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In the paper a hierarchical overtaking strategy, which is a driver assistance function or rather an autonomous function in
electric/autonomous vehicles, is proposed. The solution uses speed and acceleration signals from the surrounding vehicles. These
signals are processed with clustering methods in order to achieve probability density functions and predict their expected motion.
The strategy includes several additional layers, such as decision making concerning the maneuver, the computation of the required
trajectory, and the tracking control of the vehicle. Trajectory generation is formed as an optimization task, which is able to include
the prediction model of the surrounding vehicles in the constraints. A robust Linear Parameter Varying (LPV) control design
method is proposed to guarantee the tracking of the computed reference.The proposed strategy is able to guarantee the safe motion
of the vehicles and handle the interactions with the other traffic participants.

1. Introduction and Motivation

Overtaking and lane changing maneuvers are critical on
roads due to various types of human errors. The necessary
distance required by the maneuver must be estimated accu-
rately and the vehicle should return to the lane as fast as
possible and the maneuver must be safe regarding the other
participants in the traffic.

The appropriate handling of overtaking maneuvers is also
difficult for several reasons:

(i) The motion of the vehicle ahead must be monitored
and predicted

(ii) The motions of vehicles in the environment, espe-
cially vehicles coming from the opposite lane and
traveling in the return lane, must be monitored and
predicted

(iii) The overtaking maneuver must be designed

(iv) Before the maneuver the decision concerning the
necessary overtaking must be made

(v) Several factors, such as lateral/longitudinal accel-
eration and jerks in relation to comfort, must be
considered

(vi) steering, braking, and driving must be coordinated

Several different control approaches in the field of over-
taking maneuvers of vehicles have been developed. An
optimal control design of the overtaking trajectory using
polynomial equations to minimize the lateral jerk was pro-
posed by [1]. The model predictive control (MPC) method
for path planning together with collision avoidance with the
application of overtaking was found in [2]. In [3] it has been
shown that the nonconvex optimal control problem of the
vehicle positioning can be transformed to a convex quadratic
program, which can be solved efficiently. A stochastic model
predictive control, in which the velocities of the surrounding
vehicles are considered, is designed [4]. A mixed integer
programmingmethod, which uses a low number of variables,
was presented by [5]. Another solution to reduce the numer-
ical difficulties was to use linguistic variables. For example,
a two-level fuzzy logic control was proposed by [6] and
the application of the Q-learning method was demonstrated
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by [7]. The fuzzy logic with the visual system, differential
GPS, and inertial measurements was integrated by [8]. Real-
time measurement from the overtaken vehicle to generate
the vehicle trajectory was used in [9]. A nonlinear adaptive
controller design using third-order reference trajectory for
overtaking scenarios was proposed by [10].

The prediction of vehicle motions is strongly linked to
the overtaking in the field of autonomous vehicles; see,
e.g., [11]. With the precise estimation of the environment
with vehicles, pedestrians, and cyclists the safe operations
of the autonomous systems can be significantly enhanced.
Several methods have also been designed to predict the
motion of human-driven vehicles; see, e.g., [12]. Probabilistic
approaches based on the dynamic Bayesian network and
Markov chain models were found in [13, 14]. A method
which used the past similarities in vehicle motion between
the current vehicle and predefined number of test vehicles
was proposed by [15]. The factor of driver aggression and
the motion of vehicles in unorganized traffic were consid-
ered in the motion planning of an overtaking maneuver in
[16].

In this paper an overtaking strategy of our own vehicle
is developed. In the following our vehicle will be referred
to as ego vehicle. The overtaking strategy is formed in a
hierarchical structure with different layers. The core of the
autonomous strategy is the motion prediction of the preced-
ing vehicle and surrounding vehicles (e.g., in the opposite
lane). Speed and acceleration signals are used to generate
probability density functions, which are built in a con-
strained optimization structure of the trajectory generation.
The result of the calculation is a clothoid trajectory, which
enhances smooth driving and traveling comfort. Moreover,
the paper proposes a strategy, with which further vehicle
motions can be considered, e.g., following and overtaking the
preceding vehicles. The tracking of the designed trajectory
is based on the robust LPV vehicle control, which has the
important role in guaranteeing safety in all scenarios, such
as overtaking, lane changing, and following the preceding
vehicle.

1.1. Architecture of the Robust Overtaking Control Strategy.
The overtaking control has been composed of a hierarchical
architecture with three different layers, as found in Figure 1.
It contains the layer of the surrounding vehicle motion
estimation, the trajectory optimization with an overtaking
decision logic, and the vehicle control, which generates the
steering angle. The advantage of the hierarchical design
is the variation in the design method of the layers. The
different tasks of the layers require different approaches;
e.g., the estimation is based on clustering and probability-
based methods, and the trajectory design is based on a
constrained optimization, while the vehicle control should
guarantee robustness. Therefore, it is sufficient to define the
interfaces and the layers can be designed independently. In
the architecture the interfaces of the layers are the following:

(a)The inputs of the surrounding vehicle estimation block
are the longitudinal velocity and the acceleration signals of
the ego and the surrounding vehicles, while the outputs are
the lateral constraints in the vehicle motion 𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥
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Figure 1: Architecture of the control system.

