithm never generates a sequence
like this since we use the pumping lemma to generate the words, so we use it just to explain how the
algorithm works in a case like this).

The language K>bω is empty, the ω-word, bω is the supremum of K as well, so we have to find
another cut point. To achieve this, we iterate through the sequence from i = 1 and check whether the
language containing the greater words than the word wi:

180 On the Order Type of Scattered Context-Free Orderings

• Cutting with the first word of the sequence we get that o(K>a) = o(aa(a∗)+ bnan) is not ω . (It’s
ω ×2.) So we increase the index and try again with the next word.

• If we use the second word, we have the same case: o(K>aa) = o(aaa(a∗)+ bnan) is not ω . (It’s
still ω ×2.) We increase the index.

• With the third word of the sequence we get that o(K>ba) = o(bbbnaaan) is ω .

Now we have a new valid cut point, so we compute o(K≤ba) = o(a∗ + ba) recursively and return
o(a∗+ba)+ω . So we have a recursive case again with the language M = a∗+ba. Since it is not finite,
and its order type is still not ω – it is actually ω +1 – we generate a sequence again. Say we generate the
sequence a < aa < aaa < aaaa < .. . with the supremum aω . (In fact, it’s guaranteed we generate some
subsequence of this, with the same supremum.) Since M≥aω = ba, we compute recursively o(a∗) and
o(ba). Since the language a∗ has the order type ω we return it. Also, as ba is finite, we return its size, 1.
So we get that o(M) = ω +1. So on the previous level we get that o(M)+ω = ω +1+ω = ω ×2.

Finally, we compute o(c). As c is finite, we return its size and get o(c) = 1. At the top level we get
back ω ×2+1 as the order type of the language L.

Finishing this example, we first prove the conditional termination. The first three steps clearly termi-
nate according to Theorem 2 and Lemma 1 and the fact that it is decidable whether L(G) is finite and if
so, its members can be effectively enumerated.

For the supremum uvω of the words w0,w1, . . . ∈ L(G), we know that L(G)<uvω is infinite (thus is
at least ω). Hence, o(L(G)) = o(L(G)<uvω)+o(L(G)>uvω) and the first summand is an infinite ordinal.
If L(G)≥uvω is nonempty (which can be decided as well), then the second summand is also a nonzero
ordinal. Thus, the first summand is guaranteed to be strictly smaller than o(L(G)) and since o(L(G)) is
assumed to be smaller than ω2, and o(L(G)) = o1 + o2 for some o1 ≥ ω , we get that o2 < o(L(G)) as
well. Thus, both recursive calls have an argument with a strictly less order type than o(L(G)), so these
calls will eventually terminate, by well-founded induction.

Finally, in step 5 we know that
∨

wn =
∨

L(G) and that o(L(G))> ω (as o(L(G))≤ ω is handled by
the first two steps), thus as o(L(G)) < ω2 by assumption, we have o(L(G)>wn

) = ω for some n. Thus,
the iteration of step 5 eventually finds such an n and terminates (as in that case o(L(G)≤wn

) is also less
than o(L(G)), thus we can apply well-founded induction again for the recursive call).

Correctness is clear since for steps 1 and 2 there is nothing to prove, step 3 cannot return anything
and both of steps 4 and 5 create a cut of L(G) of the form L(G) = L(G)≤w +L(G)>w for some suitable
(finite or infinite) word w, computes the order types of the two languages (which have strictly smaller
order type, so applying well-founded induction we get their order type gets computed correctly) and
returns their sum, which is correct.

4 Conclusion

We showed that if L(G) is known to be well-ordered with Hausdorff-rank at most one, then o(L(G))
is computable. We strongly suspect that this result holds for the scattered case as well: in fact, if it is
decidable for a recursive nonterminal X whether o(X) =−ω holds, then (by an algorithm very similar to
the one we gave for the well-ordered case) we can show that the order type of any scattered context-free
language of rank at most one is effectively computable. Note that o(L1L2) can be −ω even if o(L1) = ω

as e.g. o(a∗) = ω but o(a∗b) =−ω .
An open problem from [7] is the decidability status of the isomorphism problem of deterministic

context-free orderings (which form a proper subset of the unambiguous context-free ones). The lexico-

Kitti Gelle & Szabolcs Iván 181

graphic orderings of deterministic context-free languages are called algebraic orderings there as they are
exactly those isomorphic to the linear ordering of the leaves of an algebraic tree [4] in the sense of [5].

