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Abstract. For a class of density functions q(x) on R
n we prove an inequality be-

tween relative entropy and the weighted sum of conditional relative entropies of the

following form:

D(p||q) ≤

Const.

n∑

i=1

ρi ·D(pi(·|Y1, . . . , Yi−1, Yi+1, . . . , Yn)||Qi(·|Y1, . . . , Yi−1, Yi+1, . . . , Yn))

for any density function p(x) on R
n, where pi(·|y1, . . . , yi−1, yi+1, . . . , yn) and

Qi(·|x1, . . . , xi−1, xi+1, . . . , xn) denote the local specifications of p resp. q, and ρi
is the logarithmic Sobolev constant of Qi(·|x1, . . . , xi−1, xi+1, . . . , xn). Thereby we

derive a logarithmic Sobolev inequality for a weighted Gibbs sampler governed by the
local specifications of q. Moreover, the above inequality implies a classical logarith-

mic Sobolev inequality for q, as defined for Gaussian distribution by L. Gross. This

strengthens a result by F. Otto and M. Reznikoff. The proof is based on ideas devel-
oped by F. Otto and C. Villani in their paper on the connection between Talagrand’s

transportation-cost inequality and logarithmic Sobolev inequality.
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1. Introduction.

The motivation for this paper was to prove logarithmic Sobolev inequalities on
product spaces, under possibly general conditions.

First we define some basic concepts:

Definition. For probability measures p and q on R
m (m ≥ 1 integer), we denote

by D(p‖q) the relative entropy of p with respect to q:

D(p‖q) =
∫

Rm

log
dp(u)

dp(u)
dp(u) if p << q, (1.1)

and ∞ otherwise. We always have in mind probability measures absolutely con-
tinuous with respect to the Lebesgue measure, and denote by the same letter their
density functions. If p and q are density functions on R

m then

D(p‖q) =
∫

Rm

p(u) log
p(u)

q(u)
du if p << q, (1.2)

and ∞ otherwise. If Z and U are random variables with values in R
m and dis-

tributed according to p = L(Z) resp. q = L(U), then we shall also use the notation
D(Z‖U) for the relative entropy D(p‖q).

Definition. For measures p and q on R
m, the Fisher information of p with respect

to q is defined as

I(p‖q) =
∫

Rm

∣

∣

∣

∣

∇ log
p(u)

q(u)

∣

∣

∣

∣

2

p(du), (1.3)

if log(p(u)/q(u)) is smooth.

Definition. The distribution q on R
m satisfies a logarithmic Sobolev inequality

with constant ρ if

D(p||q) ≤ 1

2ρ
· I(p‖q)

for all density functions p on R
m with log(p(u)/q(u)) smooth.

A logarithmic Sobolev inequality for a probability measure q is equivalent to
the hypercontractivity of the diffusion semigroup associated with q. The prototype
is Gross’ logarithmic Sobolev inequality for Gaussian measure which is associated
to the Ornstein-Uhlenbeck semigroup [1], [2]. Another use of logarithmic Sobolev
inequalities is to derive transportation cost inequalities (a tool to prove measure
concentration), c.f. F. Otto, C. Villani [3]. The logarithmic Sobolev inequality
for the stationary distribution of a spin system is equivalent to the property called
“exponential decay of correlation”; for this concept we refer to Bodineau and Helffer
[4] and Helffer [5].



LOGARITHMIC SOBOLEV INEQUALITIES 3

In Euclidean spaces of dimension greater than 1, no simple characterization is
available for the measures q satisfying a logarithmic Sobolev inequality with some
positive constant. A well-known sufficient condition was given by Bakry and Emery
[6]: A density function q(x) = exp(−V (x)) on R

m satisfies a logarithmic Sobolev
inequality provided V is uniformly strictly convex. Another useful result is Holley
and Stroock’s perturbation lemma [7] which asserts that if q and q̃ are density
functions on R

m, such that the ratio q̃(x)/q(x) is bounded both from above and
below, then q and q̃ either both satisfy a logarithmic Sobolev inequality, or neither
of them does.

For measures on Euclidean spaces with non-compact support, it has been a chal-
lenging task to derive logarithmic Sobolev inequalities from logarithmic Sobolev
inequalities for the local specifications. (The local specifications of the measure q =
L(X1, . . . , Xm) on R

m are the conditional densitiesQi(·|x1, . . . , xi−1, xi+1, . . . , xm) =
L(Xi|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xm = xm).) Let q be a density
function on a Euclidean space, and assume that the local specifications of q satisfy
logarithmic Sobolev inequalities with constants ρi. It has been clear for a long time
that a reasonable approach to prove a logarithmic Sobolev inequality for q is to
assume that the mixed partial derivatives of V (x) = − log q(x) are not too large
relative to the numbers ρi. This line was followed by B. Zegarlinski [8] and, follow-
ing in his footsteps, G. Royer [9], Théorèm 5.2.1). Their results were improved by
F. Otto and M. Reznikoff [10]. The present paper follows this line, too. The con-
ditions of Otto and Reznikoff’s main theorem helped to find the proper conditions
for the results in the present paper, however, our approach is entirely different from
their’s. We shall discuss Otto and Reznikoff’s theorem at the end of Section 2.

2. Statement of the results

Let RN denote the N -dimensional Euclidean space equipped with the Euclidean
distance and the Borel σ-algebra.

Let us fix a density function

q(x) = exp(−V (x)), x ∈ R
N .

We shall use the following

Notation:

• q : a fixed density function on R
N ;

• X = (X1, X2, . . . , XN) : random sequence in R
N , L(X) = q;

• p : another density function on R
N ;

• Y = (Y1, Y2, . . . , YN ) : random sequence in R
N , L(Y ) = p;
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• (Ik, k = 1, 2, . . . , n): a partition of [1, N ], |Ik| = nk;

• for x ∈ R
N , x(k) ,

{

xi : i ∈ Ik
}

, x̄(k) ,
{

xi : i /∈ Ik
}

;

• X(k) and X̄(k): the corresponding segments of X ;

• Y (k) and Ȳ (k): the corresponding segments of Y ;

• q̄(k) , L
(

X̄(k)
)

, Q(k)(·|x̄(k)) , L
(

X(k)|X̄(k) = x̄(k)
)

;

• p̄(k) , L
(

Ȳ (k)
)

, p(k)(·|ȳ(k)) , L
(

Y (k)|Ȳ (k) = ȳ(k)
)

.

We consider RN as the product of Euclidean spaces R(k) of dimension nk.

Definition. The conditional distributions Q(k)(·|x̄(k)) and p(k)(·|x̄(k)) are called
the local specifications of q resp. p.

To formulate the main results of this paper, we also need the concept of (average)
conditional relative entropy, together with some more notation:

Definition. If we are given a probability measure π = L(S) on R
ℓ (ℓ ≥ 1 integer),

and conditional distributions µ(·|s) = L(Z|S = s), ν(·|s) = L(U |S = s) on R
m

then consider the average relative entropy

EπD
(

µ(·|S)‖ν(·|S)
)

=

∫

Rℓ

D
(

µ(·|s)‖ν(·|s)
)

π(ds).

For EπD(µ(·|S)‖ν(·|S)) we shall use either of the notations

D
(

µ(·|S)‖ν(·|S)
)

, D
(

µ(·|S)‖U |S
)

, D
(

Z|S)‖ν(·|S)
)

, D
(

Z|S)‖U |S)
)

.

For a fixed measure q on R
N , we want to derive an inequality of the form

D(p||q) ≤ 1

ρ
·

n
∑

k=1

ρk ·D
(

p(k)(·|Ȳ (k))||Q(k)(·|Ȳ (k))
)

for all p on R
N , (2.1)

for some positive constants ρk, 1 ≤ k ≤ n, and ρ. I.e., we want to boundD(p‖q) by a
weighted sum of the “single phase”conditional entropiesD

(

p(k)(·|Ȳ (k))||Q(k)(·|Ȳ (k))
)

.
A bound of type (2.1) holds only for a restricted class of probability measures q,
and we want a sufficient condition for (2.1). Since relative entropy measures in a
way how different probability measures are, inequality (2.1) allows us to conclude
to closeness of p and q from the closeness of their local specifications. Moreover,
an inequality of type (2.1) ensures that upper bounds for the “single phase” rela-
tive entropies D(p(k)(·|ȳ(k))||Q(k)(·|ȳ(k))) that hold uniformly in ȳ(k), yield a bound
for D(p‖q). This is a way to get logarithmic Sobolev inequalities for measures on
product spaces.

