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We analyze the ground-state energy, magnetization, magnetic susceptibility, and Kondo screening cloud of
the symmetric single-impurity Anderson model (SIAM) that is characterized by the bandwidth W , the impurity
interaction strength U , and the local hybridization V . We compare Gutzwiller variational and magnetic Hartree-
Fock results in the thermodynamic limit with numerically exact data from the density-matrix renormalization
group (DMRG) method on large rings. To improve the DMRG performance, we use a canonical transformation to
map the SIAM onto a chain with half the system size and open boundary conditions. We compare to Bethe ansatz
results for the ground-state energy, magnetization, and spin susceptibility that become exact in the wide-band
limit. Our detailed comparison shows that the field-theoretical description is applicable to the SIAM on a ring
for a broad parameter range. Hartree-Fock theory gives an excellent ground-state energy and local moment for
intermediate and strong interactions. However, it lacks spin fluctuations and thus cannot screen the impurity
spin. The Gutzwiller variational energy bound becomes very poor for large interactions because it does not
describe properly the charge fluctuations. Nevertheless, the Gutzwiller approach provides a qualitatively correct
description of the zero-field susceptibility and the Kondo screening cloud. The DMRG provides excellent data for
the ground-state energy and the magnetization for finite external fields. At strong interactions, finite-size effects
make it extremely difficult to recover the exponentially large zero-field susceptibility and the mesoscopically
large Kondo screening cloud.
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I. INTRODUCTION

The single-impurity Anderson model (SIAM) decribes
an impurity in a metallic host in which electrons interact
locally [1,2]. It poses one of the best studied and under-
stood fundamental many-body problems; for a review, see
Ref. [3]. Therefore, it still serves as a benchmark test for the
development of advanced analytical many-body techniques,
e.g., the functional renormalization group technique [4–6].
For the symmetric SIAM, the low-energy physics is similar
to that of the single-impurity s-d or Kondo model [7,8] in
which an impurity spin couples to the host electrons’ spin
degrees of freedom: at zero temperature, the impurity local
moment is screened by the host electrons, which gives rise to
a narrow Abrikosov-Suhl or Kondo resonance in the impurity
spectral function at the Fermi level [3]. The resonance can be
resolved using the numerical renormalization group (NRG)
technique; for a review, see Ref. [9]. At higher energies,
Hubbard satellites appear in the impurity spectral function
that describe the local charge fluctuations. Both the Kondo
resonance and the Hubbard satellite are accessible from the
analytic local-moment approach [10–12].

More recently, the real-space features of the screening were
studied for the Kondo model using NRG [13–15] and the
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analytical coherent-state expansion [16]. For the noninter-
acting SIAM (resonant-level model) in the wide-band limit,
the screening cloud was analyzed analytically [17] and the
magnetic properties of the interacting SIAM were studied
numerically using the density-matrix renormalization group
(DMRG) method [18]. The various methods show that the
screening cloud extends very far into the host metal. In the
Kondo regime, an algebraic decay sets in only beyond a
characteristic (Kondo) length scale that is proportional to the
inverse of the Kondo temperature.

Less attention was dedicated to ground-state properties
of the SIAM and Kondo models because they are solvable
by the Bethe ansatz [19–22]. Therefore, important quantities
such as the ground-state energy, magnetization, and magnetic
susceptibility at zero field are known explicitly. The Bethe
ansatz is based on the wide-band limit, W → ∞, so that
the dispersion relation of the host electrons can be linearized
around the Fermi energy. However, the implicit assumption
that the Hubbard interaction U is small compared to the
bandwidth, U � W , impedes a comparison with methods that
treat the SIAM on a lattice such as the DMRG method and the
Hartree-Fock [1] and Gutzwiller wave functions [23,24].

As one of the best studied many-body problems, the SIAM
is particularly suitable to test existing and conceivable future
many-body methods. Since these are often customized for the
treatment of lattice Hamiltonians, it is one of the purposes
of this work to provide tangible results for a ring geometry;
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for other recent numerical treatments of finite structures, see
Refs. [25,26]. Given the high accuracy of the DMRG data
for large system sizes, an extrapolation of most ground-state
properties to the thermodynamic limit is unproblematic. As
we shall see, the wide-band limit remains applicable for fairly
large interaction strengths even for a substantial hybridization
that justifies the application of the wide-band limit even for
sizable Coulomb parameters.

In this work, we use the DMRG to calculate numer-
ically exactly the ground-state energy, the local magnetic
moment, the zero-field susceptibility, and the screening cloud
of the single-impurity Anderson model on large rings. The
Gutzwiller and Hartree-Fock approaches provide comple-
mentary insights. The Hartree-Fock variational estimate of
the ground-state energy is very satisfactory for moderate
to large Hubbard interactions whereas the Gutzwiller esti-
mate is acceptable only for small U . On the other hand,
the Gutzwiller approach provides a qualitatively correct de-
scription of the magnetic properties whereas Hartree-Fock
theory fails to screen the impurity spin even at infinitely large
distances. Since the Gutzwiller approach is heavily based on
the exact results for the noninteracting SIAM, we compile
the results for the resonant-level model in the Supplemental
Material [27].

Our work is structured as follows. In Sec. II, we introduce
the one-dimensional SIAM on a ring with local hybridization
at particle-hole and spin symmetry. We map the model onto a
two-chain problem [28,29] in which the two chains separate
in the thermodynamic limit. The reduced model provides the
basis for our numerical DMRG investigations. In Sec. III
we discuss the ground-state energy, magnetization, and spin
correlation function between the impurity and the bath sites
for the noninteracting SIAM for small hybridizations. The
derivation of the formulas is deferred to the Supplemental Ma-
terial [27]. In Sec. IV, we evaluate the Gutzwiller variational
wave function for the SIAM and determine an analytical varia-
tional upper bound for the ground-state energy. Moreover, we
calculate the variational magnetization and spin correlation
function. In Sec. V we compare our results for the ground-
state energy, magnetization, and the spin correlation function
with numerically exact DMRG data for large system sizes.
We include the results from the Bethe ansatz and a magnetic
Hartree-Fock calculation; see the Supplemental Material for
their derivation [27]. Short conclusions, Sec. VI, close our
presentation.

II. SYMMETRIC SINGLE-IMPURITY
ANDERSON MODEL ON A RING

We study the particle-hole and spin symmetric SIAM on a
ring [1,2]. For strong interactions, this model maps onto the
one-dimensional Kondo impurity model [30].

A. Hamiltonian

The Hamilton operator for the one-dimensional single-
impurity Anderson model reads [1,3]

Ĥ = Ĥ0 + Ĥint,

Ĥint = U (n̂d,↑ − 1/2)(n̂d,↓ − 1/2),
(1)

where n̂d,σ = d̂+
σ d̂σ counts the number of σ electrons on the

impurity site (σ =↑,↓). Only the electrons on the impurity
site repel each other with strengths U > 0. The noninteracting
Hamiltonian,

Ĥ0 = T̂ + B̂ + V̂ + P̂, (2)

describes bath electrons that move between neighboring sites
on a ring with L sites,

T̂ = −W

4

L−1∑
n=0,σ

(ĉ+
n,σ ĉn+1,σ + ĉ+

n+1,σ ĉn,σ ), (3)

where the bandwidth provides our unit of energy, W ≡ 1.
In the presence of an external magnetic field Hbath we may

include the magnetic term

B̂ = −Bbath

L−1∑
n=0

(ĉ+
n,↑ĉn,↑ − ĉ+

n,↓ĉn,↓). (4)

Here, we abbreviated Bbath = gμBHbath/2, where μB is the
Bohr magneton and g ≈ 2 is the electrons’ gyromagnetic
factor.

The bath electrons hybridize at the origin, n = 0, with the
impurity electrons with strength V > 0,

V̂ = V
∑

σ

(d̂+
σ ĉ0,σ + ĉ+

0,σ d̂σ ). (5)

The system is half filled; i.e., the total number of electrons is
N = L + 1, and we investigate a paramagnetic situation, N↑ =
N↓ = (L + 1)/2. Consequently, the number of bath sites L
must be odd. From now on we further assume that (L + 3)/2
is even.

There can be a local, possibly spin-dependent potential,

P̂ = −
∑

σ

Ed,σ (n̂d,σ − 1/2). (6)

In the presence of an external magnetic field Himp at the impu-
rity we have Ed,↑ = (gμB/2)Himp = −Ed,↓. In the magnetic
Hartree-Fock approach, we have Ed,↑ = Um = −Ed,↓, where
the value of the Ŝz at the impurity, m = 〈n̂d,↑ − n̂d,↓〉/2, has
to be determined self-consistently [27].

B. Particle-hole symmetry

To analyze particle-hole symmetry in the SIAM, we set
Ed,σ = 0 and Hbath = 0 in the rest of this section; i.e., we have
no magnetic symmetry breaking. Particle-hole symmetry for
the SIAM was studied previously, e.g., in Ref. [31].

The ring geometry renders the analysis of particle-hole
symmetry more cumbersome than the choice of open bound-
ary conditions. Since boundary conditions play no role in
the thermodynamic limit as investigated in Secs. III–V, the
material presented in this section is included for completeness
rather than necessity.

1. Wave numbers and particle-hole boundary conditions

For a ring, the kinetic energy is diagonal in momentum
space,

T̂ =
∑
k,σ

ε(k)ĉ+
k,σ ĉk,σ , (7)
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where

ĉn,σ =
√

1

L

∑
k

eiknĉk,σ , ĉk,σ =
√

1

L

L−1∑
n=0

e−iknĉn,σ , (8)

and the dispersion relation is given by

ε(k) = − cos(k)/2. (9)

In one dimension Q = π is half a reciprocal lattice
vector, ε(k + 2Q) = ε(k). For particle-hole symmetry we
must demand that

ε(π − k) = −ε(k) (10)

for all accessible |k| � π . In particular, this equation implies
that with k, also π − k is an accessible k value. This is not
difficult to fulfill for even L but poses a problem for odd L.

Let

km = 2π

L
m + ϕ, m = −(L − 1)/2, . . . , (L − 1)/2, (11)

where 0 � ϕ < 2π/L and km are defined modulo 2π . Then,
the set of k values must also be given by

k′
m = π − 2π

L
m − ϕ = 2π

L

(
L − 1

2
+ 1

2
− m

)
+ ϕ − 2ϕ

= 2π

L

(
L − 1

2
− m

)
+ ϕ + π − 2ϕL

L
. (12)

Using the definition of the accessible k values, we see that we
must set

ϕ = ±π/(2L) (13)

to make the sets {k} and {k′} identical. Particle-hole symmetry
for odd L destroys inversion symmetry because the energy
levels ε(k) are not degenerate; i.e., if k is an allowed value,
k′ = −k is not accessible.