(b) Based on the constraints the actual reference signals𝑦𝑟𝑒𝑓, 𝜓𝑟𝑒𝑓 are computed togetherwith the desired longitudinal
velocity V𝑥

(c) Finally, the robust vehicle control computes the actual
steering angle 𝛿

In the rest of the paper the layers of the automated
overtaking strategy are presented. The estimation of the
surrounding, especially the preceding vehicle motion, which
includes the processing of vehicle data and the prediction of
its position, is presented in Section 2. The trajectory design
is formed in a constrained optimization problem, which is
based on a clothoid path of the vehicle; see Section 3. It
also shows the decision logic of the overtaking and lane
changing maneuvers. The robust vehicle control based on
the generated reference signals is presented in Section 4.
The operation of the control system is illustrated through
the CarSim simulation environment in Section 5. Finally,
Section 6 summarizes the contributions of the paper.

2. Estimation of the Motion of
Surrounding Vehicles

Safe overtaking and lane changing maneuvers require infor-
mation about the motion of the preceding vehicle. In this
paper its motion is estimated using the current longitudinal
velocity V𝑥 and acceleration 𝑎𝑥 signals. It is assumed that the
motion of the preceding vehicle in the future will be similar
towhat it has been so far.Moreover, it is also assumed that the
required signals V𝑥 and 𝑎𝑥 are available for the ego vehicles.

The proposed estimation has two main steps. First, the
preceding vehicle signals are processed through a clustering
procedure and the probability density function is generated.
Second, the future position of the vehicle is predicted based
on the calculated density functions.

2.1. Processing of Preceding Vehicle Signals. The preceding
vehicle is considered to be driven by a human, whose velocity
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Figure 2: Data on preceding vehicle.

selection is determined by a reference velocity V𝑥,𝑟𝑒𝑓. The
value of V𝑥,𝑟𝑒𝑓 can depend on several factors, e.g., the speed
limitation, the quality of the road surface, the curvature and
the number of lanes on the road, and the traffic situation.
In the method the velocity of the human-driven vehicle is
compared to the reference velocity, and the difference is
computed as 𝑒V = V𝑥 − V𝑥,𝑟𝑒𝑓. If several measurements are
available from a longer time period, the required signals
of the preceding vehicle can be estimated. As an example
the relationship between the speed differences 𝑒V and the
longitudinal acceleration 𝑎𝑥 is illustrated in Figure 2. In
this simplified illustrative scenario V𝑥,𝑟𝑒𝑓 is considered as the
speed limit on the course of the vehicle. It is shown that most
of the data are around 𝑒V = 0, 𝑎𝑥 = 0, which means that
the vehicle is generally cruising close to V𝑥,𝑟𝑒𝑓. However, the
signals have a variance; e.g., if the velocity changes the vehicle
is accelerated to reach the speed limit again, which leads to𝑒V < 0 and 𝑎𝑥 > 0. The purpose of the analysis is to derive the
probabilities of the different driving motions of the preceding
vehicle.

The generation of probability density functions requires
the clustering of data. In this vehicle dynamic examination
clusteringmeans that the collected data are ordered in groups,
depending on their locations in the plane 𝑒V, 𝑎𝑥. Numerous
algorithms for this problem have been developed in recent
decades; see, e.g., partitioning methods [17], hierarchical
algorithms [18], and density basedmethods [19]. In this paper
a fast and efficient improved k-means method is used as
presented and analyzed in [20].

The purpose of the algorithm is to minimize the
Euclidean distance between the objects and the centre of the
selected cluster, such as

𝐽𝑐𝑙 = 𝐾∑
𝑖=1

𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − 𝑐𝑖󵄩󵄩󵄩󵄩󵄩 (1)

where 𝐾 represents the number of clusters, 𝑥𝑗 contains[𝑒V, 𝑎𝑥] object data,𝑁 is the number of the objects, and 𝑐𝑖 ∈ 𝐶𝑖
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Figure 3: Selection of cluster number.
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Figure 4: Clustered data on preceding vehicle.

is the centre of the cluster 𝐶𝑖. The candidate clusters must be
nonempty and nonoverlapping.

In the estimation process the number of the clusters
significantly influences the results. Several methods have
been developed for the determination of the cluster number;
see, e.g., [21]. Below the elbowmethod is applied. In this case
it is necessary to find the cluster number with which the value
of the cost function 𝐽𝑐𝑙 drops significantly. In our case the
elbow method proposes 𝐾 = 3 clusters; see Figure 3. Result
of the clustering is shown in Figure 4, where the clusters are
marked with different colours.