To get inequality (2.1), we make three assumptions explained below. Recall that
(Ik, k = 1, 2, . . . , n) is a partition of [1, N ].
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Assumption 1. Assume thatQ(k)(·|x̄(k)) satisfies a logarithmic Sobolev inequality
with constant ρk for all x ∈ R

N and k ∈ [1, n].

Consider the Hessian of V (x) = − log q(x), i.e., the matrix
(

Vi,j(x)
)

i,j∈[1,N ]
,

where we denote by Vi,j(x) the second partial derivatives of V (x).

Assumption 2. Assume that, for each k ∈ [1, n], the matrix (Vi,j(x))i,j∈Ik is
bounded from below by some (possibly negative) constant times the identity.

To formulate Assumption 3, we introduce the following

Notation. Under Assumption 1, and for sequences x, ξ ∈ R
N fixed, we denote by

A(x, ξ) the matrix with elements

Ai,j(x, ξ) =
Vi,j(x̄

(ℓ), ξ(ℓ))√
ρk ·

√
ρℓ

for i ∈ Ik, j ∈ Iℓ, k 6= ℓ,

Ai,j(x, ξ) = 0 if i and j belong to the same set Ik.

Moreover, for sequences x, ξ ∈ R
N and 0 < ρ < min ρk, we denote by Aρ(x, ξ) the

matrix with elements

Aρ
i,j(x, ξ) =

Vi,j(x̄
(ℓ), ξ(ℓ))√

ρk − ρ · √ρℓ − ρ
for i ∈ Ik, j ∈ Iℓ, k 6= ℓ,

Aρ
i,j(x, ξ) = 0 if i and j belong to the same set Ik.

(Thus A(x, ξ) = A0(x, ξ).)

Remark. Unless the matrix Aρ(x, ξ) is constant in x, it is not symmetric, since in
the definition of Aρ

i,j(x, ξ) (i ∈ Ik, j ∈ Iℓ), we use ξ(ℓ), and not ξ(k).

Assumption 3. We assume that

sup
x,ξ

∥

∥A(x, ξ)
∥

∥ , 1− δ < 1, (2.2)

and that ρ is such that
sup
x,ξ

∥

∥Aρ(x, ξ)
∥

∥ ≤ 1. (2.3)

Conditions (2.2) and (2.3) shall be used in the following form: For all x, ξ, u, v ∈
R

N ,
∣

∣

∣

∣

∣

∑

k,ℓ∈[1,n],k 6=ℓ

∑

i∈Ik,j∈Iℓ

ui · Vi,j

(

x, ξ
)

· vj

∣

∣

∣

∣

∣

≤ (1− δ) ·

√

√

√

√

n
∑

k=1

ρk · |u(k)|2 ·

√

√

√

√

n
∑

ℓ=1

ρℓ · |v(ℓ)|2 (2.4)



6 AN INEQUALITY FOR RELATIVE ENTROPY

and
∣

∣

∣

∣

∣

∑

k,ℓ∈[1,n],k 6=ℓ

∑

i∈Ik,j∈Iℓ

ui · Vi,j

(

x, ξ
)

· vj

∣

∣

∣

∣

∣

≤

√

√

√

√

n
∑

k=1

(ρk − ρ) · |u(k)|2 ·

√

√

√

√

n
∑

ℓ=1

(ρℓ − ρ) · |v(ℓ)|2, (2.5)

respectively.

Theorem 1. If Assumptions 1-3 hold then

D(p||q) ≤ 1

ρ
·

n
∑

k=1

ρk ·D
(

p(k)
(

·|Ȳ (k)
)

||Q(k)(·|Ȳ (k))

)

(2.6)

for any probability measure p on R
N .

Theorem 2. Under Assumptions 1-3, q satisfies a logarithmic Sobolev inequality
with constant ρ.

Theorem 2 follows from Theorem 1, using Assumption 1 and the fact that by
the definition of the operator ∇

I(p‖q) =
n
∑

k=1

EI
(

p(k)(·|Ȳ (k))
∥

∥ Q(k)(·|Ȳ (k))
)

.

The statement of Theorem 2 was proved by F. Otto and M. Reznikoff [10],
under a condition similar to, but stronger than, Assumption 3. We discuss Otto
and Reznikoff’s theorem at the end of this section.

Next we formulate a logarithmic Sobolev inequality for a discrete time Markov
process governed by the local specifications Q(k)(·|ȳ(k)).

Definition of weighted Gibbs sampler.

Given a partition (Ik, k = 1, 2, . . . , n) of [1, N ], and local specifiations Q(k)(·|ȳ(k)
)

,

the weighted Gibbs sampler Γ with weights (π(k), k = 1, 2, . . . , n) is the Markov
operator on the probability measures p (on R

N ) defined by

Γ =

n
∑

k=1

πkΓk, Γk(z|y) = δ
(

ȳ(k), z̄(k)
)

·Q(k)
(

z(k)|ȳ(k)
)

.

(Here δ denotes Kronecker’s δ.)
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Corollary to Theorem 1.

If Assumptions 1-3 hold then for the weighted Gibbs sampler Γ with weights

(

ρk/R, k = 1, 2, . . . , n
)

, R =
∑

k

ρk,

we have

D(p||q) ≤ R

ρ
·
(

D(p||q)−D(pΓ||q)
)

. (2.7)

Thus

D(pΓm||q) ≤
(

1− ρ

R

)m

·D(p||q).

(2.7) follows from Theorem 1 by the inequality

D(pΓ||q) ≤ 1

R

n
∑

k=1

ρkD(pΓk||q)

(a consequence of the convexity of relative entropy) and the identity

D(p||q)−D(pΓk||q) = D

(

p(k)
(

·|Ȳ (k)
)

||Q(k)(·|Ȳ (k))

)

.

(2.7) can be considered as a logarithmic Sobolev inequality for the Gibbs sampler
Γ. Indeed, for the Markov process defined by Γ, it bounds relative entropy (from
the stationary distribution) by the decrease of relative entropy along the Markov
process.

Next we formulate a transportation-cost inequality that follows from Theorem
2, using the Otto-Villani theorem (Theorem 1 in [3]). We need the following defi-
nitions:

Definition. The quadratic Wasserstein distance between the probability measures
r and s on R

m is defined as

W (r, s) = inf
π
[Eπ|ξ − η|2]1/2,

where ξ and η are random variables with laws r resp. s, |ξ − η| denotes Euclidean
distance, and infimum is taken over all distributions π = L(ξ, η) with marginals r
and s.
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Definition. A probability measure s on R
m satisfies a transportation-cost inequal-

ity with constant ρ if

W 2(r, s) ≤ 2

ρ
·D(r‖s)

for all probability measures r on R
m.

Transportation-cost inequalities are useful in proving measure concentration in-
equalities. A transportation-cost inequality for the case when q is Gaussian, was
proved by Talagrand [11]. Otto and Villani generalized Talagrand’s inequality as
follows:

Otto and Villani’s theorem for Euclidean spaces. [3],[12]
If a density function on R

m satisfies a logarithmic Sobolev inequality then it satisfies
a transportation-cost inequality with the same constant.

By Otto and Villani’s theorem, Theorem 2 implies the following

Theorem 3.

If Assumptions 1-3 hold then q satisfies a transportation-cost inequality with con-
stant ρ.

In [13], corrected in [14], the statement of Theorem 3, for equal ρk’s, was proved
modulo an absolute constant factor.

Now we compare Theorem 2 with the result of [10].

