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a  b  s  t  r  a  c  t

Pituitary  Adenylate-Cyclase  Activating  Polypeptide  (PACAP)  and  Tac1  gene-encoded  tachykinins  (sub-
stance  P:  SP,  neurokinin  A:  NKA)  are  expressed  in capsaicin-sensitive  nerves,  but  their  role  in
nociception,  inflammation  and  vasoregulation  is  unclear.  Therefore,  we  investigated  the  function  of  these
neuropeptides  and  the  NK1 tachykinin  receptor  (from  Tacr1  gene)  in  the  partial  sciatic  nerve  ligation-
induced  traumatic  mononeuropathy  model  using  gene  deficient  (PACAP−/−, Tac1−/−, and  Tacr1−/−)  mice.
Mechanonociceptive  threshold  of the  paw  was  measured  with  dynamic  plantar  aesthesiometry,  motor
coordination  with  Rota-Rod  and  cutaneous  microcirculation  with  laser  Doppler  imaging.  Neurogenic
vasodilation  was evoked  by mustard  oil stimulating  sensory  nerves.  In wildtype  mice  30–40%  mechani-
cal  hyperalgesia  developed  one  week  after  nerve  ligation,  which  was  not  altered  in  Tac1−/− and  Tacr1−/−

mice,  but  was  absent  in  PACAP−/− animals.  Motor  coordination  of  the  PACAP−/− and  Tac1−/− groups  was
significantly  worse  both  before  and  after  nerve  ligation  compared  to their  wildtypes,  but  it did  not  change
in  Tacr1−/− mice.  Basal  postoperative  microcirculation  on  the  plantar  skin  of  PACAP−/− mice did not  dif-
fer  from  the wildtypes,  but was  significantly  lower  in Tac1−/− and Tacr1−/− ones.  In  contrast,  mustard

−/− −/−
oil-induced  neurogenic  vasodilation  was  significantly  smaller  in  PACAP mice,  but  not  in  Tacr1 and
Tac1−/− animals.  Both  PACAP  and  SP/NKA,  but  not  NK1 receptors  participate  in normal  motor  coordina-
tion.  Tachykinins  maintain  basal cutaneous  microcirculation.  PACAP  is a  crucial  mediator  of  neuropathic
mechanical  hyperalgesia  and  neurogenic  vasodilation.  Therefore  identifying  its target  and  developing
selective,  potent  antagonists,  might  open  promising  new  perspectives  for the  treatment  of  neuropathic
pain  and vascular  complications.
. Introduction
Painful neuropathy is a very important clinical problem, par-
icularly with the growth of an elderly population, the number of

Abbreviations: PACAP, Pituitary Adenylate Cyclase-Activating Polypeptide; DRG,
orsal, Root Ganglion; SP, substance P; CGRP, calcitonin gene-related peptide; Tac1-
, tachykinin-encoding genes; VIP, vasoactive intestinal peptide; NKA, neurokinin
;  TRPA1, Transient Receptor Potential Ankyrin 1 receptor.
∗ Corresponding author at: Department of Pharmacology and Pharmacotherapy,
niversity of Pécs, Pécs 7624, Szigeti u. 12, Hungary. Tel.: +36 72 536001/5386/5591;

ax: +36 72 536218.
E-mail address: zsuzsanna.helyes@aok.pte.hu (Z. Helyes).
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people affected by these conditions is increasing. Its therapy is an
emerging issue, because even with the latest developments on the
field of analgesic-research, it is still not satisfactory.

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and
tachykinins, such as substance P released from the capsaicin-
sensitive peptidergic sensory nerves were shown to be involved
in acute and chronic pain conditions [2,6,8,42,45,48,52], but their
role in chronic neuropathic pain syndromes has not yet been clearly
elucidated.
PACAP belongs to the vasoactive intestinal polypeptide
(VIP)/secretin/glucagon family [31]. It is present in 27 and 38
aminoacid-containing forms, the latter is more predominant in
mammals. So far three receptors of this peptide have been cloned,