The accessible k values belong to the boundary conditions

eikmL = eiπ/2 = i; (14)

i.e., they are neither periodic nor antiperiodic. We call these
boundary conditions particle-hole periodic. They imply ĉL =
iĉ0 (ĉ+

L = −iĉ+
0 ) in position space so that we may write for the

kinetic energy in Eq. (2)

T̂ = −1

4

L−2∑
n=0,σ

(ĉ+
n,σ ĉn+1,σ + ĉ+

n+1,σ ĉn,σ )

− 1

4
(iĉ+

L−1,σ ĉ0,σ − iĉ+
0,σ ĉL−1,σ ). (15)

Equation (15) shows that the kinetic energy is indeed invariant
under the particle-hole transformation

ph : ĉn,σ �→ (−1)nĉ+
n,σ for n = 0, 1, . . . , L − 1, (16)

because either n or n + 1 is even when the other is odd, and
the origin and L − 1 are both even numbers for odd L.

2. Model properties at particle-hole symmetry

For the one-dimensional model (2) with particle-hole
boundary conditions and Ed,σ = 0, we define the particle-hole

transformation

ph : ĉn,σ �→ (−1)nĉ+
n,σ for n = 0, 1, . . . , L − 1,

d̂σ �→ (−1)d̂+
σ . (17)

It is readily seen that the transformation leaves the Hamil-
tonian Ĥ invariant. The particle-number operators transform
according to

n̂d,σ �→ 1 − n̂d,σ , ĉ+
n,σ ĉn,σ �→ 1 − ĉ+

n,σ ĉn,σ , (18)

so that the N-particle sector maps onto the sector with 2(L +
1) − N particles. At half band filling, N = L + 1, the nor-
malized ground state maps onto itself, |�0〉 �→ |�0〉, up to a
global phase. Therefore, particle-hole symmetry guarantees

〈�0|n̂d,σ |�0〉 = 1/2 (19)

for all interaction strengths U and hybridizations V . More-
over, we obtain

〈�0|ĉ+
n,σ d̂σ |�0〉 = (−1)n〈�0|d̂+

σ ĉn,σ |�0〉
= (−1)n〈�0|ĉ+

n,σ d̂σ |�0〉∗ (20)

for the hybridization matrix element between impurity and
bath electrons at site n. Therefore, the matrix elements are
alternately real or purely imaginary. In momentum space,
Eq. (20) reads

M(k) ≡ 〈�0|ĉ+
k,σ d̂σ |�0〉 = 〈�0|ĉ+

π−k,σ d̂σ |�0〉∗. (21)

Since the wave numbers k enter the single-impurity Ander-
son model only via the dispersion relation, M(k) ≡ M(ε(k)),
Eq. (21) implies

ReM(−ε) = ReM(ε), ImM(−ε) = −ImM(ε), (22)

because ε(π − k) = −ε(k). We shall use this relation in
Sec. III.

3. Phase shifts and periodic boundary conditions

Instead of using particle-hole periodic boundary condi-
tions, we may distribute the phase shift � = ±π/2 evenly and
use periodic boundary conditions. We rewrite

ĉn,σ = exp(iϕn)b̂n,σ (23)

for n = 0, 1, . . . , L − 1. Then,

T̂ = −1

4

L−1∑
n=0,σ

(eiϕ b̂+
n,σ b̂n+1,σ + e−iϕ b̂+

n+1,σ b̂n,σ ), (24)

where b̂L,σ = b̂0,σ ; i.e., the b electrons obey periodic bound-
ary conditions.

When we Fourier transform into momentum space, we use
the wave numbers

k̃m = 2π

L
m, m = 0, 1, . . . , L − 1. (25)

The kinetic energy becomes

T̂ =
∑
k̃,σ

[−2t cos(k̃ + ϕ)]b̂+
k̃,σ

b̂
k̃,σ

. (26)

Therefore, the dispersion relation and the set of accessible k
values are still given by Eqs. (9) and (11).

165130-3



BARCZA, GEBHARD, LINNEWEBER, AND LEGEZA PHYSICAL REVIEW B 99, 165130 (2019)

The kinetic energy operator (24) is particle-hole symmetric
under the transformation

ph : b̂n,σ �→ (−1)ne−2iϕnb̂+
n,σ for n = 0, 1, . . . , L − 1.

(27)
This is readily seen for all electron transfers between sites n
and (n + 1) for n = 0, 1, . . . , (L − 2), where the value of ϕ is
actually irrelevant. For the electron transfer between the last
and first site, however, we find

eiϕ b̂+
L−1,σ b̂0,σ + e−iϕ b̂+

0,σ b̂L−1,,σ �→ eiϕe2iϕ(L−1)b̂L−1,σ b̂+
0,σ

+ e−iϕ b̂0,σ e−2iϕ(L−1)b̂+
L−1,σ (28)

because both the origin and the last site are even. For the
transformed term to become equivalent to the original term,
we must impose

e2iϕL = −1, (29)

which again gives ϕ = ±π/(2L) as in Eq. (13).

C. Mapping onto a chain problem

1. Canonical transformation

For n = 1, 2, . . . , (L − 1)/2 we perform the canonical
transformation [28,29]

Ĉn,σ =
√

1
2 (einϕ b̂n,σ + e−inϕ b̂L−n,σ ),

Ŝn,σ =
√

1
2 (einϕ b̂n,σ − e−inϕ b̂L−n,σ )

(30)

with the inverse transformation

b̂n,σ =
√

1

2
e−inϕ (Ĉn,σ + Ŝn,σ ),

b̂L−n,σ =
√

1

2
einϕ (Ĉn,σ − Ŝn,σ ). (31)

The kinetic energy becomes

−4T̂ =
∑

σ

(B̂1,σ + B̂2,σ ) +
(L−3)/2∑
n=1,σ

(Ĉ+
n,σĈn+1,σ + Ĉ+

n+1,σĈn,σ )

+
(L−3)/2∑
n=1,σ

(Ŝ+
n,σ Ŝn+1,σ + Ŝ+

n+1,σ Ŝn,σ ), (32)

where the boundary term at the left chain end reads

B̂1,σ =
√

2(ĉ+
0,σĈ1,σ + Ĉ+

1,σ ĉ0,σ ). (33)

In contrast to open boundary conditions or boundary condi-
tions that violate particle-hole symmetry, the connection term
between the C electrons and S electrons is finite. The term at
n = (L − 1)/2 is given by

B̂2,σ = i(Ŝ+
(L−1)/2,σĈ(L−1)/2,σ − Ĉ+

(L−1)/2,σ Ŝ(L−1)/2,σ ). (34)

The ring and two-chain geometries are shown in Fig. 1.

FIG. 1. SIAM in ring geometry, Eq. (1), with the kinetic energy
from Eq. (24), and in two-chain geometry with the kinetic energy
from Eq. (32). Bonds with the same color have the same electron
transfer amplitudes. The dotted bond between the C-electron and S-
electron chains has a complex hopping amplitude.

Note that the particle-hole transformation for the kinetic
energy in the two-chain formulation is nontrivial,

ph : (−1)ne−inϕĈn,σ �→ cos(ϕn)Ĉ+
n,σ − i sin(ϕn)Ŝ+

n,σ ,

(−1)ne−inϕ Ŝn,σ �→ cos(ϕn)Ŝ+
n,σ − i sin(ϕn)Ĉ+

n,σ

(35)

for n = 1, . . . , L − 1, and ĉ0,σ �→ ĉ+
0,σ as before.

For comparison, we give in the Appendix the standard
derivation of the chain geometry from the ring geometry via
the Lanczos procedure [25]. The chains of C electrons and
S electrons do not decouple because particle-hole symmetry
for odd chain lengths L is not compatible with inversion
symmetry. Apparently, it is not advantageous numerically to
investigate a ring geometry at particle-hole symmetry. It is
more favorable to start from an inversion-symmetric chain
where the C-electron and S-electron chains decouple. In the
following we shall investigate the consequences of an ad hoc
decoupling of the two chains. Note that this does not influ-
ence the results in the thermodynamic limit where boundary
conditions become irrelevant.

2. Chain separation

For large rings, the interchain coupling is small for two
reasons. First, as seen from Eq. (34), the chains for the C elec-
trons and S electrons are coupled at a single site only, namely,
at the chain center n = (L − 1)/2. Second, in the SIAM the
interesting physics happens at and around the origin, i.e., at
the left boundary of the C-electron chain. Because of their
large separation, we can expect that the right half of the chain
has little effect on the physics at the left boundary.

The chain-separated SIAM reads

Ĥ = ĤC + T̂ S. (36)
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The undisturbed chain of antisymmetric standing waves of
length (L − 1)/2 is described by

T̂ S = −1

4

(L−3)/2∑
n=1,σ

(Ŝ+
n,σ Ŝn+1,σ + Ŝ+

n+1,σ Ŝn,σ ). (37)

The electrons on the chain of symmetric standing waves of
length (L + 1)/2 couple to the impurity at the origin,

ĤC = ĤC
0 + U

(
n̂d,↑ − 1

2

)(
n̂d,↓ − 1

2

)
,

ĤC
0 = T̂ C + V̂ ,

T̂ C = −
√

2

4

∑
σ

(Ĉ+
0,σĈ1,σ + Ĉ+

1,σĈ0,σ )

− 1

4

(L−3)/2∑
n=1,σ

(Ĉ+
n,σĈn+1,σ + Ĉ+

n+1,σĈn,σ ),

V̂ = V
∑

σ

(d̂+
σ Ĉ0,σ + Ĉ+

0,σ d̂σ ), (38)

where we identified ĉ0,σ ≡ Ĉ0,σ to keep the notation consis-
tent.

When we ignore the chain coupling term B̂2,σ , we can
factorize the ground state into the contributions from the
chains C and S,

|�0〉 = ∣∣�C
0

〉∣∣�S
0

〉
, (39)

where the upper index refers to the two commuting parts of the
Hamiltonians for the C electrons and S electrons, and |�C,S

0 〉
are normalized to unity.

The mapping is advantageous for the DMRG treatment
because we do not have to treat a ring geometry of L sites with
periodic boundary conditions but a chain with (L + 1)/2 + 1
sites, where open boundary conditions apply. The C-electron
chain has only about half as many sites as the ring, which
essentially doubles the system sizes that can be treated nu-
merically for the ring geometry.

Note, however, that ĤC does not obey particle-hole sym-
metry for finite L but only in the thermodynamic limit. De-
viations from particle-hole symmetry can be monitored by
investigating the site occupancy of the impurity. Deviations
from the exact value of one-half, see Eq. (19), can be used to
quantify the violation of particle-hole symmetry; see Sec. V.