In [10] the statement of Theorem 2 is proved under the following condition in
place of (2.3):

For k, ℓ ∈ [1, n], k 6= ℓ, and x ∈ R
N , consider the following minors of the Hessian

of V (x):

Kk,ℓ(x) =

(

Vi,j(x)

)

i∈Ik,j∈Iℓ

,

and set
κk,ℓ = sup

x

∥

∥

(

Kk,ℓ(x)
)
∥

∥.

Then consider the n× n matrix

K =
(

κk,ℓ

)

k,ℓ∈[1,n],k 6=ℓ
.

(K has 0’s in the main diagonal.) Otto and Reznikoff use the assumption that

K ≤ Λ
(

{ρk − ρ}
)

, (2.3’)
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where Λ
(

{ρk − ρ}
)

denotes the n× n diagonal matrix with elements ρk − ρ. With
the notation

κ′
k,ℓ =

κk,ℓ√
ρk − ρ · √ρℓ − ρ

K ′ρ =
(

κ′
k,ℓ

)

k,ℓ∈[1,n],k 6=ℓ
,

(2.3’) can be written in the form

K ′ρ ≤ Id,

where Id is the n×n identity matrix. Since K ′ρ is symmetric, this means that the
largest eigenvalue of K ′ρ is ≤ 1. The elements of K ′ρ are non-negative, thus, by
Perron’s theorem, the largest eigenvalue of K ′ρ equals

∥

∥ K ′ρ
∥

∥. I.e., in [10] it is
actually assumed that

∥

∥ K ′ρ
∥

∥≤ 1, (2.3”)

which is clearly stronger than (2.3).

Remark.
If q is Gaussian then the Hessian of V (x) does not depend on x. Otto and
Reznikoff’s result is tight for Gaussian distributions with attractive interactions.
(For R

(k) = R; attractivity means that Vi,j ≤ 0 for i 6= j.) For q Gaussian and

R
(k) = R, Theorem 2 can be formulated as follows: If

∥

∥ A0
∥

∥< 1 then q satisfies
a logarithmic Sobolev inequality with constant ρ, where ρ is the largest number
satisfying

∥

∥ Aρ
∥

∥= 1. (2.8)

Thus Theorem 2 is tight for those Gaussian distributions q for which
∥

∥ Aρ
∥

∥ (for the
ρ defined by (2.8)) is given by the absolute value of the smallest negative eigenvalue
(and not the largest positive one).

Example.
Assumption 3 is practically impossible to check, except when the mixed partial
derivatives of V (x) are constants. Otherwise we probably cannot do better than use
Otto and Reznikoff’s theorem. However, if the mixed partial derivatives of V (x) are
all constants then Theorem 2 may give a better result. Indeed, let V (x) = − log q(x)
be of the form

V (x) =
n
∑

k=1

φk(x) +
∑

k,ℓ∈[1,n],k 6=ℓ

ak,ℓ · xk · xℓ,

where for each k and fixed x̄k, the single phase density Ck(x̄k) ·exp(−φk(xk, x̄k)), as
a function of xk, satisfies a logarithmic Sobolev inequality with a common constant
ρ. Theorem 2 guaranties a positive logarithmic Sobolev constant if the matrix with
elements

ak,ℓ outside the main diagonal, and 0 otherwise
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has norm < ρ. On the other hand, Otto and Reznikoff’s theorem guaranties a
positive logarithmic Sobolev constant if the matrix with elements

|ak,ℓ| outside the main diagonal, and 0 otherwise

has norm < ρ. To see a concrete example when the first condition holds, but
the second does not, consider the infinite dimensional Toeplitz matrix B = (bk,ℓ)
defined by

bk,k+1 = 1, bk,k+2 = −1, bk,ℓ = 0 for ℓ ≥ k, ℓ /∈ {k + 1, k + 2},

and bk,ℓ = bℓ,k. From the theory of Toeplitz matrices (c.f. [15]) we know that

∥

∥ B
∥

∥= 2 ·max
∣

∣cosx− cos(2x)
∣

∣ =
9

4
,

while for the matrix abs(B) consisting of the absolute values of bk,ℓ, we get

∥

∥ abs(B)
∥

∥= 2 ·max
∣

∣cosx+ cos(2x)
∣

∣ = 4.

Denote by Bm and abs(Bm) the matrices consisting of the first m rows and columns
of B resp. abs(B); clearly ||Bm|| ≤ 9/4 and limm→∞ ||abs(Bm)|| = 4. Therefore, if
we take A = Bm, and if the functions φk(x) in the definition of V (x) are such that
the single phase densities Ck(x̄k) · exp(−φk(xk, x̄k)) satisfy a logarithmic Sobolev
inequality with a common constant > 9

4 then Theorem 2 guaranties a positive
logarithmic Sobolev constant for q = exp(−V ). However, we cannot get this from
Otto and Reznikoff’s theorem.
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3. Proof of Theorem 1.

Our approach to prove Theorem 1 is based on the interpolation between the prob-
ability measures p and q realized by the solution of the Fokker-Planck equation

∂tpt(y) = △pt(y) +∇ ·
(

pt(y) · ∇V (y)
)

, p0(y) = p(y). (3.1)

With the notation
h = p/q and ht = pt/q,

the Fokker-Planck equation (3.1) can be rewritten as follows:

∂tht = Lht , △ht −∇ht · ∇V, h0(y) = h(y). (3.2)

We have
Ep logh = D(p||q) and Ept

loght = D(pt||q).

Our argument heavily draws on the ideas developed in the paper by F. Otto and
C. Villani [3]. To be able to use the tools of [3], we need the limit relation

lim
t→∞

D
(

pt
∥

∥ q
)

= 0. (3.3)

To this end we prove a logarithmic Sobolev inequality for q with a much smaller
constant than claimed in Theorem 2. (It is disturbing that this weak preliminary
result requires a very lengthy proof.)

Auxiliary Theorem. If Assumptions 1-3 hold then q satisfies a logarithmic Sobolev
inequality with a constant C = C(R, ρmin, δ), where R =

∑n
k=1 ρk, ρmin = mink ρk

and δ = 1− supx,ξ ||A(x, ξ)||.

For the proof of Theorem 1 we also need the following simple lemma ( c. f. (32)
in [3]).

Approximation Lemma. In the proof of Theorem 1 we can restrict ourselves to
the case when V (x) = − log q(x) ∈ C∞, and h(x) = p(x)/q(x) is of the form

h(x) = (1− ε) · g(x) + ε, where

g ∈ C∞ is a compactly supported density function (with respect to q), and ε > 0.

The proofs of the Auxiliary Theorem and the Approximation Lemma are post-
poned to Section 4, although they are used in the proof of Theorem 1 in this section.

We need some more
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Notation.

Let
Yt = (Yt,1, Yt,2, . . . , Yt,N )

denote a random sequence with L(Yt) = pt, where pt is the solution of the Fokker-
Planck equation (3.1). In accordance with the notation at the beginning of Section
2, we write

Y
(k)
t =

{

Yt,i : i ∈ Ik
}

, Ȳ
(k)
t =

{

Yt,i : i /∈ Ik
}

.

Further, we set

p̄
(k)
t = L

(

Ȳ
(k)
t

)

, p
(k)
t

(

·|ȳ(k)t

)

= L
(

Y
(k)
t |Ȳ (k)

t = ȳ
(k)
t

)

.

By the Approximation Lemma we may assume that V ∈ C∞. Then the domain
of the operator L in (3.2) can be defined so as to contain the class D0 of those
functions h in C∞ that are bounded, and whose partial derivatives of any order,
multiplied by the partial derivatives of V of any order, are bounded. The class D0

is dense in L2(q) and stable under L.

Again by the Approximation Lemma we can assume that the function h0 = h in
(3.2) belongs to D0. As explained in [3], this implies that ht is uniformly bounded
from below and from above, and that, for t fixed, |∇ht|2 is bounded. (Here we use
the fact that, by Assumptions 2 and 3, the Hessian of V (x) is bounded from below
by a (possibly negative) constant times the identity.– In [3] assumption (32) of that
paper is used which is implied by the assumption h0 = h ∈ D0.)