dx.doi.org/10.1016/j.peptides.2013.03.003
http://www.sciencedirect.com/science/journal/01969781
http://www.elsevier.com/locate/peptides
mailto:zsuzsanna.helyes@aok.pte.hu
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ll of which belong to the family of G-protein coupled recep-
ors mediating their effect through the activation of adenylate
yclase and phospholipase C. PACAP is the main endogenous
gonist on the PAC1 receptor, whereas PACAP and VIP have
imilar affinities for the VPAC1 and VPAC2 receptors [22]. The
AC1 receptor is expressed mainly on neural and smooth mus-
le cells, while the VPAC1/VPAC2 are localized principally on the
orsal root ganglia (DRG), sensory nerve endings, and inflamma-
ory cells [6,9,50,55,64]. The fact, that PACAP shows increased
xpression in the superficial layer of the spinal dorsal horn and
n capsaicin-sensitive primary sensory neurons, suggested that it
as a role in nociception [33,34,39,61–63]. However, the results
btained from the early in vivo studies proved to be contradic-
ory [41]. Intrathecally administered PACAP-38 showed analgesic
ffect in the early phase, subsequently followed by a long-lasting
lgesia in the formalin test [48]. In several other models cen-
rally applied PACAP showed marked pro-nociceptive effects: it
ecreased thermal stimulation-evoked paw withdrawal latencies
nd potentiated nociceptive transmission to the dorsal horn [37].
t facilitated spinal nociceptive flexor reflexes [41,60] and induced
yperalgesia [35]. We  provided evidence that PACAP-38 exerts an

nteresting divergent effect on pain-signaling. Peripherally admin-
strated PACAP induces anti-nociceptive, anti-hyperalgesic and
nti-allodynic effects in both acute somatic and visceral pain mod-
ls. However, it does not affect mechanical hyperalgesia in the
raumatic mononeuropathy model, but induces sensitization of
nee joint primary afferents [42]. Furthermore, PACAP inhibits the
elease of several pro-nociceptive and pro-inflammatory sensory
europeptides (CGRP, SP and other tachykinins) from periph-
ral terminals of capsaicin-sensitive nerves, and it diminishes
cute neurogenic and non-neurogenic inflammatory processes
10,17,36]. We  also described, that PACAP has a dual role in nocicep-
ion. Thermal allodynia mediated only by peripheral mechanisms
s increased in PACAP gene-deficient animals, but somatic and
isceral nocifensive behaviors, and neuropathic mechanical hyper-
lgesia are diminished. This demonstrates that PACAP can have
oth inhibitory and excitatory roles depending on the site of action
nd the predominant mechanism in the pain model [44].

Tachykinins represent one of the largest families of neu-
opeptides released from the capsaicin-sensitive sensory nerve
erminals. All of these peptides are relatively small, their aver-
ge length is 10–11 aminoacids. So far three tachykinin encoding
enes have been cloned (Tac1, Tac3, and Tac4), but the number
f the tachykinins is much larger due to post-translational mod-
fications [26,38]. The first identified preprotachykinin-A (PPTA;
ac1) gene encodes substance P (SP) and Neurokinin-A (NKA). This
ene is expressed predominantly in sensory neurons, inflamma-
ory and immune cells [40]. SP and NKA exert a variety of effects
nder both normal and pathophysiological conditions. They induce
eurogenic inflammation (vasodilation, plasma protein extravasa-
ion, and stimulation of inflammatory cells), elicit smooth muscle
ontraction, regulate vascular tone, mucus secretion and immune
unctions [26]. They induce the release of histamine and sero-
onin through mast cell activation, which in turn increases the
europeptide-release from the sensory nerve terminals through
ositive feedback mechanisms [18,51].

Three tachykinin receptors have been cloned, the Neurokinin 1,
, and 3 (NK1; NK2; NK3, respectively), which are Gs/Gq-protein
oupled [26]. While all tachykinins can activate all receptors, SP
nd NKA are the preferred ligands for the NK1 and NK2 receptors
15,23,27]. The involvement of the Tac1 gene-encoded tachykinins
n several models of chronic inflammation and pain has been sug-

ested [13]. SP and NKA are synthesized in the dorsal root ganglia,
nd they are involved in the regulation of nociceptive informa-
ion at the first sensory synapse in the spinal cord [7,56]. SP,
KA, and the NK1 receptor have been suggested to be involved in
3 (2013) 105–112

inflammatory and neuropathic pain syndromes, such as traumatic
mononeuropathies [2,11,12], streptozotocin-induced diabetes [5],
and paclitaxel-induced peripheral neuropathy [52]. However, in
these studies only the alterations of NK1 receptor expression was
investigated or the effect of non-peptide NK1 receptor antagonists
were analyzed, as Tac1 and NK1 gene deficient animals were until
recently not available.

