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Recently, the correlation theory of the chemical bond was developed, which applies concepts of
quantum information theory for the characterization of chemical bonds, based on the multiorbital
correlations within the molecule. Here for the first time, we extend the use of this mathematical
toolbox for the description of electron-deficient bonds. We start by verifying the theory on the
textbook example of a molecule with three-center two-electron bonds, namely the diborane(6). We
then show that the correlation theory of the chemical bond is able to properly describe bonding
situation in more exotic molecules which have been synthetized and characterized only recently,
in particular the diborane molecule with four hydrogen atoms [diborane(4)] and neutral zerovalent
s-block beryllium complex, whose surprising stability was attributed to a strong three-center two-
electron π bond stretching across the C-Be-C core. Our approach is of a high importance especially
in the light of a constant chase after novel compounds with extraordinary properties where the
bonding is expected to be unusual.

INTRODUCTION

Recent years have witnessed remarkable interest in
application of tools of quantum information theory in
chemistry1–27. As a prominent example, the performance
of state-of-the-art tensor product methods for electronic
structure calculations17,28–34 heavily relies on proper
manipulation of entanglement1,4,6,12,14,17,22. These in-
clude density matrix renormalization group (DMRG)
method35,36, which variationally optimizes wave func-
tions in the form of matrix product states (MPS).37

Other important examples represent characterization
of electron correlation into its static (strong) and dy-
namic contributions9, automatic (black-box) selection of
the active spaces1,6,17,23,24,38, or the self-adaptive tensor
network states with multi-site correlators25, all of which
harness single- and two-orbital entanglement entropies.
Last but not least, correlation measures based on the
single- and two-orbital entanglement entropies have also
been employed for the purposes of bond analysis10,20.

In the preceding work26, we have presented the very
general correlation theory of the chemical bond based on
multiorbital correlation measures which goes beyond the
scope of two-orbital picture. It is able to properly de-
scribe multiorbital bonds, and we have demonstrated its
performance on a representative set of organic molecules
(aliphatic as well as aromatic).

In the present article, we apply this theory to systems
with electron-deficient bonds, i.e., to compounds which
have too few valence electrons for the connections be-
tween atoms to be described as covalent bonds, and which
have always fascinated chemists. First we apply the the-
ory to the notoriously known textbook example of the
diborane(6)39 molecule (B2H6) with two-electron three-
center bridge bonds and then also to recently charac-
terized diborane(4)40 (B2H4) and zero-valent complexes

of beryllium41,42. The neutral form of the latter com-
pound exhibits surprising stability, which was attributed
to a strong three-center two-electron π bond stretching
across the C-Be-C core41. Unlike in the previous study26,
here we work in the bigger detail in a sense that we also
employ eigenstates of multiorbital reduced density matri-
ces, which give us additional insights into the character
of bonding.

The article is organized as follows: in Sec. II, we briefly
present the studied systems, in Sec. III we review the
main concepts of the theory of multiorbital correlations,
Sec. IV presents the computational details and Sec. V
the results of our calculations which are followed by their
discussion, the final Section closes with conclusions.

STUDIED SYSTEMS

Diboranes

In its ground state, diborane(6) (Figure 1a) adopts
its most stable conformation with two bridging B-H-
B bonds, and four terminal B-H bonds. Its struc-
ture was first correctly measured in 1943 from infrared
spectra of gaseous samples by an undergraduate stu-
dent, Longuet-Higgins.43,44 Subsequent measurements
with electron diffraction confirmed his conclusions45, and
X-ray diffraction detected further systems with bridging
hydrogen bond.46 The B-H-B bridging was considered
an atypical electron-deficient covalent chemical bond.47

Diborane(6) is a prominent example of a molecule with
three-center two-electron bonds.48 As it is a well studied
system, we use its B-H-B linkage as a reference to com-
pare with bond strengths and properties of more complex
systems featuring three-center two-electron bonds.

According to quantum-chemical calculations49–54, dif-
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ferent species of diborane with less than six hydrogens
should exist, also featuring the bridging B-H-B bonds.
However, all candidates are short-lived reaction interme-
diates, difficult to prepare and to identify. Hence, no
neutral species has been identified experimentally un-
til 2015, when Chou irradiated diborane(6) dispersed in
neon at 3 K with far-ultraviolet light, detecting dibo-
rane(4), B2H4 (Figure 1b).40 This new species with two
terminal hydrogen atoms possesses two bridging hydro-
gen atoms, and so it became the simplest neutral boron
hydride identified with such a structural feature.

(a) diborane(6) (b) diborane(4)

FIG. 1: Structures of diborane(6) and diborane(4).