Consequently, as explained in [3], under condition h0 = h ∈ D0, the Fokker-
Planck equation (3.2) defines a semigroup of diffeomorphisms

Φt : R
N 7→ R

N , 0 ≤ t < ∞, (3.4)

satisfying
∂tΦt(y) = −∇ loght(Φt(y)), (3.5)

and
ptΦs = pt+s. (3.6)

(3.6) means that pt+s is the image of pt under the map Φs. Since L(Yt) = pt, we
can think of the random sequences Yt as functions of Y = Y0:

Yt = Φt(Y ) = Φt(Y0).

Let us introduce the function

χ(y) =

n
∑

k=1

ρk
[

logh(y)− log h̄(k)(ȳ(k))
]

, y ∈ R
N ,
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where

h̄(k)
(

ȳ(k)
)

=
p̄(k)

(

ȳ(k)
)

q̄(k)
(

ȳ(k)
) =

∫

R(k)

h(y)Q(k)
(

dy(k))|ȳ(k)
)

.

(The integration domain is R
nk ; the superscript (k) indicates that integration is

with respect to the variable y(k).) We have

Epχ =

n
∑

k=1

ρk ·D
(

p(k)
(

·|Ȳ (k)
)
∥

∥ Q(k)
(

·|Ȳ (k)
)

)

.

Thus the statement of Theorem 1 is equivalent to

ρ · Ep logh ≤ Epχ.

It is well known (and a proof can be found in [3]) that

∂

∂t
D(pt||q) = −I(pt||q) = −Ept

∣

∣∇ loght

∣

∣

2
.

Thus, by (3.3),

D(p||q) = D(p||q)− lim
t→∞

D(pt||q) =
∫ ∞

0

Ept

∣

∣∇ loght

∣

∣

2
dt. (3.7)

We introduce, analogously to the definition of χ, the functions

χt(y) =

n
∑

k=1

ρk
[

log ht(y)− log h̄
(k)
t

(

ȳ(k)
)]

,

where
h̄
(k)
t

(

ȳ(k)
)

= p̄
(k)
t

(

ȳ(k)
)

/q̄(k)
(

ȳ(k)
)

.

We have

Ept
χt =

n
∑

k=1

ρk ·D
(

p
(k)
t

(

·|Ȳ (k)
t

)
∥

∥ Q(k)
(

·|Ȳ (k)
t

)

)

.

In particular, Ept
χt ≥ 0.

Using (3.7) and the fact that Ept
χt ≥ 0, for the proof of Theorem 1 it is enough

to prove the following two propositions:

Proposition 1.

Epχ− lim
t→∞

Ept
χt =

∫ ∞

0

Ept

{

∇χt · ∇ loght

}

dt. (3.8)
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Proposition 2.

Ept

{

∇χt · ∇ loght

}

≥ ρ · Ept

∣

∣∇ loght

∣

∣

2
.

Proof of Proposition 1.
For all y ∈ R

N we have

χ(y)− lim
t→∞

χt

(

Φt(y)
)

= −
∫ ∞

0

∂

∂t

(

χt

(

Φt(y)
))

dt.

Therefore, by Fubini’s theorem,

Ep

{

χ(Y )− lim
t→∞

χt

(

Φt(Y )
)

}

= −
∫ ∞

0

Ep

{

∂

∂t

(

χt(Φt(Y ))
)

}

dt. (3.9)

Denoting by dot derivation with respect to t, and using (3.5):

∂

∂t

(

χt

(

Φt(y)
)

)

= χ̇t

(

Φt(y)
)

−∇χt

(

Φt(y)
)

· ∇ loght

(

Φt(y)
)

. (3.10)

Further,

∂t
(

χt(z)
)

=

n
∑

k=1

ρk ·
[

∂t

(

loght(z)

)

− ∂t

(

log h̄
(k)
t

(

z̄(k)
)

)]

, z ∈ R
N .

(3.11)

To calculate ∂t(log h̄
(k)
t

(

z̄(k)
)

), we need the following

Lemma.

The solution ht of the Fokker-Planck equation (3.2) satisfies

||∂tht||L2(q) ≤ ||Lh0||L2(q) < ∞. (3.12)

Proof.
The operator L is defined on a dense subset D0 of L2(q). Moreover, L is symmetric
and negative definite on D0. Indeed, by partial integration we have

(Lf, g)L2(q) =

∫

RN

(

△f −∇V · ∇f
)

·gdq = −
∫

RN

∇f · ∇gdq.
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It follows that for λ > 0
(

(λI − L)f, f
)

L2(q)
≥ λ · ||f ||2

L2(q)
,

i.e.,
∥

∥

(

λI − L
)−1 ∥

∥≤ 1

λ
.

Thus by the Hille-Yosida theorem (c.f. [16]), there exists a contraction semigroup
(Pt : t ≥ 0) on L2(q) whose generator is L:

∂tPth0 = LPth0 for h0 ∈ D0, and ||Pt|| ≤ 1.

For h0 ∈ D0, the solution of (3.2) can be written as ht = Pth0, and since PtL = LPt,
we have

∂tht = ∂tPth0 = LPth0 = PtLh0,

which implies (3.12). �

By the above Lemma, ∂tht ∈ L1(q), so we can differentiate under the integral
sign in the next formula:

∂t

(

log h̄
(k)
t (z̄(k))

)

= ∂t

∫

R(k)

ht(z)Q
(k)

(

dz(k)|z̄(k)
)

=

∫

R(k) ∂t

(

ht(z)

)

Q(k)
(

dz(k)|z̄(k)
)

h̄
(k)
t

(

z̄(k)
)

=

∫

R(k)

∂t loght(z) ·
ht(z)

h̄
(k)
t

(

z̄(k)
)

Q(k)
(

dz(k)|z̄(k)
)

. (3.13)

By the definition of the function ht,

ht(z)

h̄
(k)
t

(

z̄(k))
Q(k)

(

dz(k)|z̄(k)
)

= p
(k)
t

(

dz(k)|z̄(k)
)

.

Thus (3.13) implies

∂t

(

log h̄
(k)
t

(

z̄(k)
)

)

=

∫

R(k)

∂t loght(z)p
(k)
t

(

dz(k)|z̄(k)
)

= Ept

{

∂t log ht|z̄(k)
}

, (3.14)

where z̄(k) in the condition of the expectation is a shorthand for Ȳ
(k)
t = z̄(k).

Substituting (3.14) into (3.11) we get

∂t
(

χt(z)
)

=

n
∑

k=1

ρk ·
[

∂t loght(z)− Ept

{

∂t loght|z̄(k)
}

]

.



16 AN INEQUALITY FOR RELATIVE ENTROPY

It follows that Ept
χ̇t = 0 which, together with (3.10), yields

Ep
∂

∂t

(

χt

(

Φt(Y )
)

)

= −Ept

{

∇χt · ∇ loght

}

.

Substituting this into (3.9) we get (3.8). �

Proof of Proposition 2.
We prove Proposition 2 for t = 0; for t > 0 the proof is the same. For a function
g : RN 7→ R set

∇(k)g(x) =
(

∂ig(x) : i ∈ Ik
)

.

We need the following

Proposition 3.

For k, ℓ ∈ [1, n], k 6= ℓ, we have

∇(k) log h̄(ℓ)
(

ȳ(ℓ)
)

= Ep

{

∇(k) log h|ȳ(ℓ)
}

−
∫

R(ℓ)×R(ℓ)

[

∇(k)V (ȳ(ℓ), ξ(ℓ))−∇(k)V (ȳ(ℓ), η(ℓ))
]

π(ℓ)(dξ(ℓ), dη(ℓ)|ȳ(ℓ)),
(3.15)

where π(ℓ)(dξ(ℓ), dη(ℓ)|ȳ(ℓ)) is an arbitrary coupling of the conditional measures
p(ℓ)

(

·|ȳ(ℓ)
)

and Q(ℓ)
(

·|ȳ(ℓ)
)

. (I.e., π(ℓ)(dξ(ℓ), dη(ℓ)|ȳ(ℓ)) is a conditional density on

R
(ℓ) × R

(ℓ) with marginals p(ℓ)(·|ȳ(ℓ)) and Q(ℓ)(·|ȳ(ℓ)).)