Since PACAP and tachykinins are co-localized in capsaicin-
sensitive afferents, our aim was to elucidate their roles in a model
of traumatic mononeuropathy with the help of gene-deleted mice.
Furthermore, the involvement of the NK1 receptor, the main tar-
get of SP, was  also investigated. In order to have an integrative
approach, different functional techniques to assess neuropathic
mechanical hyperalgesia, motor coordination, and neurogenic
vasodilation were used.

2. Materials and methods

2.1. Animals

Experiments were performed with PACAP, Tac1 and Tacr1
gene-deficient (PACAP−/−, Tac1−/− and Tacr1−/−) mice and their
respective, appropriate wildtype counterparts. The generation of
PACAP−/− mice on the CD1 background at the Osaka University
has been previously described in details [14]. The heterozygous
mice (PACAP+/−) were backcrossed for 10 generations with the
CD1 strain. After genotyping the offsprings of the first generation
of the PACAP+/− breeding pairs, mice were bred on as wildtype
(PACAP+/+) and homozygous gene-deleted (PACAP−/−) lines in the
Laboratory Animal House of the Department of Pharmacology and
Pharmacotherapy of the University of Pécs. Offsprings within the
first three generations were used for the experiments to mini-
mize genetic variations. The SP and NKA deficient (Tac1−/−) and
NK1 receptor gene-deleted (Tacr1−/−) mice were generated on the
C57Bl/6 background at the University of Liverpool and the Uni-
versity of Bonn, respectively, as previously described [16]. The
homozygous gene-deleted animals were backcrossed for8-10 gen-
erations to the C57Bl/6 strain, therefore, these mice were used as
wildtype (WT) controls. Their original breeding pairs were pur-
chased from Charles-River Ltd. (Hungary). Mice were bred and kept
in the Laboratory Animal House of the Department of Pharmacology
and Pharmacotherapy of the University of Pécs at 24–25 ◦C and pro-
vided with standard mouse chow and water ad libitum under 12 h
light and 12 h dark cycles. All experimental procedures were carried
out according to the 1998/XXVIII Act of the Hungarian Parliament
on Animal Protection and Consideration Decree of Scientific Pro-
cedures of Animal Experiments (243/1988) and complied with the
recommendations of the International Association for the Study of
Pain [65] and the Helsinki Declaration. The studies were approved
by the Ethics Committee on Animal Research of the University of
Pécs according to the Ethical Codex of Animal Experiments and
license was given (License No.: BA 02/2000-9-2011).

2.2. The traumatic mononeuropathy model

Anesthesia was performed with a combination of 100 mg/kg
ketamine i.p. (Richter Gedeon Plc., Budapest, Hungary) and 5 mg/kg
xylazine i.m. (Lavet Ltd., Budapest, Hungary). Then the right com-
mon  sciatic nerve was  unilaterally exposed high in the thigh and its
1/3 was tightly ligated using an atraumatic siliconized silk suture
(Ethicone 10-0) [28,47]. Thereafter the wound was closed, and the

animals were not examined for the next 7 days in order not to dis-
turb the healing process. In accordance with our previous studies
[42,44], this is a reliable model of neuropathic mechanical hyper-
algesia, which is not influenced by an impaired weight distribution.
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.3. Determination of the mechanonociceptive threshold by
ynamic plantar aesthesiometry

The mechanonociceptive threshold of plantar surface of the
indpaw was measured by dynamic plantar aesthesiometry (Ugo
asile 37400, Comerio, Italy). In this device the animals can freely
ove in their separate compartments on a metal mesh. Prior to

ach measurement there was 10–15 min  of acclimation period
ntil the cessation of the animals exploratory behavior. Then the
timulator unit of the device was placed under the animal’s paw,
sing an adjustable angled-mirror to aid the positioning of the
etal filament right below the plantar surface. Then an electro-

ynamic actuator of proprietary design lifted the straight metal
lament, which touched the plantar surface and began exerting
n increasing upward force at a preset rate (5 s) of application
ntil either the nocifensive behavior (removal of the paw) was
ttained, or until the maximal 10 g was reached. After a condition-
ng and 3 control preoperative measurements, the paw withdrawal
hresholds were determined on days 7, 10, 14, 19 after the nerve
igation.