Results of the clustering show that the 𝑒V, 𝑎𝑥 data have
variance inside the clusters.Thus, in what follows probability
density functions are fitted to the data of each cluster. The
function requires a two-dimensional Gaussian form:

𝑓𝑖 (𝑥) = 1
(2𝜋)𝑛/2 󵄨󵄨󵄨󵄨∑𝑖 󵄨󵄨󵄨󵄨0.5 𝑒

−0.5(𝑥−𝜇𝑖)
𝑇∑𝑖(𝑥−𝜇𝑖), (2)
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Figure 5: Probability density function of preceding vehicle.

where 𝑖 is related to the cluster number, 𝜇𝑖 represents the
mean value within a cluster, ∑𝑖 is the covariance matrix,
and 𝑥 = [𝑒V, 𝑎𝑥]𝑇 contains the value of the elements in the
current cluster. In the estimation the 𝜇𝑖 and∑𝑖 values must be
computed for all 𝑓𝑖 functions of all the𝐾 clusters.The overall
probability density function 𝑓(𝑥) is derived from each 𝑓𝑖(𝑥)
such as

𝑓 (𝑥) = 1𝐾
𝐾∑
𝑖=1

𝑓𝑖 (𝑥) , (3)

which guarantees the criterion for probability density func-
tions ∫

𝑒V
∫
𝑎𝑥
𝑓(𝑥)𝑑𝑥 = 1. Result of the method for our case is

illustrated in Figure 5.
Based on the proposed algorithm the preceding vehicle

data are transformed into a probability density function,
which depends on both 𝑒V and 𝑎𝑥. In the following the
function 𝑓(𝑥) is used to predict the future position of the
vehicle considering the probability of driver actuation.

2.2. Prediction of Vehicle Position. The future position of
the vehicle is predicted based on the longitudinal kinematic
equations

V𝑥 (𝑡𝑖+1) = V𝑥 (𝑡𝑖) + ∫𝑡𝑖+1
𝑡𝑖

𝑎𝑥 (𝑡) 𝑑𝑡, (4a)

𝑠 (𝑡𝑖+1) = 𝑠 (𝑡𝑖) + ∫𝑡𝑖+1
𝑡𝑖

V𝑥 (𝑡) 𝑑𝑡, (4b)

where V𝑥 is the longitudinal velocity and 𝑠 is the displacement.
In the estimation the relations (4a) and (4b) are transformed
into a discrete form with the time step 𝑇 = 𝑡𝑖+1 − 𝑡𝑖. Thus,
in the following the discrete longitudinal velocity V𝑥,𝑖 and
displacement 𝑠𝑖 are used, where 𝑖 represents the step index.
The purpose of the prediction is to predict 𝑠1 . . . 𝑠𝑛 values
based on the probability density function 𝑓(𝑥). For each
prediction step 𝑖, slices of the function 𝑓(𝑥) are generated as𝑓(𝑥)|𝑒V(𝑖); see, e.g., Figure 6.

The computations of V𝑥,𝑖 and 𝑠𝑖 require the value of 𝑎𝑥,𝑖,
which is generated from the gridding of 𝑓(𝑥)|𝑒V(𝑖). The aim
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Figure6: Slices of probability density function at different velocities.
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Figure 7: Illustration of the 𝑠𝑖 probability density function in the
predictions.

of the computation is to determine the probability density
function of the vehicle position 𝑓(𝑠𝑖), depending on 𝑠𝑖 for
each time step. The computation is based on the relations
of (4a) and (4b), in which the probability density function
of 𝑓(𝑥)|𝑒V(𝑖) is used. The computation of V1 and 𝑠1 for 𝑖 = 1
requires the deterministic initial velocity V0 and position 𝑠0,
which can be measured.

Due to 𝑓(𝑥)|𝑒V(𝑖) the speed and positions V1, 𝑠1 are also
represented by probability density functions 𝑓(𝑠1), 𝑓(V1).
Therefore, in the computation of V2, 𝑠2 for 𝑖 = 2 the previous
velocity and position of 𝑖 = 1 are considered with their
probability density functions. As an illustration, Figure 7
shows an example for 𝑖 = 1 . . . 3 predictions. Here the initial
velocity V𝑥,0 = 140 𝑘𝑚/ℎ, the initial position 𝑠0 = 0, and
the sampling time 1 𝑠𝑒𝑐 are selected. The illustration shows
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that for 𝑖 = 1 the probability density function of 𝑠1 has high
values in a small range, which means that the position of the
vehicle can be estimated with high probability. However, e.g.,
for 𝑖 = 3 the probability density function of 𝑠3 has high values
in a broad range, which means that the forthcoming position
of the vehicle has higher uncertainty.