In the numerical renormalization group approach, the
SIAM is directly considered in energy space. After an ap-
propriate discretization, the resulting Wilson chain is treated
numerically [9]. In our approach, we map the Hamiltonian on
finite rings to a chain while keeping particle-hole symmetry
and the bandwidth finite. The use of a Hamiltonian on a
ring geometry permits the direct application, comparison,
and assessment of lattice-based variational methods such as
Hartree-Fock, Gutzwiller, and DMRG, as done in this work.
Our results also permit us to assess the quality of other
present and conceivable future many-body methods for lattice
Hamiltonians.

D. Spin correlation function

In this work we visualize the Kondo screening cloud for the
single-impurity Anderson model. To this end, we calculate the
spin correlation function between the impurity and bath sites.

1. Definition and general properties

Due to the spin-rotational invariance of the model it is
sufficient to study the spin correlation function along the spin
quantization axis. The local correlation function is defined by

CS
dd = 〈�0|Ŝz

d Ŝz
d |�0〉 = 1

4 〈�0|(n̂d
↑ − n̂d

↓)2|�0〉
= 1

4 − 1
2 〈�0|n̂d

↑n̂d
↓|�0〉, (40)

where we used particle-hole symmetry (19) in the last step.
The value for the on-site spin correlation interpolates between
the itinerant limit, Cdd (U = 0) = 1/8, and the atomic limit,
Cdd (W = 0) = 1/4.

The correlation function between the impurity site and the
bath site r is defined by

CS
dc(r) = 〈�0|Ŝz

d Ŝz
r,c|�0〉

= 1
4 〈�0|(n̂d

↑ − n̂d
↓)(ĉ+

r,↑ĉr,↑ − ĉ+
r,↓ĉr,↓)|�0〉. (41)

Due to inversion symmetry we have

CS
dc(L − r) = CS

dc(r) (42)

for 1 � r � (L − 1)/2.
To visualize the screening of the impurity spin, we define

S (0) = CS
dd + CS

dc(0) and, for R � 1,

S (R) = CS
dd + CS

dc(0) +
R∑

r=1

[
CS

dc(r) + CS
dc(L − r)

]
. (43)

It describes the amount of the unscreened spin at distance
R from the impurity site [18]. The impurity is completely
screened by all bath electrons. To see this we consider S ((L −
1)/2) on finite systems,

S ((L − 1)/2) = 〈�0|Ŝz
d

(
Ŝz

d +
L−1∑
r=0

Ŝz
r,c

)
|�0〉

= 〈�0|Ŝz
d Ŝz|�0〉 = 0, (44)

because |�0〉 is an eigenstate of the operator Ŝz for the total
spin in the z direction with eigenvalue zero.

2. Spin correlations in two-chain geometry

For the first site of the chain we have

CS
dc(0) = 1

4

〈
�C

0

∣∣(n̂d
↑ − n̂d

↓)(Ĉ+
0,↑Ĉ0,↑ − Ĉ+

0,↓Ĉ0,↓)
∣∣�C

0

〉
, (45)

where we used Eq. (39) and the normalization of |�S
0 〉.

For the spin correlation function between the impurity site
and a bath site at distance 1 � r � (L − 1)/2 we use inversion
symmetry (42) to write

CS
dc(r) = 〈�0|Ŝz

d Ŝz
r |�0〉

= 1
2 〈�0|Ŝz

d

(
Ŝz

r + Ŝz
L−r

)|�0〉
= 1

8

〈
�C

0

∣∣(n̂d
↑ − n̂d

↓)(Ĉ+
r,↑Ĉr,↑ − Ĉ+

r,↓Ĉr,↓)
∣∣�C

0

〉
, (46)
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where we used the mapping onto the chain operators in the
second step,

ĉ+
r,σ ĉr,σ + ĉ+

L−r,σ ĉL−r,σ = Ĉ+
r,σĈr,σ + Ŝ+

r,σ Ŝr,σ , (47)

and the factorization (39) in the last step; recall that the S-
electron system is a paramagnetic Fermi sea, 〈�S

0 |Ŝ+
r,↑Ŝr,↑ −

Ŝ+
r,↓Ŝr,↓|�S

0 〉 = 0.
Equations (45) and (46) must be evaluated using DMRG,

in general. For U = 0, the ground-state energy and the spin
correlation function can be evaluated analytically to a large
extent, as we show next.

III. NONINTERACTING SIAM

It is instructive to discuss the noninteracting SIAM. More-
over, it provides the basis for the Gutzwiller approach in
Sec. IV. We defer the details of the derivation to the Sup-
plemental Material [27] and merely summarize the relevant
results.

A. Ground-state energy

The ground-state energy sums the band contribution and
the energy of the doubly occupied bound state. The total
energy reads [27]

e0(V ) = eband
0 (V ) + eb

0(V )

= 1

2π

[
−π + 2v+ arctan

(
1

v−

)

+ v− ln

(
v+ − 1

v+ + 1

)]
+ (1 − v+), (48)

where

v±(V ) ≡ v± =
√√

1 + 64V 4 ± 1√
2

. (49)

The small-V expansion becomes

esmall
0 (V ) = 4V 2

π
[ln(V 2) + ln(2) − 1] − 4V 4. (50)

Corrections are of the order V 6 ln(V 2). For V = 0.1, the
approximate formula works very well. We have e0(0.1) =
−0.06291 whereas the approximation gives esmall

0 (0.1) =
−0.06294, with a relative error of less than one per mill.

To determine the Gutzwiller variational energy we also
need the derivative of the ground-state energy. We have

e′
0(x) = 4x

π [v+(x)2 + v−(x)2]

[
2πv−(x)

(
arccot[v−(x)]

π
− 1

)

+ v+(x) ln

(
v+(x) − 1

v+(x) + 1

)]
. (51)

For small x this reduces to

e′
0(x � 1) ≈ (8x/π ) ln(2x2). (52)

B. Magnetization and zero-field magnetic susceptibility

We introduce the magnetic energy scale Bimp ≡ B =
(gμB/2)H, where H is the external magnetic field at the

impurity, and express the impurity magnetization M(V,H) =
gμBm(V, B) in terms of the impurity spin in the z direction,

m(V, B) = 〈
Ŝz

d

〉 = (〈n̂d,↑ − n̂d,↓〉)/2. (53)

The magnetic susceptibility follows from

χ (V, B) = ∂M(H)

∂H =
(gμB

2

)2 ∂[2m(V, B)]

∂B
. (54)

We give closed expressions for m(V, B) and χ (V, B) for the
noninteracting SIAM in one dimension.

1. Magnetization

For the one-dimensional noninteracting SIAM we find for
a magnetic field that acts solely at the impurity [27]

2m(V, B) = Z[vb(V, B)] − Z[vb(V,−B]

+
∑

σn=±1

∫ 0

−1/2

dω

π

σn�
√

1 − 4ω2

(ω + σnB)2(1 − 4ω2) + �2

(55)

with � = 2V 2. Here, vb(V, B) < −1/2 is the energy of the
bound state outside the band. It is the root of P+(ω, B), i.e.,
P+(vb(V, B)) = 0, with

P+(ω, B) = ω + B + 2V 2

√
4ω2 − 1

. (56)

Moreover, the weight of the bound state in the d-electron
spectral function is given by

Z[vb(V, B)] =
[

1 − 8V 2vb(V, B)

{4[vb(V, B)]2 − 1}3/2

]−1

. (57)

In general, the magnetization must be determined numerically
from Eqs. (55) and (57).

2. Small hybridizations

In the limit V � 1, we ignore the bound-state contribution
of order V 4, and simplify the magnetization to

m(V, B) =
∫ 0

−∞

dω

2π

[
�

(ω + B)2 + �2
− �

(ω − B)2 + �2

]

=
∫ B

0

dω

π

�

ω2 + �2
= 1

π
tan−1(B/�). (58)

The width � of the d-electron spectral function is the relevant
energy scale for magnetic excitations.

For small hybridizations, the susceptibility becomes

χ (V, B) =
(gμB

2

)2 2

π

�

B2 + �2
(59)

with the zero-field limit

χ0(V ) =
(gμB

2

)2 2

π�
. (60)

As seen from Eq. (59), in the limit V → 0 the magnetic sus-
ceptibility is proportional to the zero-field d-electron spectral
function, μ(V, B) ∝ Dd,d,σ (B) [27].
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3. External magnetic field for impurity and bath electrons

For the case Bimp = Bbath ≡ B, the bound states are shifted
in energy,

vb(V, B) = −B − v+(V )/2, (61)

but their weights Z[vb(V, B)] do not change because
vb(V,±B) ± B = −v+(V )/2 in both cases. The rigid shift in
single-particle energies by the magnetic field also guarantees
that the impurity remains half filled on average for all external
fields. The impurity magnetization becomes (B � W )

2m̃(V, B) =
∑
τ=±1

∫ 0

−∞

V 2ρ0(ω + τB)

(ω + τB)2 + [πV 2ρ0(ω + τB)]2

= 2
∫ B

0

dω

π

�
√

1 − 4ω2

ω2(1 − 4ω2) + �2
. (62)

For small hybridizations, m̃(V, B) reduces to the result for
m(V, B) in Eq. (58).

We show the impurity magnetization as a function of B/�

in Fig. 2. Only for V = 0.2 and B � 2�, there is a discernible
difference between the curves for m(0.2, B), Eq. (55), where
the external field is confined to the impurity, and m̃(0.2, B),
Eq. (62), where the external field polarizes all electrons. In
both cases, the DMRG data, see Sec. V, faithfully reproduce
the analytic results, within small errors resulting from finite-
size effects.

The wide-band limit closely follows the result for the
global magnetic field. This indicates that the difference be-
tween applying the external field locally or globally is mostly
due to the polarization of the bound states for a local field. The
bound states have a noticeable weight for V = 0.2.

FIG. 2. Impurity magnetization for the noninteracting symmet-
ric SIAM for V = 0.2 as a function of B = gμBH/2. We show
m(0.2, B), Eq. (55) (local field, blue dotted line), m̃(0.2, B), Eq. (62)
(global field, red straight line), and the wide-band limit (58) (local
field, black dashed line), together with the corresponding DMRG
data (symbols, L = 997 sites). Inset: Impurity magnetization for
V = 0.1.

Since the weight of the bound states is of the order V 4, their
contribution is much smaller for V = 0.1. Correspondingly,
as seen from the inset of Fig. 2, the discrepancies between
the magnetization curves for local and global external fields
become very small. Since we shall work with V � 0.1 for
the rest of the paper, we will restrict ourselves to purely local
external magnetic fields, and shall safely ignore the influence
of the magnetic field on the bath electrons.