Proof of Proposition 3.
Since |∇h| is bounded (and |∇ht| is also bounded for t fixed), we have

∇(k)h̄(ℓ)(ȳ(ℓ)) =

∫

R(ℓ)

∇(k)

(

h
(

ȳ(ℓ), ξ(ℓ)
)

·Q(ℓ)
(

ξ(ℓ)|ȳ(ℓ)
)

)

dξ(ℓ). (3.16)

Further,

∇(k)Q(ℓ)
(

ξ(ℓ)|ȳ(ℓ)
)

= ∇(k) exp
(

−V
(

ȳ(ℓ), ξ(ℓ))
)

∫

R(ℓ) exp
(

−V (ȳ(ℓ), η(ℓ))
)

dη(ℓ)

= −∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

·Q(ℓ)(ξ(ℓ)|ȳ(ℓ))

+Q(ℓ)(ξ(ℓ)|ȳ(ℓ)) ·
∫

R(ℓ)

∇(k)V (ȳ(ℓ), η(ℓ))Q(ℓ)(dη(ℓ)|ȳ(ℓ))

= Q(ℓ)(ξ(ℓ)|ȳ(ℓ)) ·
∫

R(ℓ)

[

∇(k)V (ȳ(ℓ), η(ℓ))−∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

]

Q(ℓ)(dη(ℓ)|ȳ(ℓ)).
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It follows that

∇(k)

(

h
(

ȳ(ℓ), ξ(ℓ)
)

·Q(ℓ)
(

ξ(ℓ)|ȳ(ℓ)
))

)

= Q(ℓ)
(

ξ(ℓ)|ȳ(ℓ)
))

·
[

∇(k)h
(

ȳ(ℓ), ξ(ℓ)
)

+ h
(

ȳ(ℓ), ξ(ℓ)
)

·
∫

R(ℓ)

(

∇(k)V (ȳ(ℓ), η(ℓ))−∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

)

Q(ℓ)
(

dη(ℓ)|ȳ(ℓ)
)

]

.
(3.17)

Substituting (3.17) into (3.16):

∇(k)h̄(ℓ)(ȳ(ℓ))

=

∫

R(ℓ)

∇(k)h
(

ȳ(ℓ), ξ(ℓ)
)

Q(ℓ)(dξ(ℓ)|ȳ(ℓ))

+

∫

R(ℓ)

h
(

ȳ(ℓ), ξ(ℓ)
)

Q(ℓ)(dξ(ℓ)|ȳ(ℓ)) ·
∫

R(ℓ)

∇(k)V (ȳ(ℓ), η(ℓ))Q(ℓ)(dη(ℓ)|ȳ(ℓ))

−
∫

R(ℓ)

h
(

ȳ(ℓ), ξ(ℓ)
)

· ∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

Q(ℓ)
(

dξ(ℓ)|ȳ(ℓ)
)

=

∫

R(ℓ)

∇(k)h
(

ȳ(ℓ), ξ(ℓ)
)

Q(ℓ)(dξ(ℓ)|ȳ(ℓ)) + h̄(ℓ)(ȳ(ℓ)) ·
∫

R(ℓ)

∇(k)V (ȳ(ℓ), η(ℓ))Q(ℓ)(dη(ℓ)|ȳ(ℓ))

−
∫

R(ℓ)

h
(

ȳ(ℓ), ξ(ℓ)
)

· ∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

Q(ℓ)(dξ(ℓ)|ȳ(ℓ)).

Dividing both sides by h̄(ℓ)(ȳ(ℓ)):

∇(k) log h̄(ℓ)(ȳ(ℓ)) =

∫

R(ℓ)

∇(k) logh
(

ȳ(ℓ), ξ(ℓ)
)

· h
(

ȳ(ℓ), ξ(ℓ)
)

h̄(ℓ)
(

ȳ(ℓ)
) Q(ℓ)(dξ(ℓ)|ȳ(ℓ))

+

∫

R(ℓ)

∇(k)V
(

ȳ(ℓ), η(ℓ)
)

Q(ℓ)(dη(ℓ)|ȳ(ℓ))

−
∫

R(ℓ)

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

· h
(

ȳ(ℓ), ξ(ℓ)
)

h̄(ℓ)
(

ȳ(ℓ)
) Q(ℓ)(dξ(ℓ)|ȳ(ℓ)).

Since
h
(

ȳ(ℓ), ξ(ℓ)
)

h̄(ℓ)
(

ȳ(ℓ)
) Q(ℓ)(dξ(ℓ)|ȳ(ℓ)) = p(ℓ)(dξ(ℓ)|ȳ(ℓ)),

and
∫

R(ℓ)

∇(k) logh
(

ȳ(ℓ), ξ(ℓ)
)

p(ℓ)(dξ(ℓ)|ȳ(ℓ)) = Ep

{

∇(k) logh|ȳ(ℓ)
}

,

(3.15) follows. �
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Now we are ready to prove Proposition 2. By Proposition 3 we have

∇(k)χ(y) =

n
∑

ℓ=1

ρℓ ·
[

∇(k) logh(y)−∇(k) log h̄(ℓ)(y(ℓ))

]

=
n
∑

ℓ=1

ρℓ ·
[

∇(k) log h(y)− Ep

{

∇(k) log h̄|ȳ(ℓ)
}

]

+

∫

RN×RN

(

∑

ℓ6=k

ρℓ ·
[

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

−∇(k)V
(

ȳ(ℓ), η(ℓ)
)

])

Π(dξ, dη|y),

where Π(dξ, dη|y) denotes the conditional product measure
∏n

ℓ=1 π
(ℓ)

(

dξ(ℓ), dη(ℓ)|ȳ(ℓ)
)

.

It follows that

Ep

{

∇χ · ∇ logh
}

=

n
∑

k=1

ρk · Ep|∇(k) logh|2

+
∑

k,ℓ∈[1,n],ℓ6=k

ρℓ ·
[

Ep|∇(k) logh|2 − Ep

{

Ep

{

∇(k) log h|ȳ(ℓ)
}

· ∇(k) logh

}]

+ Ep,Π

{

∑

k,ℓ∈[1,n],ℓ6=k

ρℓ ·
[

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

−∇(k)V
(

ȳ(ℓ), η(ℓ)
)]

· ∇(k) log h.

}

,
(3.18)

Here Ep,Π denotes expectation with respect to the joint distribution L(Y, ξ, η),
defined by L(Y ) = p and L(ξ, η|Y ) = Π(dξ, dη|y).

For k 6= ℓ we have

Ep

{[

∇(k) logh(y)− Ep

{

∇(k) log h|ȳ(ℓ)
}

]

· ∇(k) log h(y)

}

= Ep

∣

∣

∣

∣

∇(k) log h(y)

∣

∣

∣

∣

2

− Ep

{

E
2
p

{

∇(k) log h|ȳ(ℓ)
}

}

≥ 0. (3.19)

To estimate the last line in (3.18), we introduce the notation

U(y, ξ) =
∑

k,ℓ∈[1,n],ℓ6=k

ρℓ · ∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

· ∇(k) logh(y), y, ξ ∈ R
N .

We have

∑

k,ℓ∈[1,n],ℓ6=k

ρℓ·
[

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

−∇(k)V
(

ȳ(ℓ), η(ℓ)
)

]

·∇(k) logh(y) = U(y, ξ)−U(y, η).

To estimate |U(y, ξ)− U(y, η)|, we carry out the followong calculation:
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∂

∂τ
U
(

y, η + τ(ξ − η)
)

=
∑

k,ℓ∈[1,n],ℓ6=k

∑

i∈Ik,j∈Iℓ

ρℓ · (ξj − ηj) · Vi,j

(

ȳ(ℓ), η(ℓ) + τ(ξ(ℓ) − η(ℓ))
)

· ∂i log h(y).