Beryllium complexes

Complexes of metal atoms of the s-block of the pe-
riodic table are often found in their zero oxidation
state due to their exceptional electron donation. For
their interesting reactivities, these became frequent syn-
thetic targets, competing with traditional transition
metal complexes.55–57 We follow the recent experimen-
tal work of Arrowsmith, who isolated, for the first
time, neutral compounds with zero-valent s-block metal,
beryllium.41 These brightly coloured molecules have very
short Be-C bonds and beryllium in linear coordina-
tion geometries.58–61 This indicates strong multiple BeC
bonding. According to the theoretical and spectroscopic
results, the molecules adopt a closed-shell singlet config-
uration with a Be(0) metal centre.41 The complexes are
surprisingly stable, and this was ascribed to an unusually
strong three-center two-electron π bond stretching across
the CBeC unit. Two bonding mechanisms depicted in
Figure 2 are taking place, namely σ donation from the
carbon doubly occupied sp2 hybrid orbital to empty s
and px orbitals on the central Be atom and π back dona-
tion from the beryllium pz orbital to pz orbitals located
on C atoms.

We studied two of the proposed systems. First the
Be(CAC)2 complex (Figure 6a), where CAC corresponds
to cyclic amino carbene donors, which stabilize the com-
pound due to their π-acidity.62,63 We performed a mul-
tireference calculation, in order to verify the proposed
singlet configuration with a Be(0) metal centre and to
provide a deeper insight into the bonding scheme. Next
we studied dication [Be(CAC)2]2+ (Figure 6b), in which

FIG. 2: Schematic representation of the C-Be-C
bonding mechanisms41.

the removal of two electrons disrupts the bridging CBeC
bond. This allowed us to compare with the former system
and to determine the stabilization effect of the bridging
bond.

METHODOLOGY

Recently, the correlation theory of the chemical bond26

was developed, characterizing bonds based on the cor-
relations among orbitals localized on individual atoms.
Simply put, if we think of a simple covalent bond and
localize the bonding and antibonding molecular orbitals
into their atomic contributions, these localized orbitals
will be highly correlated. Therefore, standard two-orbital
bonds can be characterized by pairs of strongly corre-
lated localized orbitals, and the strength of the corre-
lation characterizes the strength of the bond from the
quantum information theoretical point of view.

The correlation theory of the chemical bond can also
be used for the characterization of bonds more involved
than the covalent bonds. The concept in general is to
find the finest possible correlation based clustering of the
localized orbitals into clusters, so that the clusters are
weakly correlated with each other, and the orbitals in-
side the clusters are strongly correlated.26 These clusters
then form independent bonds of a Lewis structure of a
given molecule and the strength of the correlation with
respect to this clustering refers to the validity of such a
representation. The weaker the correlation is, the better
the Lewis structure represents bonding.

In order to review the correlation measures64, which
will be used in our analysis, let us denote the set of (the
labels of) localized orbitals with M . We aim at investi-
gating the correlations in an L ⊆M set of orbitals (clus-
ter). The state of the full electronic system of the cluster
L is given by the density operator %L, while the reduced
state of a (sub)cluster X ⊆ L is given by the reduced den-
sity operator %X in general.65–67 If the cluster of orbitals
L can be given by a state vector |ψL〉 (for example, when
a given eigenstate of the whole molecule is considered),
then its density operator is of rank one, %L = |ψL〉 〈ψL|,
called a pure state. Its reduced density operator is usu-
ally mixed (not of rank one), which is the manifestation
of entanglement68 between (sub)cluster X and the rest of
the cluster L \X. In general, a density operator %X can
be decomposed in infinitely many ways into state vectors



3

|ψi〉 with mixing weights pi ≥ 0 as %X =
∑
pi |ψi〉 〈ψi|.

The spectral decomposition (where the weights are the λi
eigenvalues, and the |ψi〉-s are eigenvectors, being orthog-
onal) is a special one, in the sense that its weights are the
least mixed.69,70 Each eigenvector |ψi〉 can be expanded
in the occupation number basis, the square of the abso-
lute value of the coefficients are the weights of the given
occupations in that given eigenvector |ψi〉 of weight λi.