C. Spin correlation function

1. General properties

Starting from Eq. (41) we can use Wick’s theorem and spin
symmetry to show that

CS
dc(r) = − 1

2 |〈�0|ĉ+
r,↑d̂↑|�0〉|2 ≡ − 1

2 M2
r (63)

for the ground state |�0〉 of the noninteracting SIAM.
The matrix element is calculated in the Supplemental
Material [27],

Mr =
√

1

L

∑
k

e−ikr〈�0|ĉ+
k,↑d̂↑|�0〉

= V
∫ π

0

dk

π
cos(kr)M[− cos(k)/2], (64)

where we took the thermodynamic limit and used ε(k) =
− cos(k)/2 in one dimension. Since M(ε) is real, particle-hole
symmetry leads to M(−ε) = M(ε) so that the matrix element
vanishes for odd sites, M2m−1 = 0, m � 1. For even sites we
find the bound-state and band contributions [27]

Mb
2m = − 2V Z (V )√

v2+ − 1
(
√

v2+ − 1 + v+)−2m,

Mband
2m = −2V (−1)m

π

∫ π

0
dy

cos(y/2)

sin2(y) + 64V 4

× [sin(y) cos(my) + 8V 2 sin(my)] (65)

with the pole frequency ωb = −v+/2 and the pole weight

Z (V ) = 1

1 + 4V 2v+/v3−
, (66)

and v± from Eq. (49).

2. Small hybridizations

The bound-state contribution Mb
r is of the order V 3 for

small V , and becomes exponentially small for r � 1/(4V 2).
For small V [17], the band contribution is dominated by the
region y → 0 in the integrand in Eq. (65). We thus approxi-
mate for small V

M2m ≈ −2V

π

∫ ∞

0
dx

x cos(8V 2mx) + sin(8V 2mx)

x2 + 1

= (−1)m 2V

π
eαEi(−α), α = 8V 2m, (67)

where

Ei(x) = −
∫ ∞

−x
dt

e−t

t
(68)
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FIG. 3. Spin correlation function for the one-dimensional nonin-
teracting symmetric SIAM for V = 0.1 (circles) on a log-log scale.
The analytic result (69) is shown as a straight line. The asymptotics
(70) is shown as dash-dotted line, and the exact values (65) are shown
as open symbols. Inset: Spin correlation function for small distances
on a linear scale.

is the exponential integral. Thus, the spin correlation function
approximately becomes (m �= 0)

CS
dc(2m) ≈ −1

2

[
2V

π
eαEi(−α)

]2

, α = 8V 2m. (69)

In Figs. 3 and 4 we show the spin correlation function and
the unscreened spin for the noninteracting symmetric SIAM

FIG. 4. Unscreened spin S (r) at distance r from the impurity
site, see Eq. (43), for the one-dimensional noninteracting symmetric
single-impurity Anderson model for V = 0.1. The analytic result
based on Eq. (69) is shown as a solid line. The asymptotic result (72)
is presented by a dotted line. The DMRG data for L = 197, 1397
sites are given by dashed lines; see Sec. V. Inset: Unscreened spin
for small distances; DMRG data for L = 1397 sites.

in one dimension for V = 0.1. As seen from Fig. 3, the spin
correlation function decays to zero proportionally to 1/m2.
The exact result (65) and the approximate formula (67) yield
almost identical results, already for m � 2. For m � 10, the
relative error is of the order 10−4 for V = 0.1.

Correspondingly, the unscreened spin shown in Fig. 4 de-
cays to zero proportionally to 1/m. For small V , the screening
is fairly inefficient and, correspondingly, the screening cloud
extends very far into the host metal, even in the case of the
noninteracting SIAM.

3. Small hybridizations and large distances

Here, we work out the long-range behavior of the spin
correlation function. The asymptotic regime is reached for
α � 1, i.e., for m � 1/(8V 2), where exp(α)Ei(α) ≈ −1/α in
Eq. (69). For the correlation function we find in this region

CS
dc(2m � 1/(4V 2)) ≈ −1

2

(
2V

πα

)2

= − 1

32π2V 2

1

m2
. (70)

For the noninteracting symmetric SIAM in one dimension, the
spin correlations between the impurity and a bath electron at
site 2m asymptotically decay proportionally to 1/(2m)2; see
Fig. 3.

The matrix element M2m at α = 1 [2m = 1/(4V 2)] is al-
ready very small, of the order V 2 in the asymptotic region.
Nevertheless, the contribution to the screening is finite even
for V → 0. The spins for |m| > 1/(8V 2) (α > 1) contribute
approximately

�S

Cdd
≈ 8

(
2V

π

)2 ∫ ∞

1/(8V 2 )
dm[eαEi(−α)]2

= 4

π2

∫ ∞

1
dα[eαEi(−α)]2 ≈ 0.23. (71)

The sites for |m| > 1/(8V 2) contribute about 25% to the total
screening of the spin at the impurity site, where Cdd = 1/8.

Indeed, for large distances r = 2m from the impurity, the
unscreened spin decays only proportionally to 1/r,

S (r � 1) ∼ 1

16π2V 2

1

r
, (72)

as follows from Eq. (44) when we employ the Euler-
Maclaurin formula for the asymptotic expression (70). This
is shown in Fig. 4.

IV. GUTZWILLER VARIATIONAL APPROACH

In this section we define the Gutzwiller variational state
and determine its variational parameters from minimizing the
variational ground-state energy [23,24]. Moreover, we deter-
mine the variational magnetization, zero-field susceptibility,
and spin-spin correlation function between the impurity site
and the host electrons.
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A. Ground-state energy

1. Definition

The Gutzwiller wave function for the symmetric SIAM
reads

|�G〉 = [λd (n̂d
↑n̂d

↓ + (1 − n̂d
↑)(1 − n̂d

↓)) + λσ (n̂d
↑(1 − n̂d

↓)

+ (1 − n̂d
↑)n̂d

↓)]|�0〉, (73)

where |�0〉 is a normalized single-particle product state.
The Gutzwiller wave function is normalized,

〈�G|�G〉 = 1, (74)

and symmetric,

〈�G|n̂d,σ |�G〉 = 1
2 , (75)

if we use a symmetric single-particle product state,

〈�0|n̂d,σ |�0〉 = 1
2 , (76)

and if we set

λ2
d = 1 −

√
1 − q2, λ2

σ = 2 − λ2
d = 1 +

√
1 − q2. (77)

Here, we introduced the remaining variational parameter 0 �
q � 1 that characterizes the Gutzwiller wave function.

2. Optimizing the variational parameters

The Gutzwiller variational ground-state energy with re-
spect to the energy of the bare band is the minimum of

Evar (q) = e0(qV ) + U

4
(1 −

√
1 − q2) (78)

over the variational parameter 0 � q � 1. Here, e0(V ) is the
ground-state energy of the noninteracting symmetric SIAM,
Ĥ0 in Eq. (2); see Eq. (48). The minimum cannot be obtained
analytically in general but we can derive an implicit equation.

The minimization condition [dEvar (q)]/(dq) = 0 leads to
the equation

U (q,V ) = −2�
√

1 − q2e′
0(qV )/(qV ) (79)

with � = πρ0(0)V 2 = πd0V 2 = 2V 2 on a chain with nearest-
neighbor hopping. Therefore, we know U (q,V ) for every
0 � q � 1. The variational ground-state energy is thus given
implicitly by Eq. (78).

In Fig. 5 we show the Gutzwiller parameter as a function
of U/� for V = 0.1, and compare to the analytic expression
in the strong-coupling limit.

3. Strong-coupling limit

For strong couplings, we find q → 0 so that we may use
the small-V expression to derive the variational ground-state
energy analytically. Using Eq. (52) in Eq. (79) gives q(U ) ≈
qa(U ) with

[qa(U )]2 = 1

�
exp

(
− πU

16�

)
, (80)

and the variational ground-state energy becomes

Eopt (q � 1,V ) ≈ − 2

π
exp

(
− πU

16�

)
∝ exp

(
− 1

4d0JK

)
(81)

400 10 20 30 50 60
U/Γ

0.0

0.2

0.4

0.6

0.8

1.0

q

q
qa

FIG. 5. Optimal Gutzwiller variational parameter as a function
of U/� for V = 0.1 and the one-dimensional symmetric SIAM
(� = πd0V 2 = 2V 2). The asymptotic result (80) is shown with a
dashed line.

with the Kondo energy JK = 4V 2/U .
The ground-state energy becomes exponentially small, cor-

responding to the exponentially small Abrikosov-Suhl reso-
nance in the spectral function [3]. However, the Gutzwiller ex-
ponent is too small by a factor of two, TK ∝ exp[−1/(2d0JK )]
[3]; i.e., the Gutzwiller approach overestimates the width of
the resonance. As seen from Fig. 5, for V = 0.1 the asymp-
totic behavior sets in around U/� ≈ 35, for q � 0.2.

B. Magnetization and magnetic susceptibility

In the Gutzwiller variational approach, the impurity spin in
the z direction is given by

mG(V, B) = λ2
σ

2
〈�0|n̂d,↑ − n̂d,↓|�0〉 (82)

with λσ from Eq. (77). Here, we keep a spin-independent q
factor and only consider the magnetic-field-induced changes
in the single-particle product state |�0〉. Therefore, the
Gutzwiller variational result for the magnetization can be
obtained from the noninteracting expression by replacing q
with qV , see Sec. III B,

mG(V, B) = (1 +
√

1 − q2)m(qV, B). (83)

The zero-field susceptibility in Gutzwiller theory reads

χG
0 (V,U ) = (1 +

√
1 − q2)

(gμB

2

)2 2

π�

1

q2
(84)

so that the variational Wilson ratio becomes

RG(V,U ) = χG
0 (V,U )

(gμB/2)2DG
d,d (ω = 0)

= 1 +
√

1 − q2. (85)

Here, we used the fact that the Gutzwiller approach describes
a Fermi liquid in which the density of states at the Fermi level
is enhanced by a factor 1/q2. Equation (85) shows that the
Gutzwiller approach correctly reproduces the weak-coupling
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and strong-coupling limit, R(U = 0) = 1 and R(U � �) = 2.
In the strong-coupling limit, the Wilson ratio deviates from 2
algebraically in 1/U due to the presence of charge fluctuations
[3]. In contrast, the Gutzwiller Wilson ratio is exponentially
close to 2 because the Gutzwiller approach does not describe
charge excitations properly.

For strong couplings, the zero-field susceptibility becomes

�χG
0 (V, u � 1) ≈

(gμB

2

)2 4�

π
exp

(πu

16

)
(86)

with u = U/�. The Gutzwiller approach correctly reproduces
the exponentially large zero-field susceptibility for strong
interactions; see Sec. V D.