Hence, by Assumption 3 (c.f. (2.5)),

∣

∣

∣

∣

∂

∂τ
U
(

y, η + τ(ξ − η)
)

∣

∣

∣

∣

≤

√

√

√

√

n
∑

ℓ=1

∑

j∈Iℓ

(ρℓ − ρ) · ρ2ℓ · (ξj − ηj)2 ·

√

√

√

√

n
∑

k=1

∑

i∈Ik

(ρk − ρ) · |∂i logh(y)|2

=

√

√

√

√

n
∑

ℓ=1

(ρℓ − ρ) · ρ2ℓ · (ξ(ℓ) − η(ℓ))2 ·

√

√

√

√

n
∑

k=1

(ρk − ρ) · |∇(k) logh(y)|2.

It follows that for all y, ξ and η

∣

∣

∣

∣

∑

k,ℓ∈[1,n],ℓ6=k

ρℓ ·
[

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

−∇(k)V
(

ȳ(ℓ), η(ℓ)
)

]

· ∇(k) logh(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

U(y, ξ)− U(y, η)

∣

∣

∣

∣

≤

√

√

√

√

n
∑

ℓ=1

(ρℓ − ρ) · ρ2ℓ ·
∣

∣ξ(ℓ) − η(ℓ)
∣

∣

2 ·

√

√

√

√

n
∑

k=1

(ρk − ρ) ·
∣

∣∇(k) log h(y)
∣

∣

2
.

Now the last line of (3.18) can be estimated as follows:

Ep,Π

∣

∣

∣

∣

{

∑

k,ℓ∈[1,n],ℓ6=k

ρℓ ·
[

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

−∇(k)V
(

ȳ(ℓ), η(ℓ)
)]

· ∇(k) logh

}
∣

∣

∣

∣

≤

√

√

√

√

n
∑

ℓ=1

(ρℓ − ρ) · ρ2ℓ · Ep,Π

∣

∣ξ(ℓ) − η(ℓ)
∣

∣

2 ·

√

√

√

√

n
∑

k=1

(ρk − ρ) · Ep

∣

∣∇(k) logh(y)
∣

∣

2
.

(3.20)

Our calculations are valid for any coupling of the conditional densities p(ℓ)(dξ(ℓ)|ȳ(ℓ))
and Q(ℓ)(dη(ℓ)|ȳ(ℓ)). Now we specify π(ℓ)(dξ(ℓ), dη(ℓ)|ȳ(ℓ)) so as to achieve

Eπℓ

{

|η(ℓ) − ξ(ℓ)|2|ȳ(ℓ)
}

= W 2

(

p(ℓ)(·|ȳ(ℓ)), Q(ℓ)(·|ȳ(ℓ))
)

for any ȳ(ℓ).



20 AN INEQUALITY FOR RELATIVE ENTROPY

By Assumptions 1 and 2, the Otto-Villani theorem can be applied to Q(ℓ)(·|ȳ(ℓ)).
Using also the logarithmic Sobolev inequality for Q(ℓ)(·|ȳ(ℓ)), we get

Eπℓ

{

|η(ℓ) − ξ(ℓ)|2
∣

∣ ȳ(ℓ)
}

≤ 2

ρℓ
·D

(

p(ℓ)(·|ȳ(ℓ))
∥

∥ Qi(·|ȳ(ℓ))
)

≤ 1

ρ2ℓ
· I

(

p(ℓ)
(

·|ȳ(ℓ)
)
∥

∥ Q(ℓ)
(

·|ȳ(ℓ)
)

)

=
1

ρ2ℓ
· Ep

{

∣

∣∇(ℓ) log h
∣

∣

2 ∣

∣ ȳ(ℓ)
}

(3.21)

for any ȳ(ℓ). Substituting (3.21) into (3.20):

Ep,Π

∣

∣

∣

∣

{

∑

k,ℓ∈[1,n]ℓ6=k

ρℓ ·
[

∇(k)V
(

ȳ(ℓ), ξ(ℓ)
)

−∇(k)V
(

ȳ(ℓ), η(ℓ)
)]

· ∇(k) log h

}
∣

∣

∣

∣

≤
n
∑

k=1

(ρk − ρ) · Ep

∣

∣∇(k) logh
∣

∣

2
. (3.22)

Substituting (3.19) and (3.22) into (3.18):

Ep

{

∇χ · ∇ logh
}

≥
n
∑

k=1

ρk · Ep

∣

∣∇(k) logh
∣

∣

2 −
n
∑

k=1

(ρk − ρ) · Ep

∣

∣∇(k) logh
∣

∣

2

= ρ ·
n
∑

k=1

∣

∣∇(k) logh
∣

∣

2
= ρ · Ep

∣

∣∇ logh
∣

∣

2
. �
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4. Proof of the Auxiliary Theorem and the Approximation Lemma

In the proof of the Auxiliary Theorem we use the weighted Gibbs sampler Γ with
weights ρk/R, R =

∑

k ρk, defined in Section 2:

Γ =
1

R
·

n
∑

k=1

ρk · Γk, Γk(z|y) = δ
(

ȳ(k), z̄(k)
)

·Q(k)
(

z(k)|ȳ(k)
)

.

Recall that
sup
x,ξ

∥

∥A(x, ξ)
∥

∥ , 1− δ < 1.

Proposition 4. Under Assumptions 1-3, for fixed z, u ∈ R
N we have

n
∑

k=1

ρk ·W 2

(

Q(k)
(

·|z̄(k)
)

, Q(k)
(

·|ū(k)
)

)

≤ 2 ·
n
∑

k=1

D

(

Q(k)
(

·|z̄(k)
)
∥

∥ Q(k)
(

·|ū(k)
)

)

≤ (1− δ)2 ·
n
∑

k=1

ρk ·
∣

∣z(k) − u(k)
∣

∣

2
. (4.1)

Proof.
The first inequality follows from the Otto-Villani theorem for Q(k)

(

·|ū(k)
)

. Then
we use the logarithmic Sobolev inequality to continue (4.1) as follows:

≤
n
∑

k=1

1

ρk
· I

(

Q(k)
(

·|z̄(k)
)
∥

∥ Q(k)
(

·|ū(k)
)

)

=

∫

RN

n
∑

k=1

1

ρk
·
∣

∣

∣

∣

∇(k)V
(

z̄(k), η(k)
)

−∇(k)V
(

ū(k), η(k)
)

∣

∣

∣

∣

2 n
∏

i=1

Q(k)(dη(k)|z̄(k)).
(4.2)

To estimate the sum under the integral in (4.2), fix ηN , and consider the function
F = (F1, . . . , FN ) : RN 7→ R

N defined by

F (k) : RN 7→ R
(k),

F (k)(z) =
1√
ρk

· ∇(k)V

(

z(1)√
ρ1

, . . . ,
z(k−1)

√
ρk−1

,
η(k)√
ρk

,
z(k+1)

√
ρk+1

, . . . ,
z(n)√
ρn

)

.

With the notation

ζ(k) = z(k) · √ρk, θ(k) = u(k) · √ρk, k ∈ [1, n],

the sum under the integral in (4.2) is just the squared increment of F between
points ζ and θ:

n
∑

k=1

1

ρk
·
∣

∣

∣

∣

∇(k)V
(

z̄(k), η(k)
)

−∇(k)V
(

ū(k), η(k)
)

∣

∣

∣

∣

2

=

n
∑

k=1

∣

∣

∣

∣

F (k)(ζ)− F (k)(θ)

∣

∣

∣

∣

2

. (4.3)
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The Jacobian of F is
(

1√
ρk

√
ρℓ

· Vi,j

(

z̄(k), η(k)
)

)

i∈Ik,j∈Iℓ,k 6=ℓ

.