On the first level, the correlation is defined with re-
spect to a partition71 of the L set of the orbitals,26,64,72,73

denoted with ξ = {X1, X2, . . . , X|ξ|} ≡ X1|X2| . . . |X|ξ|,
where the clusters X ∈ ξ, called parts, are disjoint
subsets of the cluster L, and ∪X∈ξX = L. The mea-
sure of correlation among the parts X ∈ ξ is the ξ-
correlation,26,64

C(ξ) :=
∑
X∈ξ

S(X)− S(L). (1)

Here S(X) = − tr(%X log4 %X) is the von Neumann
entropy.65,67 (Note that we use the logarithm to the base
4, which is the dimension of the Hilbert space of an or-
bital. The resulting numerical values are then the same
as of the original measures with natural logarithm26 given
in the units of ln 4. Note that S(X) ≤ |X|, where |X| is
the number of orbitals in cluster X.) As a special case,
the correlation of two single orbitals,

C(i|j) = S(i) + S(j)− S(i, j) = I(i|j), (2)

is the well-known (two-orbital) mutual
information,65,67,74 which has already been considered
in chemistry.6,10–13,16,18–20,26,75–79 (For convenience, we
omit the curly brackets { } in the cases when this does
not cause confusion.) For a general partition ξ, we have
the bound26

C(X|Y ) ≤ 2(|L| −max
X∈ξ
|X|), (3a)

which for a bipartition ξ = X|Y reduces to

C(X|Y ) ≤ 2 min{|X|, |Y |}. (3b)

Note that C(ξ) is zero for the trivial split ξ = > =
{L}, and it takes its maximum, C(⊥), for the finest split
ξ = ⊥ = {{i} : i ∈ L}. The latter quantity is also called
total correlation,2,80–83

Ctot(L) := C(⊥) =
∑
i∈L

S(i)− S(L). (4)

(Note that if cluster L is described by a pure state
then S(L) = 0, and the correlation is entirely quantum
entanglement.64,68,84 Moreover, the correlation in a pure
state with respect to a bipartition ξ = X|(L \X) is just
two times the usual entanglement entropy67,85,86

C(X|(L \X)) = 2S(X) = 2S(L \X), (5)

because of the Schmidt decomposition of pure
states.67,86,87)

On the second level, the correlations can be defined
in an overall sense, that is, without respect to a given
partition.26,64,73 The k-partitionability correlation and
the k-producibility correlation, are26

Ck-part(L) := min
ξ: |ξ|≥k

C(ξ), (6a)

Ck-prod(L) := min
ξ: ∀X∈ξ, |X|≤k

C(ξ), (6b)

for 1 ≤ k ≤ |L|. These characterise the strength of two
different (one-parameter-) notions of multiorbital corre-
lations; those which cannot be restricted inside at least k
parts, and those which cannot be restricted inside parts
of size at most k, respectively.26

For the cluster L, as special cases, C|L|-part = C1-prod =
C(⊥) grabs all the correlations, it is zero if and only if
there is no correlation at all in the cluster L. On the
other hand, C2-part = C(|L| − 1)-prod is sensitive only for
the strongest correlations, it is nonzero if and only if the
cluster L is globally correlated. Note also that C1-part =
C|L|-prod = C(>) = 0, by definition. Beyond these, there
are no such coincidences among the partitionability and
producibility correlations for other values of k, however,
the relation Ck-part ≥ C(|L| − k + 1)-prod holds.26 Also, the

following (non stricht) bounds hold26

Ck-part ≤ 2(k − 1), (7a)

Ck-prod ≤ 2(|L| − k). (7b)

COMPUTATIONAL DETAILS

In case of diborane molecules, the ground state geome-
tries were optimized with the B3LYP/cc-pVDZ method.
For the multiorbital correlation studies, the Pipek-
Mezey88 localized HF/STO-3G molecular orbitals (MOs)
were employed20,26 and they were manually hybridized
(rotated) to better reflect the chemical environment. The
quantum chemical (QC-) DMRG method was applied to
study the multiorbital correlations in the full orbital fol-
lowing the procedure outlined in Ref. 26.

The ground state geometries of both forms of the beryl-
lium complex, namely Be(CAC)2 and [Be(CAC)2]2+

were taken from Ref. 41 and they correspond to the
BP86/def2-TZVPP level of theory. Due to the size of
the problem, multiorbital correlation studies by means
of QC-DMRG are not feasible in the full orbital space.
We have rather chosen a different strategy. Since we were
interested only in the bonding of the C-Be-C atomic core,
we have selected the complete active space (CAS) of rel-
evant orbitals participating or influencing these bonds.
In particular, 2px orbitals on both C and Be atoms
and 2s orbital on Be, all of them contributing to the
σ bonds and 2pz orbitals on both C and neighbouring
N atoms and Be, forming or directly influencing the π
bonds. The CAS orbitals were optimized by means of the
CASSCF(10,9)/cc-pVDZ method in case of the neutral
complex and CASSCF(8,9)/cc-pVDZ method in case of
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the dication and again localized using the Pipek-Mezey88

procedure. They were not hybridized in order to directly
compare with the previous work41 making conclusions
about atomic-like orbitals.