.4. Assessment of the motor coordination on a Rota-Rod

Motor functions were studied using an accelerating Rota-Rod
evice (Ugo Basile 7750, Comerio, Italy). This instrument consists
f a constantly faster rotating drum, which is divided into four sep-
rate compartments, each for a single animal. Before the beginning
f the experiment, we performed 3 training measurements on three
onsecutive days. The motor performance was  indicated by the
uration of time (s) spent on the rotating drum [43]. Every mea-
urement was repeated 5 times for each animal, and their means
ere used for evaluation.

.5. Measurement of cutaneous microcirculation by laser Doppler
canning

Microcirculation in the plantar skin of the hindpaw was mea-
ured by laser doppler imaging (Perimed PIM II, Stockholm,
weden). The mechanism of this device is based on the Doppler-
rinciple, as it emits a monochromatic (wave length: 670 nm)  laser
eam, which is reflected from the moving red blood cells. As the
eflected laser beam passes through Doppler-shift, detecting its
ave-length allows us to measure the rate of blood flow in the

uperficial capillaries. Because most of the laser light is absorbed
n the superficial tissues, the blood flow of the larger blood ves-
els does not disturb the measurement. Mice were anesthetized
ith urethane (2.4 g/kg i.p.), their body temperature was  main-

ained at 37 ◦C with a controlled heating pad. At the beginning of the
xperiment 3–4 control images of the plantar surfaces of both the
perated and the intact contralateral hindpaws were taken simul-
aneously to obtain stable baseline flow data. Then 30–30 �l of 5%

ustard-oil (allyl-isothiocyanate) was applied topically on both
lantar surfaces to induce neurogenic vasodilatation. This chem-

cal compound is a Transient Receptor Potential Ankyrin 1 (TRPA1)
eceptor agonist, therefore, it induces the release of vasoactive neu-
opeptides from the intact sensory nerve endings, which in turn
eads to an increased blood flow in the innervated area (neuro-
enic vasodilation). The plantar microcirculation was  measured
or 60 min  after mustard oil application. Altogether an average
f 30 images were recorded for each animal including the ini-
ial control measurements. 5% mustard-oil was prepared freshly

efore the beginning of the experiment from the same concen-
rated solution. All knockout and wildtype mice were measured
ithin a time limit of 48 h to decrease the possible environmental

nterferences.
3 (2013) 105–112 107

2.6. Statistical analysis

All data were expressed as means with standard errors of means
(s.e.m.). For statistical evaluation repeated measures ANOVA fol-
lowed by Bonferroni’s modified t-test was  used for the assessment
of mechanical hyperalgesia and motor performance, whereas the
results of the laser doppler imaging were evaluated using two-
way ANOVA and Bonferroni’s modified t-test. When comparing the
results *p < 0.05 was considered statistically significant.

3. Results

3.1. Mechanical hyperalgesia in response to partial ligation of the
sciatic nerve

The initial control mechanonociceptive thresholds of PACAP−/−

mice were similar to the wildtypes. Tight ligation of 1/3 of the sciatic
nerve induced a significant, about 30–40% decrease of the threshold
of the affected hindpaw in wildtype animals between the 7th and
19th postoperative days. In comparison, neuropathic mechanical
hyperalgesia was  minimal in the PACAP−/− group, the nociceptive
threshold remained similar to the initial control values throughout
the total duration of the experiment (Fig. 1A).

The preoperative mechanonociceptive thresholds of C57Bl/6
wildtype mice did not differ significantly from either the PACAP+/+

wildtypes generated on the CD1 background or the Tac1−/− and the
Tacr1−/− ones. Furthermore, the 35–45% mechanical hyperalgesia
detected in response to the nerve ligation was also very similar
in all the three groups, SP/NKA or NK1 receptor deficiency did not
influence its development during the whole study (Fig. 1B and C).