In the prediction of the vehicle position the probability
density function has fundamental importance. The probabil-
ity 𝑃(𝑠𝑖,− < 𝑠𝑖 < 𝑠𝑖,+) that the vehicle in the prediction step 𝑖 is
between the positions 𝑠𝑖,− . . . 𝑠𝑖,+ is computed as follows:

𝑃 (𝑠𝑖,− < 𝑠𝑖 < 𝑠𝑖,+) = ∫𝑠𝑖,+
𝑠𝑖,−

𝑓 (𝑠𝑖) 𝑑𝑠𝑖 (5)

A safe maneuver to avoid a collision requires a guarantee that
the probability of the vehicle in the critical position range𝑠𝑖,− < 𝑠𝑖 < 𝑠𝑖,+ is smaller than a predefined 𝑝𝑚𝑎𝑥 value.
If 𝑃(𝑠𝑖,− < 𝑠𝑖 < 𝑠𝑖,+) > 𝑝𝑚𝑎𝑥, the position 𝑠𝑖,− < 𝑠𝑖 <𝑠𝑖,+ must not be reached by the ego vehicle. Consequently,
based on the safe maneuver the vehicle must perform the
overtaking or decelerate to the speed of the preceding vehicle.
Thus, the trajectory of the ego vehicle must be designed
in such a way that both the estimation of the preceding
vehicle motion and the maximum probability level 𝑝𝑚𝑎𝑥 are
taken into consideration. Note that if 𝑝𝑚𝑎𝑥 is reduced, the
safety of the maneuver increases, but the avoidable regions
also increase. It can lead to a conservative maneuver, which
requires too long traveling in the opposite lane to overtake the
preceding vehicle.

Finally, it is necessary to mention that the proposed
estimation method is also used for the estimation of the
motions of the vehicles in the opposite lane. If the data 𝑒V,𝑎𝑥 of the closest vehicle in the opposite lane are available, the
prediction of the motion can be performed.

3. Formulation of Trajectory Design

In the overtaking and lane changing strategy the result of
the estimation is used for the computation of the vehicle
trajectory. In the design two criteria are considered. First,

the results of the estimation must be incorporated in the
trajectory design to guarantee safe cruising. Second, the
generated trajectorymust guarantee a comfortablemaneuver.
It means that the motion of the vehicle must be smooth,
which is achieved by applying a clothoid trajectory. The
advantages of the clothoid trajectory were presented in [22,
23]. In the following an optimal trajectory design method
which guarantees both requirements is proposed.

3.1. Modelling of Trajectory Tracking. The lateral motion of
the vehicle is formulated based on the kinematic model of the
vehicle, such as

𝑑𝑦 (𝑡)
𝑑𝑡 = V𝑥 sin𝜓 (𝑡) , (6a)

𝑑𝜓 (𝑡)
𝑑𝑡 = V𝑥𝐷 tan 𝛿 (𝑡) , (6b)

where 𝑦 is the lateral displacement, V𝑥 is the longitudinal
velocity in the vehicle coordinate system, 𝜓 is the yaw angle,𝛿 is the front steering angle of the front wheels, and 𝐷 is
the distance between the front and the rear axle. Translate
the motion equation to space domain by making V𝑥 =𝑑𝑠(𝑡)/𝑑𝑡 and assume that V𝑥 is a continuous function in the
rearrangement of (6a) and (6b):

𝑑𝑦 (𝑠)
𝑑𝑠 = sin𝜓 (𝑠) (7a)

𝑑𝜓 (𝑠)
𝑑𝑠 = 𝛿 (𝑠)𝐷 . (7b)

The term𝛿(𝑠)/𝐷 in (7a) and (7b) represents the curvature𝜅(𝑠)
of the path; see also [23].

To guarantee a smooth trajectory for the vehicle, the
curvature 𝜅(𝑠) is constrained so as to generate a clothoid form;
see Figure 8. It leads to the following formulation [23]:

𝜅𝑖+1 = 𝜅𝑖 + 𝑐𝑖𝐿 𝑖, (8)

where 𝐿 𝑖 = 𝑇V𝑥,𝑖 is the distance between two section points
and 𝑐𝑖 is the ratio of the clothoid section.
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The motion equations (7a) and (7b) are transformed into
a discrete form such as

𝑦𝑖+1 = 𝑦𝑖 + 𝐿 𝑖 sin𝜓 (9a)

𝜓𝑖+1 = 𝜓𝑖 + 𝜅𝑖+1𝐿 𝑖 = 𝜓𝑖 + 𝜅𝑖𝐿 𝑖 + 𝐿
2
𝑖2 𝑐𝑖 (9b)

For small yaw angle differences from the path the assumption
sin𝜓 ≈ 𝜓 is acceptable.

Using (8), (9a), and (9b) the system is transformed into a
state-space representation 𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 in the following
way:

[[[
[

𝑦𝑖+1
𝜓𝑖+1
𝜅𝑖+1

]]]
]
= [[
[

1 𝐿 𝑖 0
0 1 𝐿 𝑖
0 0 1

]]
]
[[
[

𝑦𝑖
𝜓𝑖
𝜅𝑖
]]
]
+ [[[[
[

0
𝐿2𝑖2𝐿 𝑖
]]]]
]
𝑐𝑖 (10)

where the system depends on the values of 𝑐𝑖. The purpose of
the trajectory computation is to determine these values.