All the quantum chemistry calculations except the
QC-DMRG ones were performed with the MOLPRO
package89. The QC-DMRG calculations were carried out
using the Budapest QC-DMRG code90. Molecular or-
bitals were visualized with Charmol91.

RESULTS

The results on diborane(6) are summarized in Figure 3
and Table I, whereas results on diborane(4) are presented
in Figure 4 and Table II. All the Figures depict mutual
information of pairs of localized orbitals, defined in 2,
while the Tables contain numeric values of measures of
the relevant kinds of multiorbital correlations, which are
discussed below.

In a similar fashion, the results on beryllium complexes
are presented in Figures 5, 7, and 8 and Table III.

In the Figures, individual localized orbitals are repre-
sented as black dots and dashed blue lines encircles or-
bitals belonging to one atom. The mutual information is
plotted as grayscaled edges between the orbitals. Black
lines correspond to the strongest correlations, while light
gray lines connect the weakly correlated orbitals. Based
on the mutual information structure, the orbitals are
grouped into strongly correlated clusters, which in our
examples correspond to either core orbitals or chemical
bonds. The clusters are encircled by red borders.

DISCUSSION

Diborane(6)

Figure 3 shows that our results fit well the established
bonding picture of diborane(6) with two bridging B-H-B
bonds. Let us now discuss in detail how the analysis
of correlations leads to the clustering and to the bond-
ing picture presented in Figure 3. We will discuss only
the bridging bonds, the core orbitals as well as termi-
nal B-H bonds are well separated, i.e. not correlated
with the rest. (This is confirmed by the weak correlation
C(X1 ∪X2 | rest) in Table I.)

First we consider the cluster X1 containing sp3 hybrid
orbitals on B atoms and 1s orbital on the bridging H
atom. Because of the point group symmetry, the same
results hold for cluster X2. As can be seen in Table I,
the correlation (entanglement) of X1 with the remain-
ing orbitals is very weak, only 8.6% of the maximum
value, which indicates that X1 forms an independent
three-center bond.

However, to confirm this conclusion, we have to show
that X1 cannot be split further. If we take separate pairs
of orbitals from X1 and measure the correlation with
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B1sp3
2
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FIG. 3: Schematic view of diborane(6) with mutual
information: each dot represents a localized orbital,
dashed blue line encircles individual atoms, edges

correspond to mutual information (plot shaded by a
logarithmic scale depending on strength) and red circles

show how the orbitals group into clusters, i.e.
independent bonds. Sorted values of the two-obital

mutual information are plotted in Appendix A.

correlation abs. value rel. value

C(X1 | rest) 0.515 8.6%

C(X1 ∪X2 | rest) 0.412 3.4%

C(B1sp3
1,H

5s | rest) 1.852 46%

C(H5s,B2sp3
1 | rest) 1.852 46%

C(B1sp3
2,B

2sp3
1 | rest) 2.114 53%

C(B1sp3
1 | H5s) 0.894 45%

C(H5s | B2sp3
1) 0.894 45%

C(B1sp3
1 | B2sp3

1) 0.605 30%

C2-part(X1) 1.500 75%

C3-part(X1) 2.394 60%

C(X1 | X2) 0.309 5.2%

C(H5s | H6s) 0.042 2.1%

TABLE I: Correlation measures for diborane(6).
Relative values are related to the upper bounds.

Labeling of localized orbitals corresponds to Figure 3.

the remaining orbitals, we obtain significantly higher val-
ues, in particular 46% and 53% of the maximum values
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(see Table I), which justifies existence of the three-center
bond.

The mutual information of pairs of orbitals within X1

reach rather small relative values (45%, 30%, see Table
I), however according to our numerical experience, even
strong multicenter bonds typically yield low percentage,
never approaching near the theoretical maxima.26 Intu-
itive perspective suggests that the correlation of one or-
bital with the others can be thought of as a resource
shared among the orbitals. In other words, all the pairs
inside X1 cannot reach the maximum simultaneously,
bounded by entanglement monogamy.92,93 The formula-
tion of an inequality bounding the mutual correlations
inside orbital clusters still remains an open problem, to
our best knowledge. The smaller value of the mutual in-
formation between sp3 hybrid orbitals on B atoms reflects
their larger internuclear distance.

We employ k-partitionability in order to quantify and
benchmark the strength of the diborane(6) three-center
bonds (in terms of correlation). As can be seen in Ta-
ble I, C2-part(X1) reaches 75% of the upper bound and
C3-part(X1) 60%, which points at a strong bond in X1.