C. Spin correlation function

1. Local correlation function

The spin correlation function on the impurity site reads

CS
dd (q) = 1

4
− 1

2
〈�G|n̂d,↑ + n̂d,↓|�G〉

= 1

4
− λ2

d

8
= 1 +

√
1 − q2

8
. (87)

The value for the on-site spin correlation correctly interpolates
between the itinerant limit, CS

dd (q = 1) = 1/8, and the atomic
limit, CS

dd (q = 0) = 1/4.

2. Correlation function between impurity and bath sites

We continue with the spin correlation function between the
impurity site and a bath site at distance r,

CS
dc(q, r) = 1 +

√
1 − q2

4
〈�0|(d̂+

↑ d̂↑ − d̂+
↓ d̂↓)

× (ĉ+
r,↑ĉr,↑ − ĉ+

r,↓ĉr,↓)|�0〉

= −1 +
√

1 − q2

2
|〈�0|ĉ+

r,↑d̂↑|�0〉|2, (88)

where we applied spin symmetry and Wick’s theorem in the
last step. The matrix element is evaluated in Sec. III C, and we
merely have to replace V → (qV ) in all expressions there.

V. INTERACTING SIAM

In this section we compare our Gutzwiller variational
results to those from the DMRG method that provides essen-
tially exact numerical data for the SIAM on large rings. For
comparison we also include results from magnetic Hartree-
Fock theory, as derived in the Supplemental Material [27],
and compare to the ground-state energy from the Bethe ansatz
solution [32].

A. DMRG method

We study the symmetric SIAM in the effective single-chain
representation (38) using the DMRG method. The mapping
leads to an effective system size that is about half of the ring
size, and it provides open boundary conditions that are more
favorable for the DMRG method than periodic boundary con-
ditions [33,34]. However, particle-hole symmetry is recovered
only in the thermodynamic limit, L → ∞.

1. Technicalities

We study the effective Hamiltonian of C electrons on a
chain up to a system of 700 sites, which corresponds to L =
1397 in the ring geometry. This allows us to study systems
with periodic boundary conditions that are three times longer
than used in previous studies with open boundary conditions
[18]. The accuracy of the calculations is controlled using
the dynamic block-state selection (DBSS) scheme [35,36].
Setting the control parameter to χ = 10−5, the truncation
error yields around 10−7 while the number of maximally
kept DMRG block states can grow up to M = 5000 for large
system sizes. For strong interactions, we target multiple states
to stabilize convergence.

On finite lattices, the calculation of the magnetization as a
function of a globally applied field H is more subtle because
Sz is a good quantum number. Therefore, the spin quantum
number Sz changes from Sz = 0 for H = 0 to Sz = 1, 2, 3, . . .

for increasing external fields in steps of gμBHn when

gμBHn = E0(Sz = n) − E0(Sz = n − 1) (89)

for n = 1, 2, 3, . . .. Thus, the impurity magnetization m̃(V, B)
is recorded only at discrete values of the external field
whereby expectation values are calculated with the ground
state for Sz = n. Since the energy differences are of the order
1/L, the smallest accessible magnetic energy scale is of the
order W/L. In this work, we include only the results for
U = 0,V = 0.2, see Fig. 2, to demonstrate the applicability
of the approach.

For most of the results below, we apply the magnetic field
only at the impurity. Since P̂ in the Hamiltonian (2) is not
conserved, standard DMRG ground-state calculations provide
the results for the impurity magnetization.

2. Tests

To test the accuracy of our open-chain approach, in Fig. 6
we show the finite-size scaling of the impurity occupancy
nd,σ (L) = 〈n̂d,σ 〉 for the open-chain SIAM (38) for various
values of U/� at V = 0.1. It is seen that the occupation
extrapolates to its value in the presence of particle-hole
symmetry, nd,σ (∞) = 1/2. For U > 0, the electrons repel
each other on the impurity. Thus, the Hubbard interaction
suppresses charge fluctuations and shifts nd,σ (L) towards
one-half already at small system sizes. Apparently, for nu-
merical treatments the choice of open boundary conditions
is favorable over the ring geometry because particle-hole
symmetry holds also for finite system sizes. Of course, the
boundary conditions play no role in the thermodynamic
limit, as seen for the extrapolated impurity occupancy in
Fig. 6.

As another test, we present the ground-state energy
�E0(U,V ) as a function of inverse system size for V = 0.1
and various values of the interaction strength U/� in Fig. 7.
Here, we measure the ground-state energy with respect to the
case V = 0,

�E0(U,V ) = E0(U,V ) − E0(U, 0); (90)

i.e., we subtract the band contribution of the free host
electrons and the term −U/4 for the singly occupied impurity
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FIG. 6. DMRG results for the impurity occupation nd,↑ of the
open-chain SIAM as a function of inverse system size 1/L for various
values of U/� and V = 0.1 (� = πd0V 2 = 2V 2). Lines are only
guides to the eyes.

site. Therefore, �E0(U,V ) is of the order unity and tends
to zero for large interaction strengths. Using a second-order
polynomial fit in the inverse system size, the DMRG energies
extrapolated to the thermodynamic limit coincide with the
values from the Bethe ansatz. Note that the Bethe ansatz
approach covers the wide-band limit, U � W , and also
ignores corrections of order V 4. Therefore, the extrapolated
DMRG energies are slightly below the Bethe ansatz
energies.
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FIG. 7. DMRG result for the ground-state energy �E0(U,V )
of the one-dimensional symmetric SIAM as a function of inverse
system size 1/L for various values of U/� and V = 0.1 (� =
πd0V 2 = 2V 2). The crosses denote the values from the Bethe ansatz,
becoming exact in the wide-band limit. The solid lines represent the
second-order polynomial fit.

B. Ground-state energy

1. Small interaction strengths

For the symmetric SIAM, the ground-state energy is known
for weak coupling, U � π� [3,37],

�E0(U,V ) = e0(V ) + U

4
+ π�

∞∑
n=1

(−1)ne(2n)(V )

(
U

π�

)2n

,

(91)

where � = πd0V 2 = 2V 2. Due to particle-hole symmetry,
there are no odd-order corrections in the weak-coupling series
beyond the Hartree term.

For V � 1, e(2n)(V ) weakly depends on V . We find (see
Supplemental Material [27])

e(2)(0.1) = 0.0374447,

e(2)(0.05) = 0.0369271,
(92)

in very good agreement with the analytical result obtained by
Yamada [37],

e(2)(V = 0) = 1

4
− 7

4π2
ζ (3) ≈ 0.0368608. (93)

Moreover, the fourth-order coefficient is known to be very
small, e(4)(V = 0) ≈ 0.0008 [37].

The Gutzwiller approach leads to

e(2)
G (V ) = π�

[−32Ve′
0(V )]

≈ − π2

128 ln(2V 2)
. (94)

In contrast to the exact expression, the prefactor of the second-
order term vanishes logarithmically for V → 0. For V = 0.1,
we find e(2)

G (0.1) = 0.01943, about half of the exact value in
Eq. (92). The paramagnetic Fermi sea remains the Hartree-
Fock ground state until magnetic order sets in at about Uc,HF ≈
π�. Therefore, there is no second-order term in the ground-
state energy in Hartree-Fock theory.

2. Wide-band limit

For small hybridizations and V � U � W , the SIAM can
be solved analytically using the Bethe ansatz because the
dispersion relation of the host electrons can be linearized
around the Fermi wave vector [19–22]. For the symmetric
SIAM in the absence of a magnetic field, the ground-state
energy can be calculated analytically [32],

�EBA
0 (UBA,VBA)

tBA
= UBA

2
+

∫ A2

−∞
d�2x(�)σS (�) (95)

with

x(�) = −
√

2

2

√
� +

√
�2 + U 2

BAV 4
BA/4,

σS (�) =
∫ ∞

−∞

dk

4π

V 2
BA

(k + UBA/2)2 + V 4
BA/4

× 1

UBAV 2
BA

sech

[
π (k2 − �)

UBAV 2
BA

]
, (96)

where sech(x) = 1/ cosh(x) is the hyperbolic secant function.
The energy shift UBA/2 takes our definition into account that
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�E0(U,V ) is measured with respect to the limit of vanishing
hybridization, �EBA

0 (U, 0) = 0.
Note that in Eq. (96) all energies are expressed in units of

tBA so that the Fermi velocity is vBA
F = tBA. In our energy units

we have vF = W/2 so that we must set tBA = W/2 ≡ 1/2; i.e.,
we must scale all energies by a factor of two. Moreover, in
the Hamiltonian used in the Bethe ansatz, only the symmetric
linear combination of right-movers and left-movers couples to
the impurity whereas the hybridization in the lattice Hamilto-
nian (5) is expressed in terms of left-movers and right-movers.
This implies VBA/tBA = 2

√
2V/W and UBA = 2U/W in our

energy units.
We adjust the bandwidth cutoff parameter A to re-

produce the ground-state energy (50) of the noninteract-
ing SIAM to orders V 2 ln(V 2) and V 2. For A = 2e we
indeed find �EBA

0 (0,V ) = (4V 2/π )[ln(V 2) + ln(2) − 1] +
O(V 4); see Eq. (50).

Ignoring terms of order V 4 and higher that are beyond the
wide-band limit, the ground-state energy reads

�EBA
0 (U,V )

�
= u

2
+

∑
σ

∫ 0

−e/�

d p

π

1

(p + σnu/2)2 + 1

×
∫ ∞

−∞

dy

π
sech(y)x̃(p2 − 2uy/π, u),

x̃(λ, u) =
√

2

2

√
λ +

√
λ2 + u2 (97)

with � = 2V 2 and u = U/�. These expressions are amenable
to a numerical evaluation of the integrals.

To extract the limiting behavior and to show the equiva-
lence with the Hartree-Fock energy for U/� � 1, we write

�EBA
0 (U,V ) = �EBA,1

0 (U,V ) + �EBA,2
0 (U,V ), (98)

where

�EBA,1
0 (U,V )

�
= u

2
+

∑
σ

∫ 0

−e/�

d p

π

p

(p + σnu/2)2 + 1
(99)

and

�EBA,2
0 (U,V )

�
=

∑
σ

∫ 0

−∞

dk

π

u

(k
√

u + σnu/2)2 + 1

×
∫ ∞

−∞

dy

π
sech(y)X (k2 − 2y/π ) (100)

with

X (λ) = −k +
√

2

2

√
λ +

√
λ2 + 1. (101)

The second term gives for u � 1

�EBA,2
0 (U � �,V )

�
= π

u
+ O(1/u2). (102)

The first term is equivalent to the Hartree-Fock expression
in the limit m → 1/2 that is reached for U/� � 1; see
Supplemental Material [27]. Moreover, the integral is read-
ily evaluated and gives in the intermediate-coupling regime

(� = 2V 2/W � U � W )

�EBA,1
0 (U,V )

�
= 2

π
ln(�/e) + u

2

[
1 − 2

π
tan−1(u/2)

]

+ 1

π
ln(1 + u2/4). (103)

It is seen that the ground-state energy increases logarithmi-
cally, i.e., as a function of ln(u), in the intermediate-coupling
regime [32].