3.2. Changes of the motor functions

The basal motor performance on the accelerating Rota-Rod was
significantly worse in both the PACAP−/− and Tac1−/− groups com-
pared to the respective wildtypes (Fig. 2A and B). In contrast,
deletion of the NK1 tachykinin receptor (Tacr1−/−) did not influence
the motor coordination (Fig. 2C). The partial sciatic nerve ligation
did not influence the motor coordination in any of the groups. Dur-
ing the control pre-operative and even the post-operative periods a
continuous learning process was observed in the wildtype and the
PACAP and Tac1 gene-deleted groups, but not in Tacr1−/− animals.
However, the basal impaired motor coordination in PACAP−/− and
Tac1−/− mice was also observed after the operation (Fig. 2A and B).

3.3. Changes of cutaneous blood flow and neurogenic vasodilation

In both wildtype (PACAP+/+ and C57Bl/6) and all the three
gene-deficient (PACAP−/−, Tac1−/−, Tacr1−/−) groups, the basal
microcirculation in the plantar skin was reduced on the operated
limb, but the difference was not statistically significant. The basal
perfusion was  significantly higher in the black C57Bl/6, Tac1−/−, but
not Tacr1−/− mice as compared to the white PACAP+/+ and PACAP−/−

ones generated on the CD1 background. Meanwhile, topical appli-
cation of 5% mustard oil activating the capsaicin-sensitive sensory
nerve terminals in the skin and inducing neuropeptide release
evoked significantly smaller neurogenic vasodilator response in the
C57Bl/6-based groups compared to the CD1-based ones (15–20% vs.
50–60%). This clearly indicates a remarkable strain difference in the
regulation of microcirculation (Figs. 3–5).

Basal perfusion in the plantar skin of both the operated and

intact limbs of PACAP+/+ and PACAP−/− mice did not differ signif-
icantly (3.4 ± 0.32 V, vs. 3.97 ± 1.04 V). In response to activation of
the capsaicin-sensitive sensory nerve terminals by topical appli-
cation of 5% mustard oil microcirculation similarly increased by



108 B. Botz et al. / Peptides 43 (2013) 105–112

Fig. 1. Changes of mechanonociceptive threshold of the paw after partial sciatic
nerve ligation in (A) PACAP gene-deficient (PACAP−/−) mice compared to their
wildtypes (PACAP+/+) generated on the CD1 background, as well as in (B) Tac1
gene-deleted animals (Tac1−/−) lacking substance P and neurokinin A, and (C) NK1
t −/−

w
s
A

5
g
n
s

Fig. 2. Motor performance on the accelerating Rota-Rod wheel before and on the 7th
and 10th postoperative days after sciatic nerve ligation in (A) PACAP gene-deficient
(PACAP−/−) mice compared to their wildtypes (PACAP+/+) generated on the CD1 back-
ground, as well as in (B) Tac1 gene-deleted animals (Tac1−/−) lacking substance P
and neurokinin A, and (C) NK1 tachykinin receptor deficient (Tacr1−/−) mice in com-
parison with their C57Bl/6 wildtype (WT) counterparts. Columns represent means
achykinin receptor deficient (Tacr1 ) mice in comparison with their C57Bl/6
ildtype (WT) counterparts. Data points represent means of n = 12 per group with

.e.m.; **p < 0.01, ***p < 0.001 vs. respective wildtype control (repeated measures
NOVA + Bonferroni’s modified t-test).
0–60% in both groups on both sides after 5–10 min. This neuro-
enic vasodilation response persisted in wildtype mice during the
ext 60 min  of the experiment, whereas in PACAP−/− animals it
tarted to decrease after 10–15 min  Significantly lower perfusion
of  n = 6–12 per group with s.e.m.; *p < 0.05, **p < 0.01, ***p < 0.001 vs. respective wild-
type control; #p < 0.05 vs. respective day 1 preoperative value (repeated measures
ANOVA + Bonferroni’s modified t-test).
was detected in the PACAP−/− group from the 30th minute of the
measurement (Figs. 3 and 4A and B).

In the Tac1−/− and Tacr1−/− groups the basal cutaneous micro-
circulation was significantly lower on both limbs compared to the
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Fig. 3. Representative laser Doppler images of the plantar skin of the operated (right) and the intact (left) hindlimbs before and 20 min after topical application of 1% mustard
oil  to stimulate the peptidergic sensory nerve terminals. Panels show data of PACAP gene-deficient (PACAP−/−) mice compared to their wildtypes (PACAP+/+) generated on
t substa
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he  CD1 background, as well as in (B) Tac1 gene-deleted animals (Tac1−/−) lacking 

n  comparison with their C57Bl/6 wildtype (WT) counterparts. The blue color repre
ighest microcirculation.