The very weak correlation (entanglement) of X1 with
the remaining orbitals also indicates that the state of the
cluster X1 is close to a pure state. Indeed, the eigen-
state analysis of the reduced density operator ρX1

shows
that there is the following two-electron eigenstate with a
corresponding eigenvalue (probability) of 0.94

|ψX1
〉 =

+ 0.2146 |−− ↑↓〉+ 0.4313 |− ↑↓ −〉+ 0.2146 |↑↓ −−〉
+ 0.3787 |− ↓ ↑〉 − 0.3787 |− ↑ ↓〉+ 0.2721 |↓ − ↑〉
+ 0.3787 |↑ ↓ −〉 − 0.3787 |↓ ↑ −〉 − 0.2721 |↑ − ↓〉 ,

where the ordering of orbitals in a ket corresponds to
B1sp3, H51s, and B2sp3. Other eigenstates have prob-
abilities below 0.01. The principal two-electron eigen-
state together with the above discussion on correlations
imply that the three orbitals of X1 form a three-center
two-electron bond. Note that the electron pair exhibits
a preferred occupation on H atom, which is due to its
higher electronegativity when compared to B, as we can
see from the principal eigenstate. It is in agreement
with the expectation values of particle-number-operators

(〈ψ| n̂(i)el |ψ〉) which for B1sp3, H51s and B2sp3 equal 0.53,
0,95 and 0.53, respectively.

As one can observe in Table I, the main source of cor-
relation between X1 and the remaining orbitals is the
correlation with the other three-center bond, X2. Specif-
ically, the correlation between two bridging H atoms is
the strongest, which is caused by higher electron density
on these atoms.

Diborane(4)

In case of diborane(4), the two terminal H atoms are
missing and instead a direct covalent bond connecting

B1sp3
2

H4s

B2sp3
2

H3s

B1sp3
1

B2sp3
1

B1sp3
3

B2sp3
3

X1

X2

H
1 H

2

H
3

H
4

B
1

B
2

FIG. 4: Schematic view of diborane(4) with mutual
information: each dot represents a localized orbital,
dashed blue line encircles individual atoms, edges

correspond to mutual information (plot shaded by a
logarithmic scale depending on strength) and red circles

show how the orbitals group into clusters, i.e.
independent bonds. Sorted values of the two-obital

mutual information are plotted in Appendix A.

correlation abs. value rel. value

C(X1 | rest) 1.328 22%

C(B1sp3
1 | H3s) 0.647 32%

C(B1sp3
1 | B2sp3

1) 0.701 35%

C2-part(X1) 1.388 69%

C3-part(X1) 2.089 52%

C(X3 | rest) 1.438 36%

C(B1sp3
3 | B2sp3

3) 1.245 62%

C(B1sp3
3 | H3s) 0.130 6.5%

C(X1 ∪X2 ∪X3 | rest) 0.535 6.7%

C(X1 | X2) 0.066 1.1%

C(X1 | X3) 0.639 16%

TABLE II: Correlation measures for diborane(4).
Relative values are related to the upper bounds.

Labeling of localized orbitals corresponds to Figure 4.

both B atoms is present40. This is also the picture re-
sulting from our analysis and depicted in Figure 4. In
comparison to diborane(6), we have the similar three-
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orbital clusters X1 and X2, but also the two-orbital clus-
ter X3 containing sp3 hybrid orbitals on B atoms and
corresponding to the aforementioned B-B bond.

Considering the cluster X1, one can observe in Table
II that it is more correlated with the remaining orbitals
than in case of diborane(6). The value of C(X1 | rest)
is more than two times larger, but the picture of X1 as
a standalone chemical bond is still justifiable. Conse-
quently, the reduced density operator ρX1 is more mixed,
with the principal eigenvalue 0.7803. The remaining
eigenstates share low probabilities (below 0.081), and
therefore, the picture of X1 as a standalone chemical
bond is still a reasonable qualitative description. The
principal eigenstate is again two-electron, i.e. electron-
deficient, and it has the following form

|ψX1
〉 =

− 0.2287 |−− ↑↓〉 − 0.3671 |− ↑↓ −〉 − 0.2287 |↑↓ −−〉
+ 0.3823 |− ↓ ↑〉 − 0.3823 |− ↑ ↓〉 − 0.2967 |↓ − ↑〉
+ 0.3823 |↑ ↓ −〉 − 0.3823 |↓ ↑ −〉+ 0.2967 |↑ − ↓〉 .

Similarly to diborane(6), higher electron density is on the
bridging H atom, which is due to its higher electronega-
tivity.

Comparing the two-orbital correlations inside X1 with
diborane(6) (Tables I and II), one can see a weaker cor-
relation between sp3 hybrid orbitals on B atoms and
H 1s orbital, but a slightly stronger correlation between
both B-atom-orbitals. This stronger correlation can
be certainly assigned to a shorter distance of B atoms
(1.477Å vs. 1.784Å). Based on the values of C2-part(X1)
and C3-part(X1), the covalent bond corresponding to the
clusterX1 is slightly weaker (in terms of correlation) than
the same bond in diborane(6).