We do not know whether the isomorphism problem of scattered context-free orderings of rank 2 is
decidable: by a standard reduction from the PCP problem one can construct a context-free grammar G

for an instance (u1,v1), . . . ,(un,vn) of the PCP so that L(G) is the union of the three languages

{it . . . i1¢ui1 . . .uit ¢(aa)k : t ≥ 1, i1, . . . , it ∈ [n],k ≥ 0},

{it . . . i1¢vi1 . . .vit ¢a(aa)k : t ≥ 1, i1, . . . , it ∈ [n],k ≥ 0}

and {it . . . i1¢$ak : t ≥ 1, i1, . . . , it ∈ [n],k ≥ 0}. Then, for each fixed t ≥ 1 and i1, . . . , it ∈ [n] the language
(it . . . i1)

−1L(G) has order type ω +−ω if i1, . . . , it is a solution of the given PCP instance and ω +ω +

−ω otherwise, hence o(L(G)) = ∑
t≥1, i1,...,it∈[n]

o
(

(it . . . i1)
−1L(G)

)

has the order type ∑
t≥1, i1,...,it∈[n]

(ω +

ω +−ω) if and only if the instance has no solution, where the tuples (it , . . . , i1) are ordered lexico-
graphically. This latter sum is a quasi-dense sum of scattered orderings though, so it does not prove
undecidability of the isomorphism problem of scattered context-free orderings immediately, but we con-
jecture that the problem is indeed undecidable.

Also, both context-free linear orderings in general and in the scattered case lack a characteriza-
tion [1]: in fact, it is unclear which scattered orderings of rank two are context-free. (For rank one it is
clear as the rank one scattered order types are exactly the finite sums of natural numbers, ωs and −ωs
and these sums are all context-free, in fact, they are regular.)

References

[1] Stephen L. Bloom & Zoltán Ésik (2009): Scattered Algebraic Linear Orderings. In: 6th Workshop on Fixed
Points in Computer Science, FICS 2009, Coimbra, Portugal, September 12-13, 2009., pp. 25–29.

[2] Stephen L. Bloom & Zoltán Ésik (2010): Algebraic Ordinals. Fundam. Inform. 99(4), pp. 383–407,
doi:10.3233/FI-2010-255.

[3] Stephen L. Bloom & Zoltán Ésik (2005): The equational theory of regular words. Information and Compu-
tation 197(1), pp. 55 – 89, doi:10.1016/j.ic.2005.01.004.

[4] Stephen L. Bloom & Zoltán Ésik (2011): Algebraic linear orderings. International Journal of Foundations
of Computer Science 22(02), pp. 491–515, doi:10.1142/S0129054111008155.

[5] Bruno Courcelle (1983): Fundamental properties of infinite trees. Theoretical Computer Science 25(2), pp.
95 – 169, doi:10.1016/0304-3975(83)90059-2.

[6] Zoltán Ésik (2011): Scattered Context-Free Linear Orderings. In Giancarlo Mauri & Alberto Leporati,
editors: Developments in Language Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 216–227,
doi:10.1017/CBO9780511566097.

[7] Zoltán Ésik (2011): An undecidable property of context-free linear orders. Information Processing Letters
111(3), pp. 107 – 109, doi:10.1016/j.ipl.2010.10.018.

[8] Zoltán Ésik & Szabolcs Iván (2012): Hausdorff Rank of Scattered Context-Free Linear Orders. In David
Fernández-Baca, editor: LATIN 2012: Theoretical Informatics, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 291–302, doi:10.1112/plms/s3-4.1.177.

[9] Kitti Gelle & Szabolcs Iván: The ordinal generated by an ordinal grammar is computable. Theoretical
Computer Science, doi:10.1016/j.tcs.2019.04.016. Available at https://arxiv.org/abs/1811.03595.
To appear.

http://dx.doi.org/10.3233/FI-2010-255
http://dx.doi.org/10.1016/j.ic.2005.01.004
http://dx.doi.org/10.1142/S0129054111008155
http://dx.doi.org/10.1016/0304-3975(83)90059-2
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1016/j.ipl.2010.10.018
http://dx.doi.org/10.1112/plms/s3-4.1.177
http://dx.doi.org/10.1016/j.tcs.2019.04.016
https://arxiv.org/abs/1811.03595

182 On the Order Type of Scattered Context-Free Orderings

[10] Stephan Heilbrunner (1980): An algorithm for the solution of fixed-point equations for infinite words. RAIRO
- Theoretical Informatics and Applications - Informatique Théorique et Applications 14(2), pp. 131–141,
doi:10.1051/ita/1980140201311.

[11] John E. Hopcroft & Jeff D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company.

[12] Christos H. Papadimitriou (1994): Computational complexity. Addison-Wesley.

[13] J.G. Rosenstein (1982): Linear Orderings. Pure and Applied Mathematics, Elsevier Science.

[14] Jacob Alexander Stark (2015): Ordinal Arithmetic. Available at
https://jalexstark.com/notes/OrdinalArithmetic.pdf.

[15] Wolfgang Thomas (1986): On Frontiers of Regular Trees. ITA 20(4), pp. 371–381,
doi:10.1051/ita/1986200403711.

http://dx.doi.org/10.1051/ita/1980140201311
https://jalexstark.com/notes/OrdinalArithmetic.pdf
http://dx.doi.org/10.1051/ita/1986200403711

	1 Introduction
	2 Notation
	3 If o(L)<2, then o(L) is computable
	3.1 Some technical lemmas
	3.2 The main decision procedures

	4 Conclusion