3.2. Optimization of Trajectory Tracking. In the trajectory
design the lateral position of the vehicle 𝑦𝑖+1 must be
controlled. It is necessary to guarantee that 𝑦𝑖+1 tends to
the reference trajectory 𝑦𝑖+1,𝑟𝑒𝑓 as accurately as possible in
order to avoid the preceding vehicle and keep the required
lanes during the overtaking maneuver. This task leads to a
constrained tracking optimization problem, which is formed
in the following way.

The trajectory design of the overtaking maneuver is
formed in a finite horizon length 𝐿𝑛 ahead of the vehicle.The
lateral position error 𝑦𝑖+1−𝑦𝑖+1,𝑟𝑒𝑓 in the horizon is described
in the following way:

𝑌 (C) =
[[[[[[
[

𝑦𝑖+1
𝑦𝑖+2...𝑦𝑖+𝑛

]]]]]]
]
−
[[[[[[[
[

𝑦𝑖+1,𝑟𝑒𝑓
𝑦𝑖+2,𝑟𝑒𝑓...
𝑦𝑖+𝑛,𝑟𝑒𝑓

]]]]]]]
]

=
[[[[[[
[

𝐶𝐴
𝐶𝐴2
...𝐶𝐴𝑛

]]]]]]
]
𝑥𝑖 −

[[[[[[
[

𝑦𝑖+1,𝑟𝑒𝑓
𝑦𝑖+2,𝑟𝑒𝑓...𝑦𝑖+𝑛,𝑟𝑒𝑓

]]]]]]
]

+
[[[[[[[
[

𝐶𝐵 0 ⋅ ⋅ ⋅ 0
𝐶𝐴𝐵 𝐶𝐵 ⋅ ⋅ ⋅ 0
... ... d

...
𝐶𝐴𝑛−1𝐵 𝐶𝐴𝑛−2𝐵 ⋅ ⋅ ⋅ 𝐶𝐵

]]]]]]]
]

[[[[[[
[

𝑐𝑖
𝑐𝑖+1...
𝑐𝑖+𝑛−1

]]]]]]
]

= A −R +BC

(11)

whereA contains the current states of the system,R is built
by the reference values, B is built by the state matrices, and

C is built by the ratios of clothoid sections. In the tracking
problem it is necessary to minimize the following function:

𝐽 (C) = 12𝑌𝑇 (C)𝑄𝑌 (C) +C
𝑇𝑅C, (12)

where 𝑄 and 𝑅 are weighting matrices. The role of 𝑄 is to
minimize the tracking error, while the role of𝑅 is tominimize
the ratios of the clothoid sections. Substituting (11) into the
function (12), the function is transformed as

𝐽 (C) = 12 (A −R +BC)𝑇𝑄 (A −R +BC)
+C
𝑇𝑅C = 12 (A𝑇 −R

𝑇 +C
𝑇
B
𝑇)𝑄 (A −R

+BC) +C
𝑇𝑅C = 12 (A𝑇𝑄A −A

𝑇𝑄𝑅
+A
𝑇𝑄BC −R

𝑇𝑄A +R
𝑇𝑄R −R

𝑇𝑄BC

+C
𝑇
B
𝑇𝑄A −C

𝑇
B
𝑇𝑄R +C

𝑇
B
𝑇𝑄BC)

+C
𝑇𝑅C = 12C𝑇 (B𝑇𝑄B + 2𝑅)C + 12 (A𝑇𝑄B

−R
𝑇𝑄B)C +C

𝑇 12 (B𝑇𝑄A −B
𝑇𝑄R) + 𝜀 = 12

⋅C𝑇𝜙C + 𝛽𝑇C +C
𝑇𝛾 + 𝜀

(13)

where

𝜙 =B
𝑇𝑄B + 2𝑅, (14a)

𝛽𝑇 = 12 (A𝑇𝑄B −R
𝑇𝑄B) , (14b)

𝛾 = 12 (B𝑇𝑄A −B
𝑇𝑄R) , (14c)

𝜀 = 12 (A𝑇𝑄A −A
𝑇𝑄𝑅 −R

𝑇𝑄A +R
𝑇𝑄R) . (14d)

In (13) 𝜀 contains all the constant components. Since 𝜀 is
independent of the effect of C on 𝐽(C), it can be canceled
from the further optimization problem.