(It has zeros for i and j belonging to the same Ik.) Thus, by (2.4),
n
∑

k=1

∣

∣Fk(ζ)− Fk(θ)
∣

∣

2 ≤ (1− δ)2 ·
n
∑

k=1

ρk ·
∣

∣z(k) − u(k)
∣

∣

2
. (4.4)

Substituting (4.3) and (4.4) into (4.2) we get the desired result (4.1). �

We use Proposition 4 to show that the Gibbs sampler Γ is a contraction with
respect to a weighted Wasserstein distance.

Definition. Let r and s probability measures r and s on R
N . We define the

weighted quadratic Wasserstein distance of r and s (with wights ρk) by

W 2
{ρk}

(r, s) = inf
π

n
∑

k=1

ρk · Eπ

∣

∣Z(k) − U (k)
∣

∣

2
,

where Z and U are random sequences s with laws r resp. s, and infimum is taken
over all distributions π = L(Z, U) with marginals r and s.

Proposition 5.

If Assumptions 1-3 hold for q then

W{ρk}

(

rΓ, sΓ) ≤
(

1− ρmin · δ
R

)

·W{ρk}

(

r, s
)

. (4.5)

Proof.
Let Z = (Z1, Z2, . . . , ZN ) and U = (U1, U2, . . . , UN ) be random sequences in R

N ,
with L(Z) = r, L(U) = s, and let π = L(Z, U) be that joining of r and s that
achieves W 2

{ρk}

(

r, s
)

. Select a random index κ ∈ [1, n] according to the distribution

(ρk/R), and define

L(Z ′|Z, U) = Γκ(·|Z), L(U ′|Z, U) = Γκ(·|U).

Then L(Z ′) = rΓ, and L(U ′) = sΓ. Further, define L(Z ′, U ′) as that coupling of rΓ
and sΓ that achieves W 2

(

Q(κ)(·|Z̄(κ)), Q(κ)(·|Ū (κ))
)

for each value of the condition.
Thereby we have defined L(Z ′, U ′|Z, U), and by Proposition 4 we have

W 2
{ρk}

(

rΓ, sΓ) ≤
n
∑

k=1

ρk ·
(

1− ρk
R

+
ρk
R

· (1− δ)2
)

· E
∣

∣Z(k) − U (k)
∣

∣

2

=

(

1− 2ρmin · δ · (1− δ/2)

R

)

·
n
∑

k=1

ρk · E|Z(k) − U (k)
∣

∣

2

≤
(

1− ρmin · δ
R

)

·W 2
{ρk}

(

r, s). �

In the sequel we shall use the
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Notation.

I
(

p(k)(·|Ȳ (k))
∥

∥ Q(k)(·|Ȳ (k))
)

, EI
(

p(k)(·|Ȳ (k))
∥

∥ Qi(·|Ȳ (k))
)

(omitting the symbol of expectation).

Proposition 6.

Under Assumptions 1-3 we have

W{ρk}(p, q) ≤
2R

ρmin · δ ·

√

√

√

√

n
∑

k=1

ρk · EW 2

(

p(k)
(

·|Ȳ (k)
)

, Q(k)
(

·|Ȳ (k)
)

)

≤ 2R

ρmin · δ ·

√

√

√

√

n
∑

k=1

1

ρk

· I
(

p(k)
(

·|Ȳ (k)
)
∥

∥ Q(k)
(

·|Ȳ (k)
)

)

.

Proof.
The first inequality follows from the triangle inequality for W{ρk}(p, q) and Propo-
sition 5, and the second one follows from the the Otto-Villani theorem and the loga-
rithmic Sobolev inequality forQ(k)(·|ȳ(k)). �

Proposition 7.

There exists a C = C(R, ρmin, δ) > 0 (R =
∑

k ρk and ρmin = mink ρk) such that

n
∑

k=1

D
(

Y (k)
∥

∥ X(k)
)

≤ 1

2C
· I(p||q). (4.6)

Proof.
Let π = L(Y,X) denote that joining of p = L(Y ) and q = L(X) that achieves
W{ρk}(p, q).

The convexity of the entropy functional implies the inequality
n
∑

k=1

D
(

Y (k)
∥

∥ X(k)
)

≤
n
∑

k=1

EπD

(

Y (k)|Ȳ (k)
∥

∥ Q(k)
(

·|X̄(k)
)

)

. (4.7)

The right-hand-side of (4.7) can be written as a sum of three terms:
n
∑

k=1

EπD

(

Y (k)|Ȳ (k)
∥

∥ Q(k)
(

·|X̄(k)
)

)

=

n
∑

k=1

D

(

Y (k)|Ȳ (k)
∥

∥ Q(k)
(

·|Ȳ (k)
)

)

+

n
∑

k=1

EπD

(

Q(k)
(

·|Ȳ (k))
∥

∥ Q(k)
(

·|X̄(k)
)

)

+

∫

RN×RN

n
∑

k=1

[

p(k)
(

y(k)|ȳ(k)
)

−Q(k)
(

y(k)|ȳ(k)
)

]

· log Q(k)
(

y(k)|ȳ(k)
)

Q(k)
(

y(k)|x̄(k)
)dydx

, S1 + S2 + S3. (4.8)
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By the logarithmic Sobolev inequality for Q(k)(·|ȳ(k)) we have

S1 ≤ 1

2
·

n
∑

k=1

1

ρk
I

(

Y (k)|Ȳ (k)
∥

∥ Q(k)
(

·|Ȳ (k)
)

)

. (4.9)

Further, by Propositions 4,

S2 ≤ (1− δ)2

2
·

n
∑

k=1

ρk · Eπ

∣

∣Y (k) −X(k)
∣

∣

2
=

(1− δ)2

2
·W{ρk}(p, q). (4.10)

S3 can be written as

S3 = Eµ

n
∑

k=1

[

V (Y )− V (X̄(k), Y (k))− V (Ȳ (k), ξ(k)) + V (X̄(k), ξ(k))

]

, (4.11)

where µ = L(Y,X, ξ) is defined by L(Y,X) = π, L(ξ|Y,X) =
∏n

k=1 L(ξ(k)|Y ), and

L(Y (k), ξ(k)|Ȳ (k)) is an arbitrary joining of p(k)(·|Ȳ (k)) and Q(k)(·|Ȳ (k)).

We claim that for any quadruple of sequences (yN , ηN , xN , ξN) the following
inequality holds:

n
∑

k=1

[

V (ȳ(k), η(k))− V (x̄(k), η(k))− V (ȳ(k), ξ(k)) + V (x̄(k), ξ(k))

]

≤ (1− δ) ·

√

√

√

√

n
∑

k=1

ρk
∣

∣y(k) − x(k)
∣

∣

2 ·

√

√

√

√

n
∑

k=1

ρk
∣

∣η(k) − ξ(k)
∣

∣

2
. (4.12)

Indeed, introducing the function

F : RN × R
N 7→ R, F (y, η) =

n
∑

k=1

V (ȳ(k), η(k)),

the left-hand-side of (4.12) can be rewritten az follows:

n
∑

k=1

[

V (ȳ(k), η(k))− V (x̄(k), η(k))− V (ȳ(k), ξ(k)) + V (x̄(k), ξ(k))

]

= F (y, η)− F (x, η)− F (y, ξ) + F (x, ξ). (4.13)

To estimate the right-hand-side of (4.13) (with y, x, η, ξ ∈ R
N fixed), define

G : [0, 1]× [0, 1] 7→ R,

G(s, t) = F
(

x+ s(y − x), ξ + t(η − ξ)
)

=

n
∑

k=1

V
(

x̄(k) + s(ȳ(k) − x̄(k)), ξ(k) + t(η(k) − ξ(k))
)

.