One may wonder whether or not the Kondo energy scale
can be extracted from the Bethe ansatz energy expression
(97). Indeed, the region [|p + u/2| � ν1, |y − p2π/(2u)| �
ν2] with ν1,2 of order unity gives rise to a contribution of the
order of

TL(U ) = �

√
u

2
exp

[
−πu

8
+ π

2u

]
(104)

with u = U/�. TL(U ) is proportional to the Kondo tempera-
ture for the symmetric SIAM in the strong-coupling limit [3].
Note, however, that the integration over all the (p, y) region
wipes out this term in the ground-state energy. It is only in
magnetic properties that the energy scale TL becomes visible
[3]; see Sec. V C.

3. Comparison

In Fig. 8 we compare the Gutzwiller, Hartree-Fock, and
Bethe ansatz energies for V = 0.01 (� = 0.0002). For such
small hybridizations, DMRG calculations would require sys-
tem sizes that are an order of magnitude larger because even
at U = 0 the relevant energy scale � = 2V 2/W becomes
very small. In Fig. 9 we show the ground-state energies for
V = 0.1 (� = 0.02) from weak-coupling perturbation theory,
Gutzwiller, Hartree-Fock, finite-size extrapolated data from

0 10 20 30 40 50
U/Γ

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

Δ
E

0

Bethe Ansatz
BA asymptotic

Hartree Fock
Gutzwiller

0 0.004 0.008 0.012 0.016 0.020
U

FIG. 8. Ground-state energy �E0(U,V ) for the symmetric
SIAM in one dimension as a function U/� for V = 0.01 (� =
πd0V 2 = 2V 2 = 0.0002). The full (dashed) lines display the
Hartree-Fock (Gutzwiller) variational upper bound, the open sym-
bols give the Bethe ansatz results from Eq. (97), and the crosses
denote the asymptotic result (103).
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E

0
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2nd orderPT
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U
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U/Γ
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− 0.060
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− 0.045
− 0.040

Δ
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0

FIG. 9. Ground-state energy �E0(U,V ) for the symmetric
SIAM on a ring as a function U/� for V = 0.1 (� = πd0V 2 =
2V 2 = 0.02). The second-order weak-coupling result (92) is shown
as a short-dashed line, the full (dashed) lines display the Hartree-
Fock (Gutzwiller) variational upper bound, the open symbols are
the DMRG data, extrapolated to the thermodynamic limit, and the
crosses give the Bethe ansatz values. Inset: Ground-state energy for
small interaction strengths.

DMRG, and the Bethe ansatz. Since the Bethe ansatz ap-
proach covers the wide-band limit, U � W , the extrapolated
DMRG energies and the Hartree-Fock energies lie below the
Bethe ansatz energies, as becomes discernible at V = 0.1 for
U/� � 10 in Fig. 9.

As seen from the two figures, the Gutzwiller energy curve
deviates noticeably from the exact results for U/� > 10. Like
second-order perturbation theory, it provides a good estimate
only for U � 5�. At large interactions, the Gutzwiller vari-
ational energy becomes exponentially small. Since the wave
function does not properly describe charge fluctuations, i.e.,
the Hubbard bands, the Gutzwiller variational energy bound
is poor.

In Hartree-Fock theory, a magnetic moment is formed only
for U HF

c ≈ π�, and the ground-state energy contains a cusp at
Uc. More importantly, above U ≈ 5� the Hartree-Fock theory
provides an excellent bound on the exact ground-state energy.
For small hybridizations, the exact Bethe ansatz and DMRG
energies are in almost perfect agreement with the Hartree-
Fock upper bounds. Since the quasiparticle peak provides
an exponentially small energy contribution for U � �, the
energy is solely determined by the lower Hubbard band, which
gives rise to a ln(u) increase of the ground-state energy; see
Eq. (103). The result for �EBA,1

0 (U,V )/� is also shown in
Fig. 8.

Obviously, the lower Hubbard band for u � 1 is qual-
itatively well captured by Hartree-Fock theory. Therefore,
Hartree-Fock theory provides an excellent starting point for
analytical theories such as the local-moment approach that
covers both the high-energy and low-energy parts of the
single-particle spectrum [10–12].

C. Magnetization and magnetic susceptibility

The Bethe ansatz permits the exact calculation of the
impurity magnetization in the presence of a magnetic field on
the impurity. Hereby, it is implicitly understood that the effect
of the magnetic field on the conduction electrons is negligibly
small so that it does not make a difference whether or not the
magnetic field is also applied to the bath electrons.

1. Magnetization

The analysis of the Bethe ansatz equations depends on the
value of the external field b = B/�. First, region I, b � b0(u),
covers the weak-field regime b → 0 and the Kondo regime
for u � 1. Region II, b � b0(u), covers the large-field regime
b → ∞. The magnetization and the magnetic susceptibility
are continuous at b = b0(u). The boundary value is deter-
mined by [ln(e) = 1]

b0(u) =
√

2u
1√
π

∞∑
n=0

1

n!

(
2n + 1

2e

)n+1/2 1

(2n + 1)3/2

≈ 0.398942
√

2u. (105)

For u → 0, only region II exists, whereas in the Kondo limit,
for u → ∞, only region I remains.

Magnetization in region I. The magnetization and the mag-
netic field parametrically depend on each other. For p � 0,
Tsvelik and Wiegmann give [21]

bI (p, u) =
√

2u

π

∞∑
n=0

1

n!

(
2n + 1

2e

)n+1/2 e−π (2n+1)p

(2n + 1)3/2
(106)

for the applied magnetic field so that bI (0, u) = b0(u).
The impurity magnetization contains two terms,

mI (p, u) = mK(p, u) + mreg(p, u), (107)

namely, the “Kondo term” mK(p, u) and the “regular term”
mreg(p, u). We discuss them separately.

The Kondo term is given by (η = 0+) [21,38],

mK(p, u) = (−i)

4π3/2

∫ ∞

−∞

dω

ω − iη

(
iω + η

e

)iω

�

(
1

2
− iω

)

× exp{−2π iω[p − J−1(u)]}, (108)

where

J−1(u) = u2 − 4

8u
(109)

is the inverse Kondo coupling, and �(x) denotes the Gamma
function. The Kondo contribution cannot be obtained in weak-
coupling perturbation theory because of the 1/u singularity in
the exponent. Moreover, it gives rise to a diverging zero-field
susceptibility for u � 1; see Sec. V C 2 below.

The regular contribution reads

mreg(p, u) = 1√
π

∞∑
n=0

1

n!

(
2n + 1

2e

)n+1/2 e−π p(2n+1)

2n + 1

× F

(
π (2n + 1)

2u
, u

)
(110)
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with

F (a, u) =
∫ ∞

−∞

dy

π
e−ay2 1

1 + (iy + u/2)2

=
∫ ∞

0

2dy

π
e−ay2 1 − y2 + u2/4

u2y2 + (1 − y2 + u2/4)2

= e−a(1−u2/4)
∫ a

0

dx√
πx

exp

[
x − a2u2

4x

]
(111)

with the analytic expression

F (a, u) = −e−a(1−u2/4) sin(au)

+ e−a(1−u2/4)Re{eiauErfi[
√

a(2 − iu)/2]},
(112)

where Erfi(x) is the complex error function. The analytic
formula is helpful for the derivation of series expansions of
F (a, u) for small and large arguments a.

Magnetization in region II. For the applied magnetic field,
Tsvelik and Wiegmann give [21]

bII (p, u) = b0(u) +
√

u

4π

∫ ∞

0

dx

x3/2

(
1 − e−2π px

)
�

(
1
2 + x

) (x

e

)x

(113)

for p � 0. The magnetization in region II is given by

mII (p, u) = 1

2
− 1

2

∫ ∞

0

dx√
πx

e−2π px

�
(

1
2 + x

)(x

e

)x
F

(πx

u
, u

)
.

(114)

As shown in the Supplemental Material [27], the result for
the noninteracting SIAM is readily recovered from Eqs. (113)
and (114). There, we also derive an explicit formula for the
large-field limit,

mII (b �
√

u/π ) ≈ 1

2
− 1

πb
+ u

2πb2
+ 4π − 12u − 3πu2

12π2b3

(115)

up to and including all terms of the order 1/b3, and the low-
energy Kondo scale TL(U ) is absent for large fields.

In fact, there are no logarithmic terms to all orders of the
1/b expansion because, for b � 1, both b(p, u) and mII (p, u)
can be expressed in terms of a series with odd powers in the
parameter 1/

√
z, where z obeys p = z − ln(2πez)/(2π ) [21].

Therefore, at large values of the external field, the impurity
magnetization does not show any signs of the logarithmic
Doniach-Šunjić-Hamann tails in the impurity spectral func-
tion [10–12,39].

We show the impurity magnetization as a function of
the local external field for small and moderate interactions
strengths in Fig. 10 and Fig. 11, respectively. The DMRG
reproduces the magnetization curves very well, particularly
at strong magnetic fields. DMRG requires very large system
sizes to resolve the steep initial slope of the magnetization
curves, especially for moderate to large interaction strengths.
This behavior is reflected in the zero-field susceptibility that
becomes exponentially large for large interactions in an expo-
nentially narrow region of external fields, as we discuss next.
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FIG. 10. Impurity magnetization m(V = 0.1, B) = 〈Ŝz
d〉 as a

function of the external magnetic field b = B/� = gμBH/(2�) for
weak interactions, u = U/� = 1, 3, from the Bethe ansatz for the
symmetric SIAM. The insets show the behavior for small and large
fields with the small-field asymptotics (118) and the large-field
asymptotics (115). The circles are DMRG results for rings with
L = 997 sites.

2. Zero-field magnetic susceptibility

For bI (p, u) ≡ b → 0, we have p → ∞ in Eq. (106) so that
we only retain the first term in the series. Thus,

p = − 1

π
ln

(
b

√
πe

u

)
� 1. (116)

For the case [p − J−1(u)] � 0, we may represent mK(p, u) in
terms of a sum by performing a contour integral in the lower
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FIG. 11. Same as Fig. 10 for moderate couplings u = 5, 10.
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complex ω plane,

mK(p, u) = 1√
π

∞∑
n=0

(−1)n

2n + 1

1

n!