For the cluster X3 = {B1sp3
3, B2sp3

3}, correlation
with the remaining orbitals is stronger than for X1

and X2, which in turn weakens the internal two-orbital
correlation. The major contribution to the correla-
tion of X3 with the remaining orbitals originates from
C(B1sp3

3 | H3s), which is still very weak compared to
other correlations in the molecule (see Table II).

The overall correlation of the three bonding clusters
X1, X2, and X3 with the rest of the system is similarly
weak as in diborane(6) so the considered bonding can be
described independently of the rest of the molecule.

Beryllium complexes

In order to check how well our bonding picture of
Be(CAC)2 fits the one proposed by Arrowsmith et al.41,
we consider the clusters X1 and X2 from Figure 5. The
cluster X1 contains pz orbitals on C and Be atoms and
corresponds to the suggested three-center two-electron π
bond, whereas the cluster X2 contains C px orbitals and
Be s and px orbitals and corresponds to the σ bonds.

Let us start with X1. In Table III, one can see that
the correlation of X1 with the remaining orbitals is higher

than 30% of the maximum value, which means that the
picture of the three-orbital C-Be-C π bond might be good
as a qualitative description, but for a quantitatively ade-
quate description, we might seek to include further or-
bitals into X1, as shown below. This is also demon-
strated by weaker pairwise correlations within X1, es-
pecially C(C1pz | C2pz), than in the three-orbital bonds
discussed above. The correlations of the internal pairs in
X1 with the remaining orbitals are large (61% and 86%)
and clearly cannot be considered as standalone bonds.

The inaccuracy of the picture of a standalone three-
orbital bond is also demonstrated by the reduced den-
sity operator ρX1 (see in Appendix A), which is much
more mixed than in previous cases. It has three domi-
nant eigenvalues, instead of just one. The most signifi-
cant, nevertheless, corresponds to the two-electron state,
which is in agreement with the overall picture of the
three-orbital two-electron bond.

correlation abs. value rel. value

C(C1pz,C
2pz | rest) 3.424 86%

C(C1pz,Be pz | rest) 2.432 61%

C(X1 | rest) 2.032 34%

C(C1pz | C2pz) 0.194 9.7%

C(C1pz | Be pz) 0.681 34%

C2−part(X1) 1.153 58%

C3−part(X1) 1.834 46%

C(X1 | N1pz) 0.915 46%

C(X ′1 | rest) 0.209 2.6%

C(N1pz,C
1pz | rest of X ′1) 1.737 43%

C(N1pz | C1pz) 0.560 28%

C(X2 | rest) 0.209 2.6%

C(C1px | Be s) 0.765 38%

C(C1px | Be px) 0.771 39%

C2-part(X2) 1.936 97%

C(C1px | Be sp2) 1.912 96%

TABLE III: Correlation measures for Be(CAC)2.
Relative values are related to the upper bounds.

Labeling of localized orbitals corresponds to Figure 5.

As can be seen in Figure 5, the strongest external cor-
relation of X1 is C(X1 | N1pz). It results from a conjuga-
tion of pz orbitals and has a stabilization effect. Notice
that the N1-C1-Be-C2-N2 group of atoms form perfectly
planar structure (the dihedral angle αN-C-C-N = 179.97◦)
enabling an efficient overlap of all pz orbitals, which is
necessary for the aforementioned conjugation.

The more accurate bonding picture can thus be ob-
tained by considering the enlarged cluster X ′1

X1 7−→ X ′1 ≡ X1 ∪ {N1pz,N
2pz}.

The corresponding structure of Be(CAC)2 is depicted in
Figure 6a. The cluster X ′1 is independent of the rest of
the molecule. This follows from the negligible correlation
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N1

C1

N2

C2Be

N1pz C1pz

C1px

Be s

Be pz

Be px

C2px

C2pz N2pz

X1

X2

FIG. 5: Schematic view of Be(CAC)2 with mutual information. In order to be consistent with Figures 3 and 4, all
the atoms are depicted (dashed blue line circles), even though only a subset of orbitals (black dots) formed the

complete active space. Note that one ring is artificially flipped for clearer correlation picture. Sorted values of the
two-obital mutual information are plotted in Appendix A.

of X ′1 with the remaining orbitals (see Table III). Em-
ploying the standard notation, the π electron bond can
be denoted as Π6

5, i.e. six-electron (two electrons from
the Be atom and two from each N atom lone pair) five-
center bond, which is confirmed by the particle number
expectation value of 6.003.