Through the minimization of the cost function 𝐽(C) the
tracking of the reference trajectory 𝑦𝑖+1,𝑟𝑒𝑓 can be guaranteed.
In order to increase the safety of the maneuver both colli-
sion avoidance and lane keeping are built into the design.
Therefore, constraints are incorporated into the trajectory
optimization problem. The constraints are related to both
the minimum and the maximum values of 𝑦𝑖+1. Practically,𝑦𝑚𝑖𝑛𝑖+1 and 𝑦𝑚𝑎𝑥𝑖+1 are determined by the lanes, which guarantees
lane keeping. However, in the overtaking maneuver the
constraints must be modified with the current position of
the preceding vehicle.The constraints of theminimum values
of the positions are formed as 𝑦𝑖+𝑗 ≥ 𝑦𝑚𝑖𝑛𝑖+𝑗 , 𝑗 ∈ {1, 𝑛}. The
inequalities are transformed into a matrix representation:

A +BC ≥ 𝑌𝑚𝑖𝑛, (15)
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Figure 9: Determination of 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥.

where 𝑌𝑚𝑖𝑛 = [𝑦𝑚𝑖𝑛𝑖+1 𝑦𝑚𝑖𝑛𝑖+2 ⋅ ⋅ ⋅ 𝑦𝑚𝑖𝑛𝑖+𝑛 ]𝑇. Thus, the constraint
on the clothoid ratios C is formed as

A − 𝑌𝑚𝑖𝑛 ≥ −BC. (16)

Similarly, the constraints of the maximum values of 𝑦𝑖+1 are
derived as

𝑌𝑚𝑎𝑥 −A ≥BC, (17)

where 𝑌𝑚𝑎𝑥 = [𝑦𝑚𝑎𝑥𝑖+1 𝑦𝑚𝑎𝑥𝑖+2 ⋅ ⋅ ⋅ 𝑦𝑚𝑎𝑥𝑖+𝑛 ]𝑇. The minimum 𝑌𝑚𝑖𝑛
andmaximum𝑌𝑚𝑎𝑥 values are determined by the edges of the
lanes and the surrounding vehicles, especially the preceding
vehicle and the vehicle in the opposite lane. If a vehicle in
the opposite lane performs a lane change maneuver, it can
limit the lateral motion of the ego vehicle.This information is
also incorporated in 𝑌𝑚𝑎𝑥, with which the safe cruising of the
ego vehicle is guaranteed against collisions with the vehicles
from the opposite lane. The selections of 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥 are
illustrated in Figure 9, where 𝑦𝑠𝑎𝑓𝑒𝑡𝑦 describes a safety zone of
the vehicles.

Finally, from (13), (16), and (17) the constrained trajectory
optimization problem is formed as

min
𝑢𝑖...𝑢𝑖+𝑛−1

12C𝑇𝜙C + 𝛽𝑇C +C
𝑇𝛾 (18)

such that the following constraints are also guaranteed:

A − 𝑌𝑚𝑖𝑛 ≥ −BC (19a)

𝑌𝑚𝑎𝑥 −A ≥BC (19b)

C ∈ C (19c)

where C contains the achievable clothoid ratios. The opti-
mization problem can be solved using standard quadratic
programming methods, e.g., [24, 25]. The solution of (18)
leads to a series of clothoid ratios on the horizon 𝐿𝑛. The
current ratio 𝑐𝑖 can be computed online during the cruising
of the vehicle.

3.3. Decision Strategy of Overtaking and Lane Changing. The
overtaking and lane changing strategy is based on the con-
strained trajectory optimization method (18). Although the
constraints and the achievable clothoid ratios are considered,
the calculated tracking must be modified for safety reasons.

Before the maneuver the ego vehicle reaches a preceding
vehicle which is traveling at a slower speed. The vehicle
must follow the preceding vehicle. If the preceding vehicle
accelerates or decelerates the ego vehicle must strictly track
the velocity within the speed limit. Meanwhile, it calculates
a safe trajectory for the overtaking and lane changing. The
optimization method (18) results in a clothoid curve, which
guarantees the cruising of the ego vehicle between the
minimum and the maximum limits.

However, if there is a follower vehicle in the inner lane
which is traveling at a higher velocity, a conflict with the
ego vehicle may occur during the overtaking maneuver.
Moreover, if there is a vehicle in the opposite lane, a conflict
with the ego vehicle in the maneuver may also occur. These
maneuvers are considered unfeasible. Infeasibility means
that it is impossible to find an appropriate trajectory which
guarantees both the minimization (18) and the constraints
(19a), (19b), and (19c). In this case the ego vehicle must follow
the preceding vehicle and modify the longitudinal dynamics.

When the traffic situation changes and the optimization
becomes feasible, the overtakingmaneuver can be performed.
The maneuver is realized through the actuation of steering
and driving/braking systems; see, e.g., [26].

Note that the proposed method can be used not only
for overtaking, but also for simple lane changing maneuvers,
e.g., changing the route in a highway intersection. In this
scenario the reference signal of the road 𝑦𝑖+1,𝑟𝑒𝑓 must be
modified according to the parameters of the requested lane.
Moreover, in a lane changing maneuver the constraints 𝑌𝑚𝑖𝑛
and 𝑌𝑚𝑎𝑥 must be modified for the new lane. Furthermore,
the proposed optimization (18) and decision problem can be
formed as aMPC task, in which the steering intervention can
also be incorporated.However, the entire control systemmust
guarantee the robustness of the system,which can lead to high
complexity in the computation of the vehicle control. In the
paper a robust LPV-based control design method is proposed



8 Journal of Advanced Transportation

G()

K()u

yref

ref

Wz,1

Wr,1

Wr,2

Wz,2

Wz,3

Ww,2

Ww,1



e,a ey,a

z1

z3

z2

w1

w2

Figure 10: Closed-loop interconnection structure.

to guarantee the tracking of the generated trajectory and the
robustness of the controlled system.