LOGARITHMIC SOBOLEV INEQUALITIES 25

Then we have

F (y, η)− F (x, η)− F (y, ξ) + F (x, ξ)

= G(1, 1)−G(1, 0)−G(0, 1) +G(0, 0). (4.14)

We have by (2.4)

∣

∣

∣

∣

∣

∂2

∂s∂t
G(s, t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k,ℓ∈[1,n],k 6=ℓ

∑

i∈Ik,j∈Iℓ

(yi − xi) · Vi,j

(

x̄(k) + s(ȳ(k) − x̄(k)), ξ(k) + t(η(k) − ξ(k))
)

· (ηj − ξj)

∣

∣

∣

∣

∣

≤ (1− δ) ·

√

√

√

√

n
∑

k=1

ρk ·
∣

∣y(k) − x(k)
∣

∣

2 ·

√

√

√

√

n
∑

ℓ=1

ρℓ ·
∣

∣η(ℓ) − ξ(ℓ)
∣

∣

2
. (4.15)

Putting together (4.13), (4.14) and (4.15) yields (4.12).

Applying (4.12) for η = y:

n
∑

k=1

[

V (y)− V (x̄(k), y(k))− V (ȳ(k), ξ(k)) + V (x̄(k), ξ(k))

]

≤ (1− δ) ·

√

√

√

√

n
∑

k=1

ρk
∣

∣y(k) − x(k)
∣

∣

2 ·

√

√

√

√

n
∑

ℓ=1

ρℓ
∣

∣y(ℓ) − ξ(ℓ)
∣

∣

2
. (4.16)

Substituting (4.16) into (4.11), and using Jensen’s inequality, we get

S3 ≤

√

√

√

√

n
∑

k=1

ρk · E
∣

∣Y (k) −X(k)
∣

∣

2 ·

√

√

√

√

n
∑

k=1

ρk · E
∣

∣Y (k) − ξ(k)
∣

∣

2

= W{ρk}(p, q) ·

√

√

√

√

n
∑

k=1

ρk · E
∣

∣Y (k) − ξ(k)
∣

∣

2
(4.17)

To estimate the second factor, we select for L(Y (k), ξ(k)|Ȳ (k)) that joining of
the marginals that achieves W 2(p(k)(·|Ȳ (k)), Q(k)(·|Ȳ (k))) for every value of the
conditions. Then the Otto-Villani theorem and the logarithmic Sobolev inequality
for Q(k)(·|ȳ(k)) imply the following bound for S3:

S3 ≤ W{ρk}(p, q) ·

√

√

√

√

n
∑

k=1

1

ρk

· I
(

p(k)
(

·|Ȳ (k)
)

||Q(k)
(

·|Ȳ (k)
)

)

. (4.18)
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Putting together (4.9), (4.10) and (4.18):

S1 + S2 + S3

≤ 1

2
·
[

W{ρk}(p, q) +

√

√

√

√

n
∑

k=1

1

ρk

· I
(

p(k)
(

·|Ȳ (k)
)

||Q(k)
(

·|Ȳ (k)
)

)

]2

.
(4.19)

(4.7), together with (4.8) and (4.19), completes the proof of Proposition 7. �

Proof of the Auxiliary Theorem.
The proof goes by induction on n. It is clear that for any k and y(k) ∈ R

(k),
Assumptions 1-3 formulated before Theorem 1 do hold for n = 1, N = |Ik| and the
distribution Q(k)(·|y(k)). Assume that we have proved the Auxiliary Theorem for
n− 1 in place of n.

By a well known identity for relative entropy, we have

D(p||q) = D
(

Y ||X
)

=
1

n

n
∑

k=1

D
(

Y (k)
∥

∥ X(k)
)

+
1

n

n
∑

k=1

D

(

Ȳ (k)|Y (k)
∥

∥ q̄(k)
(

·|Y (k)
)

)

.
(4.20)

Assume the Auxiliary Theorem for n− 1. By the induction hypothesis,

D

(

Ȳ (k)|Y (k)
∥

∥ q̄(k)
(

·|Y (k)
)

)

≤ 1

2C
·
∑

ℓ6=k

I

(

Y (ℓ)|Ȳ (ℓ)
∥

∥ Q(ℓ)
(

·|Y (ℓ)
)

)

for all k.

Thus

1

n

n
∑

k=1

D
(

Ȳ (k)|Y (k)
∥

∥ q̄(k)(·|Y (k))
)

≤
(

1− 1/n
)

· 1

2C

n
∑

ℓ=1

I

(

Y (ℓ)|Ȳ (ℓ)
∥

∥ Q(ℓ)
(

·|Y (ℓ)
)

)

=
(

1− 1/n
)

· 1

2C
· I(p||q). (4.21)

Substituting (4.6) (Proposition 7) and (4.21) into (4.20) completes the proof of
the Auxiliary Theorem. �

Proof of the Approximation Lemma.
First we keep q fixed, and construct a density g ∈ C∞ with compact support, and
such that, with the notations

r = g · q, r̄(k) =

∫

R(k)

r(ȳ(k), ξ(k))dξ(k),
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we have

D(r||q) is arbitrarily close to D(p||q), (4.22)

and

D
(

r̄(k)||q̄(k)
)

is arbitrarily close to D(p̄(k)||q̄(k)
)

for all k ∈ [1, n]. (4.23)

Denote by Bm the closed ball in R
N around the origin and with radius m. Let

φm : RN 7→ [0, 1] be a C∞ function satisfying

φm(x) = 1 for x ∈ Bm, φm(x) = 0 for x /∈ Bm+1.

Set

gm(x) =
1

αm
· h(x) · φm(x), and rm(x) = gm(x) · q(x),

where αm =
∫

RN h(x) · φm(x)q(dx).

We have

D(rm||q) = 1

αm

∫

RN

(

h(x)φm(x)

)

· log
(

h(x)φm(x)

)

q(dx)− logαm,

and limt→1 αm = 1. Since h(x) · φm(x) → h(x) everywhere, with
∣

∣

(

h(x)φm(x)
)

·
log

(

h(x)φm(x)
)
∣

∣

+
increasing, and using also the inequality u log u ≥ −1/e, it fol-

lows that

lim
m→∞

∫

RN

(

h(x)φm(x)

)

· log
(

h(x)φm(x)

)

q(dx) = D(p||q).

Putting g = gm and r = rm, for large enough m we achieve (4.22). It can be proved
similarly that (4.23) can be achieved as well.

Again, it is easily seen that

lim
ε→0

D

(

(

1− ε) · r + ε · q
)
∥

∥ q

)

= D(r||q),

and

lim
ε→0

D

(

(

1− ε) · r(k)(·|Ȳ (k)
)

+ ε · q(k)(·|Ȳ (k)
)
∥

∥ q(k)(·|Ȳ (k)
)

)

= D
(

r(k)(·|Ȳ (k)
)
∥

∥ q(k)(·|Ȳ (k)
)

.

Thus, for q fixed, h can be replaced by f = (1− ε)g + ε.
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Now we can assume that h is of the form claimed in the Approximation lemma.
We keep the notation p = h · q with the newly defined h, and keep h fixed.

Now we approximate q(x) by an increasing sequence q̃m(x) ∈ C∞, and set

qm =
q̃m

∫

q̃m(x)dx
and q̄(k)m (x̄(k)) =

∫

R(k)

qm(x)dx(k).

Then define pm(x) = h(x) · qm(x). Since h is smooth and bounded from below and
above, it is easily seen that

D(pm||qm) =

∫

RN

h(x) logh(x)qm(dx) → D(p||q),

and

D
(

p̄(k)m

∥

∥ q̄(k)m

)

)

=

∫

R(k)

h̄(k)(x̄(k)) · log h̄(k)(x̄(k))q̄(k)m (dx̄(k)) → D(p̄(k)||q̄(k)).

This completes the proof of the Approximation Lemma. �

Acknowledgment

The author is grateful for the patient support and help by P. E. Frenkel.

References

[1] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.

[2] E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211-277.
[3] F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic

Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400.
[4] Th. Bodineau, B. Helffer, On Log-Sobolev inequalities for unbounded spin systems, Funct.

Anal. 166, (1999), 168-178.

[5] B. Helffer, Remarks on decay of correlation and Witten-Laplacians III. Application to loga-

rithmic Sobolev inequalities, Ann. Inst. H. Poincaré, 35, (1999), 483-508.
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