(a) Be(CAC)2 (b) Be(CAC)2+2

FIG. 6: Structures of studied beryllium complexes
suggested by our correlation analysis.

In order to verify the suggested π back-donation
mechanism41, or in other words probe the local electronic
configuration of the Be atom, we have also performed

the correlation analysis for the dication [Be(CAC)2]2+.
As can be seen in Figure 7, the difference between the
correlation picture of Be(CAC)2 and [Be(CAC)2]2+ are
almost missing correlations inside the cluster X1, which
is for example demonstrated by the negligible value of
C2−part(X1) = 0.093. Also the reduced density operator
ρX1

is highly mixed and without the dominating two-
electron eigenstate (see in Appendix A). On the other
hand, the correlations in the cluster X2 remain practi-
cally unchanged.

This is in agreement with the picture of Be atom hav-
ing originally two electrons in the pz orbital. When the
C-Be-C bond is formed, they are shared with C-atom pz
orbitals through the back donation mechanism, as is de-
picted in Figure 2. These two π electrons are missing in
case of the dication and the aforementioned π bond is
clearly not formed.

Another feature of the correlation picture from Fig-
ure 7 is that there are considerably stronger pair-
wise correlations between C and N-atom pz orbitals
[C(N1pz | C1pz) = 1.691]. They are indeed of the
strength of donor-acceptor bonds94. We thus assign dou-
ble bonds between N and C atoms to the dication, as is
depicted in Figure 6b. The π bonds are formed from the



8

N1

C1

N2

C2Be

N1pz

C1px

Be s

N2pzC1pz Be pz

Be px

C2px

C2pz

X1

X2

FIG. 7: Schematic view of [Be(CAC)2]2+ with mutual information. Note that one ring is artificially flipped for
clearer correlation picture.

originally doubly filled N pz orbitals and empty C pz or-
bitals. The existence of these π bonds is also confirmed
by almost perfectly planar environment with the dihedral
angle αH-N-C-Be = 1.26◦. Note that in Figure 7, we can
see only the part of the double bond corresponding to
the π bond - the σ bonds along the rings are excluded
from the active space.

Let us now turn to the X2 cluster of Be(CAC)2, i.e.
to the σ bonding. The correlation of X2 with the re-
maining orbitals is insignificant, however splitting of the
four-orbital cluster into two σ bonds is not possible in
this basis. It may therefore seem that the correct σ bond
is also multiorbital. It is, however, only the artefact of
the atomic-like basis, which was used in order to directly
compare with Ref. 41. By simple rotation of Be s and px
orbitals (forming the sp hybrids as in case of diboranes),
one can form two independent σ bonds, essentially with-
out influencing the rest of the system, which can be seen
in Figure 8. Note that in the correlation theory of the
chemical bond, superposing orbitals is allowed if this does
not affect their locality too much. So superposing orbitals
on different atoms is usually forbidden, while doing the
same on a given atom is allowed.

Last but not least, we would like to compare the
strength of both contributions to the bonding of the
C-Be-C core, namely the π bond (clusters X1 and X ′1)

C1 C2Be

C2px

Be sp
2

Be sp
1

C1px

FIG. 8: Mutual information of the Be(CAC)2 σ bonding
channel after the rotation of Be s and Be px orbitals.

and the σ bond (cluster X2). In the previous study41, it
was shown by means of the energy decomposition analy-
sis combined with natural orbitals for chemical valence
(EDA-NOCV)95 that the π bonding channel is consider-
ably more energy stabilizing than the σ channel. Let us
now check the strength of both contributions by means
of the correlations.
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When using the more rough (three-orbital two-
electron) description of the π bond (cluster X1) and
by looking at Table III, one can see on the values of
C2−part that σ bonds are considerably stronger than
the π bond. The situation, however, dramatically
changes when we use more accurate conjugated descrip-
tion (cluster X ′1). Note that since we are not inter-
ested in a split dissecting N and C, (because the N-C
bond on the ring is stabilized by another σ bond, not
visible on the plots), we have to consider the pz or-
bitals together on N and C atoms of the same ring,
and calculate C2−part(N

1pz,C
1pz | Be pz | N2pz,C

2pz),
which turns out to be C(N1pz,C

1pz | rest of X ′1). Also
note that in this paragraph we compared the absolute
values of the correlation measures, because the clusters
are of different sizes.