4. Robust LPV Control for
Autonomous Overtaking

Thegoal of the robust LPVcontrol is to guarantee the tracking
of the trajectory, which has been generated by optimization
(18) together with the decision algorithm. The results of the
optimization are 𝑢𝑖 . . . 𝑢𝑖+𝑛−1, which are equal to the ratios of
the clothoid sections 𝑐𝑖 . . . 𝑐𝑖+𝑛−1. In the case of the tracking
control the vehicle must follow the reference path 𝑦𝑟𝑒𝑓 =𝑦𝑖+1 = 𝑦1 and the reference heading angle 𝜓𝑟𝑒𝑓 = 𝜓𝑖+1 = 𝜓1.
The reference signals are computed from (10) such as

𝑦𝑟𝑒𝑓 = 𝑦0 + 𝐿0𝜓0 (20a)

𝜓𝑟𝑒𝑓 = 𝜓0 + 𝐿0𝜅0 + 𝐿
2
02 𝑐0 (20b)

where𝑦0, 𝜓0 are related to 𝑦(𝑡), 𝜓(𝑡) in discrete time, while 𝐿0
is the length of the forthcoming segment and 𝜅0 is the result
in the previous trajectory computation step.The parameter 𝑐0
is the first element among the results of the optimization 𝑢0.

After the computation of the reference signals the track-
ing performances together with the control performance are
defined as

𝑧1 = 𝑦𝑟𝑒𝑓 − 𝑦 (𝑡) 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨 󳨀→ 𝑚𝑖𝑛, (21a)

𝑧2 = 𝜓𝑟𝑒𝑓 − 𝜓 (𝑡) 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 󳨀→ 𝑚𝑖𝑛, (21b)

𝑧3 = 𝛿 (𝑡) 󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 󳨀→ 𝑚𝑖𝑛. (21c)

The performance vector is as follows: 𝑧 = [𝑧1 𝑧2 𝑧3]𝑇.
The model of the vehicle is described by the dynamical

bicycle model; see [27]:

𝑚𝑦̈ = 𝐶𝑓 (𝛿 − 𝜓̇𝑙𝑓 + 𝑦̇V𝑥
) + 𝐶𝑟 (𝜓̇𝑙𝑟 − ̇𝑦

V𝑥
) (22a)

𝐽𝜓̈ = 𝐶𝑓𝑙𝑓 (𝛿 − 𝜓̇𝑙𝑓 + 𝑦̇V𝑥
) − 𝐶𝑟𝑙𝑟 (𝜓̇𝑙𝑟 − ̇𝑦

V𝑥
) (22b)

where 𝐽 is the yaw inertia of the vehicle,𝑚 is the vehicle mass,𝐶𝑓, 𝐶𝑟 are the cornering stiffness coefficients, and 𝑙𝑓, 𝑙𝑟 are
geometric parameters. The signal ̇𝑦 is the lateral velocity and𝜓̇ is the yaw rate.The longitudinal velocity V𝑥 may vary along
the route of the vehicle; therefore it is chosen as a scheduling
variable. Equations (22a) and (22b) can be transformed into
a state-space representation, where the state vector is 𝑥 =
[𝜓̇ 𝑦̇ 𝜓 𝑦]𝑇, the control input is the steering angle 𝑢 = 𝛿,
and the measured output vector is 𝑦𝑚 = [𝜓 𝑦]𝑇. The state
equation and the performances as well as the measurements
are written as

𝑥̇ = 𝐴 (𝜌) 𝑥 + 𝐵𝑢 (23a)

𝑧 = 𝐶1𝑥, (23b)

𝑦𝑚 = 𝐶2𝑥 + 𝐷𝑢, (23c)

where 𝜌 = V𝑥 is selected as a scheduling variable. Its value is
modified through the decision strategy.

The control design is based on a weighting strategy, which
is formulated through a closed-loop interconnection struc-
ture; see Figure 10. The interconnection structure contains
several weighting functions, whose roles are to guarantee the
trade-off between the performances and to scale the signals.
The weights𝑊𝑤,1,𝑊𝑤,2 are related to the sensor characteris-
tics on the lateral error and yaw error measurement. These
weights are related to the sensor dynamics. 𝑊𝑧,1,𝑊𝑧,2, and𝑊𝑧,3 are the weights for the performances, which represent
the minimization of 𝑧1, 𝑧2, and 𝑧3. The weights are formed as𝑊𝑧,𝑖 = 𝐴 𝑖/(𝑇𝑖𝑠 + 1)where𝐴 𝑖, 𝑇𝑖 are design parameters.These
parameters influence the balance between the performances𝑧1, 𝑧2, and 𝑧3. Moreover, the role of the weight 𝑊𝑟,𝑖 is to
consider the dynamics of the reference signals 𝑦𝑟𝑒𝑓, 𝜓𝑟𝑒𝑓. The
blocks also represent the dynamics of their variations.