(
2n + 1

2e

)n+1/2

× exp{−π [p − J−1(u)](2n + 1)}. (117)

In this sum for the Kondo contribution and in the sum for the
regular contribution, Eq. (110), we keep only the first term in
the series and find [mI (p, u) ≡ m(b, u)]

m(b → 0, u) ≈ b√
2u

eπ/J (u)[1 + e−π/J (u)F (π/(2u), u)]

(118)

for small b, with corrections of the order b3 [21].
Thus, the Bethe ansatz provides an explicit expression for

the impurity susceptibility in the wide-band limit [3,21,40],

χBA
0 (U,V ) =

(gμB

2

)2 1

TL(U )

×
[

1 +
∫ π/(2u)

0

dx√
πx

exp

(
x − π2

16x

)]
(119)

with u = U/� and TL(U ) from Eq. (104). Since the integral
vanishes for u → ∞, the exponential term gives the result in
the Kondo limit.

We show the zero-field susceptibility in Fig. 12. As seen
from Eqs. (104) and (119), the zero-field susceptibility in-
creases exponentially as a function of u. This behavior is
difficult to reproduce in DMRG because, as the magneti-
zation is bounded from above, the magnetic-field region in
which the susceptibility is exponentially large is exponen-
tially small. Therefore, it is hard to calculate the zero-field
susceptibility for u � 10 from DMRG, and other numerical

FIG. 12. Zero-field magnetic susceptibility, �χ0/(gμB)2, as a
function of the interaction strength u = U/� from Bethe ansatz,
Eq. (119), and the Gutzwiller variational approach, Eq. (84), for the
SIAM, in comparison with DMRG results for L = 997 sites. Note
the logarithmic scale for the ordinate.

methods such as the NRG must be employed for large in-
teraction strengths. For u = 10, 15 we choose B = 0.0025�

and calculate χDMRG
0 (U,V = 0.1) = (gμB/2)2[2m(B, u)/B].

As seen from Fig. 12, the agreement between the Bethe
ansatz results and DMRG is very good for u � 10 and quite
acceptable for u � 15, where the zero-field susceptibility is
enhanced by more than a factor of 100 over its noninteracting
value.

The Gutzwiller variational theory reproduces the expo-
nential behavior of the zero-field susceptibility but with an
exponent that is too small by a factor of two. Therefore,
the Gutzwiller approach also underestimates the value of the
zero-field spin susceptibility; see Fig. 12.

D. Spin correlation function

1. Local moment

In Fig. 13 we show the local moment on the impurity site,
Cdd = 〈(nd,↑ − nd,↓)2〉/4, from Gutzwiller, Hartree-Fock, and
DMRG. The Gutzwiller approach provides a reasonable es-
timate for the local moment for all interaction strengths.
However, it underestimates its value for weak interactions and
slightly overestimates it in the strong-coupling limit.

Hartree-Fock theory uses the noninteracting Fermi-sea
ground state for weak interactions, and starts with the
interaction-driven buildup of the local moment at U HF

c ≈ π�.
Similarly to the Hartree-Fock energy curve shown in Fig. 8,
a kink in CHF

dd (U ) is observed at the critical Hartree-Fock
interaction. For moderate to strong interactions, U � 5�, it
provides an excellent estimate for the local spin correlation.
For U/� = 5 and for U/� = 50, the magnitude of the local
moment is of the same magnitude both in the Gutzwiller
approach and in Hartree-Fock theory.
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FIG. 13. Local spin correlation Cdd = 〈(nd,↑ − nd,↓)2〉/4 for
V = 0.1 (� = 2V 2 = 0.02) as a function of U/� = 5 in Gutzwiller
and Hartree-Fock theory for the SIAM compared with DMRG results
with L = 1397 sites.
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FIG. 14. Unscreened spin S (r) at distance r from the impurity
site, see Eq. (43), for V = 0.1 (� = 2V 2 = 0.02), U/� = 5 (upper
panel), and U/� = 50 (lower panel). The Gutzwiller and magnetic
Hartree-Fock results for the SIAM are compared with DMRG results
with L = 797 sites.

2. Unscreened spin

In Fig. 14 we show the unscreened spin S (r) for U/� = 5
(upper panel) and U/� = 50 (lower panel) at V = 0.1 (� =
0.02). Even for U/� = 5, the asymptotic region is not yet
reached for L = 797 in DMRG, where by construction the
spin is screened at r = (L − 1)/2 = 398. For U/� = 5, finite-
size effects are unimportant up to r ≈ 30. When the interac-
tion is very large, U = 50�, finite-size effects dominate the
DMRG data for all r > 1.

Despite its failure to describe the ground-state energy prop-
erly, the Gutzwiller approach reproduces the mesoscopically
large Kondo screening cloud. For r → ∞, the impurity spin is
perfectly screened, SG(r → ∞) = 0, but the Kondo cloud ex-
tends over many thousands of sites even for moderately strong
interactions, U/� = 5. In contrast, in magnetic Hartree-Fock
theory the screening is never complete, SHF(r → ∞) > 0.

Therefore, among the three approaches discussed here, the
Gutzwiller wave function provides the best qualitative de-
scription of the Kondo screening cloud for strong couplings.

3. Fermi liquid regime

The calculation of the static spin correlation function
Cdc(r) in Eq. (41) poses a difficult many-body problem. We
separate the spin correlation function into its Fermi liquid
contribution (dressed bubble) and a part that contains vertex
parts in a diagrammatic approach,

CS
dc(r) = CS,FL

dc + CS,x
dc ,

CS,FL
dc = − 1

2 |〈�0|ĉ+
r,↑d̂↑|�0〉|2 = − 1

2 M2
r . (120)

The vertex part vanishes for the noninteracting case; see
Eq. (63). For the Fermi liquid part, we used that the d-electron
density is one-half and that the system is unpolarized.

Due to particle-hole symmetry for the translationally in-
variant system, the Fermi liquid contribution vanishes for odd
sites, CS,FL

dc (2m + 1) = 0. The spin correlation function at odd
sites remain small even for substantial interactions. However,
from the DMRG data we infer that, for large interactions
and intermediate length scales, the vertex term for even sites
is (much) larger than the Fermi liquid contribution. In this
regime, the ground state is very far from a single Slater
determinant.

In the limit of very large distances and thus small excitation
energies, we expect that the Fermi liquid picture description
is applicable. For the Fermi liquid contribution we can write
quite generally [27]

M2m = −V

π

∫ 0

−π/2
d p Im{[sin(2mp) − i cos(2mp)]

× G̃ret
d,d ( sin(p)/2)}, (121)

where we neglected the contributions from the bound states
because their contribution vanishes exponentially for large
distances. Here, G̃ret

d,d (ω) is the exact retarded impurity
Green’s function.

At very large distances, only the region of small p con-
tributes to the integration because of the vastly oscillating sine
and cosine functions. Thus, we may approximate the impurity
spectral function by its Fermi liquid form,

Dd,d (ω) ≈ 1

π

�∗
ω2 + �2∗

(122)

with �∗ ∝ TL with the Kondo scale from Eq. (104). Thus, we
recover the result (70) for the decay of the spin correlation
function at large distances,

CS
dc(2m � 1/(2�2

∗ )) ≈ − V 2

8π2�2∗

1

m2
. (123)

The long-range decay of the correlation function is algebraic
but, since �∗ is exponentially small, this decay only sets in
at exponentially large length scales. The Gutzwiller approach
reproduces this result qualitatively.

Note that the subtleties of the Kondo screening, e.g., the
Doniach-Šunjić-Hamann tails in the impurity spectral func-
tion [10–12,39], contribute to the Kondo screening cloud
S (r) for intermediate to large distances that are well below
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1/�2
∗ . The visualization of the screening cloud requires the

calculation of a two-particle correlation function, which is
very demanding; for a variational approach to the Kondo
model, see Ref. [16].

VI. CONCLUSIONS

In this work, we studied the ground-state energy, the
impurity magnetization and susceptibility, and the Kondo
screening cloud for the symmetric single-impurity Anderson
model (SIAM) using the results from the Gutzwiller, mag-
netic Hartree-Fock, and DMRG variational approaches. We
restricted our study to the case of a regular metal with a
constant density of states around the Fermi energy; Kondo
screening for other host density of states, e.g., in graphene,
is studied in Refs. [25,41]. For the ground-state energy and
magnetic properties, we compared our results to those from
the Bethe ansatz that become exact in the wide-band limit.
For further reference, we defer many technical details to the
Supplemental Material [27].

Each of the three variational methods has its merits and
limitations.

(1) The Hartree-Fock approach provides an excellent de-
scription of the ground-state energy for intermediate to strong
couplings. However, since it displays a gap for (magnetic)
excitations, Hartree-Fock theory fails to reproduce the large
magnetic susceptibility for strong couplings. Concomitantly,
it is unable to screen the impurity spin.
The Hartree-Fock theory correctly describes the charge exci-
tations of the symmetric SIAM. This makes it the perfect start-
ing point for more elaborate analytical approximations such as
the local-moment approach that introduces the missing low-
energy spin-flip processes into the Hartree-Fock description
[10–12].

(2) Gutzwiller theory provides a rather poor upper bound
for the ground-state energy. However, it qualitatively de-
scribes the exponentially large magnetic zero-field suscepti-
bility for strong couplings because it retains an exponentially
small resonance in the impurity density of states in the Kondo
limit. Consequently, the impurity spin is completely screened
by the bath electrons at infinite distance from the impurity.
As an inherent Fermi liquid description, Gutzwiller theory
correctly reproduces the long-range behavior of the Kondo
cloud. However, for short and intermediate distances, its
description of the Kondo cloud is too simple minded.

(3) The DMRG method is numerically highly accurate for
finite systems. In this work, we map the SIAM on a ring
onto a two-chain geometry with open boundary conditions,
where we disregard the interchain coupling. Therefore, we
can treat rings with up to L = 1400 sites, and extrapolations
of the ground-state energy to the thermodynamic limit are
unproblematic. We see that the Bethe ansatz description is
applicable for interactions up to about half the bandwidth even
at V = 0.1W .
The intrinsic energy resolution is limited to �ω = W/L.
Therefore, the DMRG encounters problems to resolve the
Abrikosov-Suhl resonance in the impurity density of states
in the strong-coupling limit, and a reliable description of the
impurity magnetization and of the magnetic susceptibility is
limited to moderate interaction strengths. Correspondingly,

DMRG properly describes the short-range region of
the Kondo cloud but does not cover the long-distance
asymptotics because the Kondo cloud in DMRG cannot
exceed half the system size. The NRG is best suited to
resolve small energy scales, and thus overcomes the DMRG
limitations.