In Table III, one can see that the more accurate de-
scription of the π bond (X ′1) makes it of a similar strength
as the σ bonds (1.737 vs 1.936). We believe that our re-
sults describe the nature of a Be(CAC)2 bonding reli-
ably, especially because we have used the genuine mul-
tireference description unlike in Ref. 41, where the ana-
lysis was based on the density functional theory (BP86
functional). We would also like to note that we have
studied slightly different system than in Ref. 41. In our
case all substituents were replaced by hydrogen atoms.
This, however, should not influence the electronic struc-
ture of the C-Be-C core. Also note that using the s
and px orbitals on beryllium in X2 was only for the
purpose of comparison with the previous study41. For
having a more physical picture, we should use the hy-
bridized orbitals (Figure 8), by which X2 consists of two
simple covalent bonds. Then, in order to character-
ize the strength of the bond, we would wave to con-
sider the Be sp1 and sp2 orbitals together and calculate
C2−part(C

1px | Be sp1, Be sp2 | C2px) = 1.935. Never-
theless, since this value is nearly identical to C2−part(X2),
the conclusion is the same.

CONCLUSIONS

In this article, we have reviewed the recently developed
correlation theory of the chemical bond26 and applied it
on molecules with multicenter electron-deficient bonds.
We have demonstrated the usefulness of our methodology
in characterizing molecular bonding properties by fin-
gerprints of correlations among individual orbitals which

form these types of bonds.

We have verified the computational procedure on a
textbook molecule with electron-deficient bonds, namely
diborane(6), and further characterized bonding in dibo-
rane(4) and zero-valent complexes of beryllium with in-
tricate bonding patterns. In all the cases, our results fit
well with known bonding pictures or previous theoreti-
cal predictions. We have therefore proved capabilities of
our new method to reliably describe bonding in complex
molecular systems.

In case of the Be(CAC)2 molecule, we have also com-
pared both contributions to the C-Be-C bonding (σ and
π), finding, in contrast to the previous study41, the σ and
π contributions of a similar strength, in the sense of corre-
lational quantities. We believe that our result is reliable
and attribute the discrepancy with the previous study
to the single reference description employed in Ref. 41,
which may not be accurate enough in this multireference
case.

Finally, we would like to note that, despite employing
the DMRG method35,36 for calculations of subsystem re-
duced density matrices, the theory presented in this ar-
ticle is general and other correlated methods can in prin-
ciple be employed as well16. Especially in cases of large
molecules with the electronic structure dominated by the
dynamical correlation for which the DMRG description
may be unnecessary and computationally prohibitive.
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Appendix A: Eigenvectors of the reduced density
operators

1. Be(CAC)2

The (reduced) density operator of the X1 orbitals con-
sists of the following eigenstates of the three highest
eigenvalues (probabilities).
Probability 0.5798:∣∣ψ1
X1

〉
= + 0.0864 |−− ↑↓〉+ 0.3255 |− ↓ ↑〉 − 0.3255 |− ↑ ↓〉

+ 0.3324 |− ↑↓ −〉+ 0.4748 |↓ − ↑〉 − 0.3254 |↓ ↑ −〉
− 0.4748 |↑ − ↓〉+ 0.3254 |↑ ↓ −〉+ 0.0863 |↑↓ −−〉

Probability 0.1473:∣∣ψ2
X1

〉
=− 0.2010 |− ↓ ↑↓〉 − 0.2630 |− ↑↓ ↓〉 − 0.3980 |↓ − ↑↓〉
− 0.2781 |↓ ↓ ↑〉+ 0.5562 |↓ ↑ ↓〉 − 0.2630 |↓ ↑↓ −〉
− 0.2781 |↑ ↓ ↓〉 − 0.3980 |↑↓ − ↓〉+ 0.2010 |↑↓↓ −〉

Probability 0.1473:∣∣ψ3
X1

〉
= + 0.2010 |− ↑ ↑↓〉+ 0.2630 |− ↑↓ ↑〉 − 0.2781 |↓ ↑ ↑〉

+ 0.3980 |↑ − ↑↓〉+ 0.5562 |↑ ↓ ↑〉 − 0.2781 |↑ ↑ ↓〉
+ 0.2630 |↑ ↑↓ −〉+ 0.3980 |↑↓ − ↑〉 − 0.2010 |↑↓ ↑ −〉

all the other eigenvalues are less than 0.033.

2. [Be(CAC)2]
2+

As mentioned earlier in the text, the reduced density
operator for X1 is highly mixed in this this case, with
no dominant state. Therefore we only list the highest
eigenvalues to show this:

0.1016, 0.1007, 0.1007, 0.1007, 0.1002,

0.1002, 0.0899, 0.0899, 0.0868, 0.0214.

3. Distribution of the two-orbital correlations

Figure 9 shows the distribution of the two-orbital cor-
relations for diborane and beryllium complexes.
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FIG. 9: The distributions of the two-orbital correlations for diborane and beryllium complexes.
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