Thedesign of the control is based on robust LPVmethods.
The advantage of these methods is that the controller meets
stability and performance demands by using affine parame-
terized Lyapunov functions in the entire operational interval,
since the controller is able to adapt to the current operational
conditions; see [28, 29]. The solution of an LPV problem
is governed by the set of infinite dimensional LMIs being
satisfied for all 𝜌 ∈ FP; thus it is a convex problem. In
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(a) Start of overtaking

(b) End of overtaking

(c) Approaching the preceding vehicle

(d) Tracking the preceding vehicle

(e) Change of lane

(f) Cruising with its own reference velocity

Figure 11: Simulation scenario.

practice, this problem is set up by gridding the parameter
space and solving the set of LMIs that hold on the subset of
FP. The induced L2 norm of parameter-dependent stable
LPV systems with zero initial conditions is defined as

inf
𝐾

sup
󰜚∈FP

sup
‖𝑤‖2 ̸=0,𝑤∈L2

‖𝑧‖2‖𝑤‖2 , (24)

where 𝑤 is the disturbance and 𝑧 is the performance. The
result of the optimization is the steering angle 𝛿.
5. Simulation Results

To illustrate the efficiency of the proposed method a complex
simulation scenario is presented.The traffic scenario contains



10 Journal of Advanced Transportation

reference
real

−6

−5

−4

−3

−2

−1

0

1

2

3

4

La
te

ra
l p

os
iti

on
 (m

)

100 200 300 400 500 600 700 8000
Station (m)

(a) Trajectory of the vehicle

80

85

90

95

100

105

110

115

120

Sp
ee

d 
(k

m
/h

)

100 200 300 400 500 600 700 8000
Station (m)

(b) Velocity profile

Figure 12: Simulation results.

four vehicles, such as the ego vehicle, two preceding vehicles,
and another vehicle in the opposite lane. In the setting of
the optimal trajectory computation the sample time is set at𝑇 = 0.1𝑠 with 𝑛 = 20 the prediction points. The simulation
is performed using the high-complexity vehicle dynamic
software CarSim.

The simulation is illustrated in Figure 11. At the beginning
of the simulation the ego vehicle (blue) reaches the preced-
ing vehicle (white) due to the significant difference in the
velocities; see Figure 11(a). Since the overtaking maneuver is
feasible, it is carried out as Figure 11(b) shows. Then the ego
vehicle reaches the next preceding vehicle (green), which also
has lower velocity; see Figure 11(c). The ego vehicle calculates
the overtaking trajectory based on the optimization task (18)
and the constraints 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥 (19a), (19b), and (19c). But
there is a vehicle in the opposite lane (red), which makes the
overtaking maneuver unfeasible. Thus, the ego vehicle must
follow the preceding vehicle, which results in the reduction of
its velocity; see Figure 11(d). Finally, the ego vehicle performs
a lane changing in order to modify its route at an exit ramp.
In this case a new reference signal 𝑦𝑖+1,𝑟𝑒𝑓 is set as shown in
Figure 11(e). Then the velocity of the vehicle increases; see
Figure 11(f).

The numerical values of the lateral position and the
velocity are illustrated in Figure 12.The increase and decrease
of the lateral positions at 100 𝑚 and 200 𝑚, respectively,
illustrate the overtaking of the first slower vehicle (white)
and then the tracking of the second preceding vehicle (green)
due to the third vehicle (red) coming from the opposite lane;
see Figure 12(a). In the proposed scenario the safe distance
between the vehicles is 20𝑚, which has been kept by the
ego vehicle. The initial velocity is 110 𝑘𝑚/ℎ, which must be
reduced to keep the velocity of the green preceding vehicle
(90𝑘𝑚/ℎ); see Figure 12(b). At 500 𝑚 the lane change is
carried out, which results in the changes of the lateral position
and the increases in the velocity compared to the original
value.

6. Conclusions

In the paper an overtaking and a lane changing strategy have
been proposed.The expected motion of the preceding vehicle
is predicted by using clustering methods and probability
density functions. The trajectory design is formed as a
constrained optimization problem, in which the traffic in
the lanes of the road is considered. In the decision mak-
ing concerning overtaking the motions of the surrounding
vehicles such as the follower vehicle with higher velocity
and vehicles in the opposite lane is also incorporated. The
robust parameter varying tracking control design of the
lateral dynamics has been presented.The proposed strategy is
able to guarantee the safe motion of the vehicles and handle
the interactions with the other traffic participants. The results
have been illustrated through simulation examples.
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