At the end of our presentation, we emphasize that the
Kondo screening cloud is amazingly large, even in the non-
interacting limit, for reasonably small hybridization strengths,
e.g., V = 0.1, and in one dimension, where a larger fraction
of the bath electrons can couple to the impurity than in higher
dimensions. This implies that magnetic impurities in metals
can be correlated over mesoscopic distances.

Note, however, that this behavior depends on a number of
assumptions, namely, (i) a perfect metallic host without impu-
rities, (ii) zero temperature, and (iii) the Kondo regime, which
is guaranteed for the SIAM by particle-hole and spin-flip
symmetry for U/� � 1. Deviations from these exceptional
conditions, especially a finite temperature, will drastically
limit the range over which the impurity spin is screened.

Nevertheless, we can expect that two magnetic impurities
in a metal can sense each others’ presence over quite some
distance so that they will bind into magnetic singlet (or
triplet) pairs. An investigation of this pairing requires the
analysis of the two-impurity Anderson model (TIAM); see,
e.g., Ref. [42] for a recent Gutzwiller variational study, and
references therein. A DMRG study of the TIAM is currently
under way.
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APPENDIX: CHAIN MAPPING USING
THE LANCZOS CONSTRUCTION

The Lanczos algorithm provides another way to derive the
chain geometry from the ring geometry in Sec. II C. Dropping
spin indices, we start from the seed state

|�0〉 = d̂+|vac〉 (A1)

and find the Lanczos basis from

|�1〉 = Ĥ0|�0〉 − a0|�0〉 = V b̂+
0 |vac〉,

|�n+1〉 = Ĥ0|�n〉 − an|�n〉 − b2
n|�n−1〉,

(A2)

for 1 � n � L − 1, where

an = 〈�n|Ĥ0|�n〉
〈�n|�n〉 ,

b2
n = 〈�n|�n〉

〈�n−1|�n−1〉 . (A3)
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It is readily shown that an = 0 (0 � n � L), b2
1 = 2t2, b2

n = t2

(2 � n � L), and

|�n〉 = V (−t )n−1
[
ei(n−1)ϕ b̂+

L−n+1+e−i(n−1)ϕ b̂+
n−1

]|vac〉.
(A4)

The algorithm automatically terminates after n = L, i.e.,
|�L+1〉 ≡ 0.

After a proper normalization we find the L + 1 basis states

|d〉 = |�0〉 = d̂+|vac〉,
|0〉 = Ĉ+

0 |vac〉,

|n〉 =
√

1

2
[e−inϕ b̂+

n + einϕ b̂+
L−n]|vac〉

=
{

Ĉ+
n |vac〉 for 1 � n � (L − 1)/2,

iŜ+
L−n|vac〉 for (L + 1)/2 � n � L.

(A5)

Up to a phase factor for the S electrons, this is the same basis
as used in the canonical transformation. The extra phase factor
accounts for the electron transfer it between the C-electron
and S-electron chains in Sec. II C.
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[39] S. Doniach and M. Šunjić, J. Phys. C 3, 285 (1970).
[40] A. Okiji and N. Kawakami, Solid State Commun. 43, 365

(1982).
[41] L. Fritz and M. Vojta, Rep. Prog. Phys. 76, 032501 (2013).
[42] T. Linneweber, J. Bünemann, Z. M. M. Mahmoud, and

F. Gebhard, J. Phys.: Condens. Matter 29, 445603 (2017).
[43] Wolfram Research, Inc., Mathematica 10 (Champaign, IL,

2016).
[44] J. Goldstone, Proc. R. Soc. London A 239, 267 (1957).
[45] D. Ruhl and F. Gebhard, J. Stat. Mech.: Theory Exp. (2006)

P03015.

165130-18

https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/RevModPhys.50.191
https://doi.org/10.1103/RevModPhys.50.191
https://doi.org/10.1103/RevModPhys.50.191
https://doi.org/10.1103/RevModPhys.50.191
https://doi.org/10.1103/PhysRevB.81.195109
https://doi.org/10.1103/PhysRevB.81.195109
https://doi.org/10.1103/PhysRevB.81.195109
https://doi.org/10.1103/PhysRevB.81.195109
https://doi.org/10.1103/PhysRevB.87.035111
https://doi.org/10.1103/PhysRevB.87.035111
https://doi.org/10.1103/PhysRevB.87.035111
https://doi.org/10.1103/PhysRevB.87.035111
https://doi.org/10.1103/PhysRevB.93.195160
https://doi.org/10.1103/PhysRevB.93.195160
https://doi.org/10.1103/PhysRevB.93.195160
https://doi.org/10.1103/PhysRevB.93.195160
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1088/0953-8984/10/12/009
https://doi.org/10.1088/0953-8984/10/12/009
https://doi.org/10.1088/0953-8984/10/12/009
https://doi.org/10.1088/0953-8984/10/12/009
https://doi.org/10.1088/0953-8984/12/6/320
https://doi.org/10.1088/0953-8984/12/6/320
https://doi.org/10.1088/0953-8984/12/6/320
https://doi.org/10.1088/0953-8984/12/6/320
https://doi.org/10.1088/0953-8984/21/37/375602
https://doi.org/10.1088/0953-8984/21/37/375602
https://doi.org/10.1088/0953-8984/21/37/375602
https://doi.org/10.1088/0953-8984/21/37/375602
https://doi.org/10.1103/PhysRevB.75.041307
https://doi.org/10.1103/PhysRevB.75.041307
https://doi.org/10.1103/PhysRevB.75.041307
https://doi.org/10.1103/PhysRevB.75.041307
https://doi.org/10.1103/PhysRevB.84.115120
https://doi.org/10.1103/PhysRevB.84.115120
https://doi.org/10.1103/PhysRevB.84.115120
https://doi.org/10.1103/PhysRevB.84.115120
https://doi.org/10.1103/PhysRevB.90.045117
https://doi.org/10.1103/PhysRevB.90.045117
https://doi.org/10.1103/PhysRevB.90.045117
https://doi.org/10.1103/PhysRevB.90.045117
https://doi.org/10.1103/PhysRevB.92.195106
https://doi.org/10.1103/PhysRevB.92.195106
https://doi.org/10.1103/PhysRevB.92.195106
https://doi.org/10.1103/PhysRevB.92.195106
https://doi.org/10.1088/1742-5468/2014/04/P04011
https://doi.org/10.1088/1742-5468/2014/04/P04011
https://doi.org/10.1088/1742-5468/2014/04/P04011
https://doi.org/10.1103/PhysRevB.80.205114
https://doi.org/10.1103/PhysRevB.80.205114
https://doi.org/10.1103/PhysRevB.80.205114
https://doi.org/10.1103/PhysRevB.80.205114
https://doi.org/10.1103/PhysRevLett.45.379
https://doi.org/10.1103/PhysRevLett.45.379
https://doi.org/10.1103/PhysRevLett.45.379
https://doi.org/10.1103/PhysRevLett.45.379
https://doi.org/10.1088/0022-3719/14/10/014
https://doi.org/10.1088/0022-3719/14/10/014
https://doi.org/10.1088/0022-3719/14/10/014
https://doi.org/10.1088/0022-3719/14/10/014
https://doi.org/10.1088/0022-3719/16/12/017
https://doi.org/10.1088/0022-3719/16/12/017
https://doi.org/10.1088/0022-3719/16/12/017
https://doi.org/10.1088/0022-3719/16/12/017
https://doi.org/10.1088/0022-3719/16/12/018
https://doi.org/10.1088/0022-3719/16/12/018
https://doi.org/10.1088/0022-3719/16/12/018
https://doi.org/10.1088/0022-3719/16/12/018
https://doi.org/10.1103/PhysRevB.42.2591
https://doi.org/10.1103/PhysRevB.42.2591
https://doi.org/10.1103/PhysRevB.42.2591
https://doi.org/10.1103/PhysRevB.42.2591
https://doi.org/10.1103/PhysRevB.41.9452
https://doi.org/10.1103/PhysRevB.41.9452
https://doi.org/10.1103/PhysRevB.41.9452
https://doi.org/10.1103/PhysRevB.41.9452
https://doi.org/10.1103/PhysRevB.88.245113
https://doi.org/10.1103/PhysRevB.88.245113
https://doi.org/10.1103/PhysRevB.88.245113
https://doi.org/10.1103/PhysRevB.88.245113
https://doi.org/10.1103/PhysRevB.92.155104
https://doi.org/10.1103/PhysRevB.92.155104
https://doi.org/10.1103/PhysRevB.92.155104
https://doi.org/10.1103/PhysRevB.92.155104
http://link.aps.org/supplemental/10.1103/PhysRevB.99.165130
https://doi.org/10.1103/PhysRevB.74.195112
https://doi.org/10.1103/PhysRevB.74.195112
https://doi.org/10.1103/PhysRevB.74.195112
https://doi.org/10.1103/PhysRevB.74.195112
https://doi.org/10.1103/PhysRevB.84.115403
https://doi.org/10.1103/PhysRevB.84.115403
https://doi.org/10.1103/PhysRevB.84.115403
https://doi.org/10.1103/PhysRevB.84.115403
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1002/andp.201500259
https://doi.org/10.1002/andp.201500259
https://doi.org/10.1002/andp.201500259
https://doi.org/10.1002/andp.201500259
https://doi.org/10.1016/0375-9601(81)90663-0
https://doi.org/10.1016/0375-9601(81)90663-0
https://doi.org/10.1016/0375-9601(81)90663-0
https://doi.org/10.1016/0375-9601(81)90663-0
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1088/0022-3719/3/2/010
https://doi.org/10.1088/0022-3719/3/2/010
https://doi.org/10.1088/0022-3719/3/2/010
https://doi.org/10.1088/0022-3719/3/2/010
https://doi.org/10.1016/0038-1098(82)90495-1
https://doi.org/10.1016/0038-1098(82)90495-1
https://doi.org/10.1016/0038-1098(82)90495-1
https://doi.org/10.1016/0038-1098(82)90495-1
https://doi.org/10.1088/0034-4885/76/3/032501
https://doi.org/10.1088/0034-4885/76/3/032501
https://doi.org/10.1088/0034-4885/76/3/032501
https://doi.org/10.1088/0034-4885/76/3/032501
https://doi.org/10.1088/1361-648X/aa89d1
https://doi.org/10.1088/1361-648X/aa89d1
https://doi.org/10.1088/1361-648X/aa89d1
https://doi.org/10.1088/1361-648X/aa89d1
https://doi.org/10.1098/rspa.1957.0037
https://doi.org/10.1098/rspa.1957.0037
https://doi.org/10.1098/rspa.1957.0037
https://doi.org/10.1098/rspa.1957.0037
https://doi.org/10.1088/1742-5468/2006/03/P03015
https://doi.org/10.1088/1742-5468/2006/03/P03015
https://doi.org/10.1088/1742-5468/2006/03/P03015