57Bl/6 wild types (Fig. 5). In response to mustard oil smearing
he perfusion increased steadily by 15–20% on both limbs of the
ildtype mice. In contrast, in cases of SP/NKA and NK1 receptor
eficiency there was an initial transient decrease on the intact side,
ut after the first 10 min, the blood perfusion did not differ signifi-
antly from the results of the C57Bl/6 wildtype animals for the rest
f the experiment (Fig. 5).

. Discussion

These results provide clear evidence that: (1) Under normal
onditions PACAP and tachykinins play important roles in motor
oordination, but they are not involved in mechanonociception. (2)
achykinins regulate the basal cutaneous microcirculation through
K1 receptor activation, but PACAP is involved in neurogenic
asodilation. (3) Partial ligation of the sciatic nerve, which is a
idely used traumatic mononeuropathy model, induces purely

ensory neuropathy (mechanical hyperalgesia) without affecting
he motor and the vascular functions. (4) PACAP is a crucial medi-
tor of neuropathic hyperalgesia.

Our earlier data showing that PACAP has a hyperalgesic and
ro-nociceptive role in a variety of pain models are in agreement
ith the present findings [42]. Others also showed that PACAP
ight play a key role in spinal sensitization, and therefore, in the

evelopment of neuropathic pain [8,25] through PAC1 receptor
ctivation in the dorsal root ganglia [6,20]. Furthermore, PACAP
s likely to have a pivotal pro-nociceptive function in animal mod-
ls of migraine and also in human migraneurs [29,46,54]. Others
uggested that the peripheral nociceptive responses elicited by
ntradermally administered PACAP are mainly mediated through
he VPAC receptors [45]. Therefore, identification of the targets
nd the mechanisms of the hyperalgesic actions of PACAP still need
urther investigations.

While the increased expression of the Tac1 gene-encoded

achykinins in the dorsal root ganglia under neuropathic conditions
as been established [57], our results indicate that SP/NKA and the
K1 receptor do not play an important role in the development of
europathic hyperalgesia. Studying the analgesic mechanisms of
nce P and neurokinin A, and (C) NK1 tachykinin receptor deficient (Tacr1−/−) mice
low perfusion areas, green and yellow refer to higher perfusion and red shows the

the action of topical capsaicin application in neuropathies, it was
found that the increased expression of SP has only marginal effect,
and capsaicin exerts its therapeutic benefit through other path-
ways [1]. Other results also indicate that SP/NKA up-regulation is
not a crucial factor in the development of neuropathies: while it was
found to be involved in the development of paclitaxel-induced neu-
ropathy, oxaliplatin treatment leads to a similar condition without
influencing the SP/NKA release [52].

The motor coordination of the PACAP and Tac1 gene deficient
animals was significantly worse than their wildtype counterparts
under both normal and neuropathic conditions, while the motor
performance of the NK1 receptor deficient group was similar to
the control animals. These results suggest, that PACAP and SP/NKA
might have a potential role as mediators of normal motor coordina-
tion. However, this effect of the tachykinins is not mediated through
the NK1 receptor, but the action of NKA at the NK2 tachykinin
receptor can be suggested. These findings are supported by ear-
lier data showing that PACAP may  contribute to the regulation of
motor coordination, though the mechanism and the site of action
has not been described [30]. Currently there is less data available
about the potential role of the Tac1 gene encoded tachykinins,
but the few earlier results obtained in markedly different mod-
els (less complex species) also indicate that tachykinins might also
affect the motor coordination [21]. SP has been suggested to have
a protective role in an animal model of amyotrophic lateral scle-
rosis, which is due to motor neuron degeneration, supporting its
role in motor coordination [3]. SP and the NK1 receptor activation
may  also have a potential role in the development of Parkinson’s
disease, in which the loss of motor coordination is the princi-
pal symptom. Increased SP expression in this model accelerated
disease progression, whereas NK1 receptor antagonist treatment
improved the motor performance [53]. The significant mechan-
ical hyperalgesia, but normal motor performance and cutaneous
microcirculation observed in response to the sciatic nerve ligation

indicates, that although it contains sensory, motor and autonomic
fibers, the traumatic mononeuropathy induced by this operative
process is exclusively of sensory nature and it does not hinder either
the motor performance or the vascular regulation.
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Fig. 4. Mustard oil-induced vasodilation compared to the respective initial reference images in the plantar skin of the operated and intact paws of PACAP gene-deficient
( groun
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PACAP−/−) mice compared to their wildtypes (PACAP+/+) generated on the CD1 back
ACAP+/+ vs. PACAP−/− operated side, *p < 0.05, **p  < 0.01, ***p < 0.001 PACAP+/+ vs. P

Besides neuropathic hyperalgesia, PACAP is involved in the
evelopment of neurogenic vasodilation, particularly in its

ong-term maintenance. As mustard oil activating the capsaicin-
ensitive afferents predominantly via TRPA1 ion channel activation
nduced a remarkable initial vasodilation in PACAP deficient mice,

hich very rapidly decreased, it is suggested, that PACAP con-
ributes to the later, stable phase of neurogenic vasodilation.
ther sensory neuropeptides released from the stimulated sensory
erves, such as CGRP are likely to be responsible for the early phase
f this response.

As the basal blood flow was significantly lower in both Tac1 and
acr1 gene-deficient mice, SP through NK1 receptor activation is
ikely to play an important role in the mediation of the basal vas-
ular tone, it dilates the cutaneous vessels. However, they do not
ave an important function in neurogenic vasodilation. It should be
oted that the well established effect of SP in neurogenic inflam-

ation is increasing venular permeability, a phenomen which was

ot measured with the laser Doppler scanning [19]. In addition,
GRP is considered as the most potent mediator of vasodilation
24]. It was suggested, that the NK1 receptor activation serves to
d (A – mean flux, B – percentage). n = 5–6 per group with s.e.m.; #p < 0.05, ##p < 0.01
−/− intact side (two-way ANOVA + Bonferroni’s modified t-test).

increase indirectly the production of nitric oxide (NO) and other
local vasodilatory substances, however it is accepted, that there is
a lot of interactions between the neuropeptides, local mediators,
and receptors involved in this process, and the responsible path-
ways are redundant [59]. It must be taken into account, that SP
is not the sole endogenous ligand of the NK1 receptor, on which
the other known tachykinins also act as potent agonists, therefore
probably bypassing the role of the lacking SP/NKA. In addition it is
established, that though tachykinins are in most conditions potent
vasodilators, in different models or species they can induce vaso-
constriction, and that their net effect is heavily influenced by the
local differences of the endothelium [58]. This assumption also cor-
relates with the fact, that so far no substance could be labeled as
the exclusive mediator of cutaneous vasodilation [4,24].

We found remarkable strain differences between the C57Bl/6
and CD1 mice (PACAP+/+) in the examined sensory, motor and vas-

cular parameters. It is not surprising, since a large number of papers
described such findings, and reviews focus on the issue of strain dif-
ference [32,49]. Describing these differences is in fact valuable, and
highlights the importance of using the appropriate wildtypes when
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Fig. 5. Vasodilative response induced by mustard oil smear in the plantar skin of the operated and intact paws of the Tac1 gene-deleted animals (Tac1−/−) lacking substance
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 and neurokinin A, and (A and B) and NK1 tachykinin receptor deficient (Tacr1−

oints  represent means of n = 5–6 per group with s.e.m.; *p < 0.05, **p < 0.01, ***p < 0
espective operated paw of wildtype control (two-way ANOVA + Bonferroni’s modi

nterpreting data of gene-deficient mice. In the present experi-
ental series we did not aim to compare the tachykinin and NK1

eficient mice with the PACAP knockouts, but only to compare
hem with their respective and appropriate wildtypes in order to
lucidate their role in the investigated biological functions. The
onclusions were drawn from the results separately.

It can be concluded that (1) PACAP has an overall pro-
ociceptive role in peripheral traumatic neuropathy. (2) PACAP and
P/NKA are both involved in motor coordination, while the lack of
he NK1 receptor does not affect this function. (3) Tac1 gene prod-
cts and NK1 receptor have a pivotal role in the maintenance of
asal vascular tone, whereas PACAP is a key mediator of neurogenic
asodilation, particularly involved in its long-term maintenance.
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