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Abstract: Nuclear, mitochondrial and cytoplasmic signal transducer and activator of transcription
3 (STAT3) regulates many cellular processes, e.g., the transcription or opening of mitochondrial
permeability transition pore, and its activity depends on the phosphorylation of Tyr705 and/or Ser727
sites. In the heterogeneous network of cardiac cells, STAT3 promotes cardiac muscle differentiation,
vascular element formation and extracellular matrix homeostasis. Overwhelming evidence suggests
that STAT3 is beneficial for the heart, plays a role in the prevention of age-related and postpartum
heart failure, protects the heart against cardiotoxic doxorubicin or ischaemia/reperfusion injury,
and is involved in many cardioprotective strategies (e.g., ischaemic preconditioning, perconditioning,
postconditioning, remote or pharmacological conditioning). Ischaemic heart disease is still the leading
cause of death worldwide, and many cardiovascular risk factors contribute to the development of
the disease. This review focuses on the effects of various cardiovascular risk factors (diabetes,
aging, obesity, smoking, alcohol, depression, gender, comedications) on cardiac STAT3 under
non-ischaemic baseline conditions, and in settings of ischaemia/reperfusion injury with or without
cardioprotective strategies.

Keywords: STAT family; comorbidity; myocardial infarction; coronary artery disease; cardioprotection;
mPTP; JAK

1. Introduction

Signal transducer and activator of transcription 3 (STAT3) has a central role in transmitting
extracellular signals from the plasma membrane to the nucleus and mitochondria, where it influences
transcription and mitochondrial function, thereby regulating diverse biological processes.

1.1. Structure of STAT3

The protein encoded by mammalian STAT3 gene contains six functional domains: N-terminal,
coiled-coil, DNA-binding, linker, SH2 and C-terminal transactivation domains [1]. There are two
phosphorylation sites to activate STAT3: a tyrosine residue on the SH2 domain (Tyr705) and a serine
residue on the transactivation domain (Ser727). As a result of alternative splicing two major isoforms
exist: the abundant STAT3alpha (770 amino acids) and less abundant STAT3beta (722 amino acids)
lacking C-terminal transactivation domain and Ser727 phosphorylation site [1].

1.2. Signalling

A wide variety of extracellular polypeptide ligands like interleukin-(IL)-6-family, leukaemia
inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin acts on plasma membrane
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receptors and activate STAT3, predominantly via the glycoprotein-130-Janus kinase (gp-130-JAK)
axis [2]. Ligand binding by the receptor complex leads to activation of receptor-associated JAKs,
thereby activating STAT3 directly and/or non-directly via the extracellular signal-regulated kinase 1
and 2 (ERK1/2) pathway (Figure 1).
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Figure 1. STAT3 signalling in cardiac myocytes in settings of ischaemia/reperfusion. ETC: electron
transport chain; GP: glycoprotein; JAK: Janus kinase; mPTP: mitochondrial permeability transition
pore; MnSOD: manganese-dependent superoxide dismutase; VEGF: vascular endothelial growth factor.
(P in circle represents phosphorylated STAT3 forms; dashed arrow indicates several steps; plus (+) sign
represents activation).

Direct activation occurs once gp-130 is phosphorylated by JAK and provides binding sites for the
SH2 domain of STAT3. After recruitment of STAT3, it is phosphorylated and activated by JAKs on
Tyr705. Subsequently, STAT3 dissociates from the receptor complex, forms homo- or heterodimers with
other STAT proteins, and translocates into the nucleus, where it binds to consensus DNA sequences
(so-called gamma-interferon-activated sites (GAS)) and finally initiates transcription of target genes [2].
STAT3 enhances expression of several genes encoding, for instance, anti-apoptotic (e.g., Bcl-xl, MCL-1),
anti-oxidant (e.g., MnSOD, metallothionein) and pro-angiogenic (e.g., VEGF) proteins.

The gp-130-JAK axis simultaneously activates ERK1/2, which in turn phosphorylates the Ser727
site of STAT3 monomers and/or Tyr705-phosphorylated STAT3 dimers to influence the dimer’s
transcriptional activity. Phosphorylation of STAT3 monomers on Ser727 leads to translocation into the
mitochondria without dimerization [3,4]. In the mitochondria, Ser727-STAT3 interacts with complex I
of the electron transport chain, the mediator of mitochondrial permeability transition pore (mPTP)
cyclophilin D, mitochondrial DNA and may have an impact on complex II and complex V (ATP
synthase). Therefore, mitochondrial STAT3 influences ATP synthesis, the opening of mPTP, production
of reactive oxygen species and mitochondrial transcription [3,4].
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Besides classic ligands, STAT3 signalling is activated or modulated by other endogenous or
exogenous peptides including insulin, leptin, angiotensin II, erythropoietin, granulocyte stimulating
factor, etc.

1.3. STAT3 in the Heart

STAT3 is expressed in different cell types of the heart such as cardiomyocytes, cardiac fibroblasts,
endothelial cells, smooth muscle cells, inflammatory cells and cardiac neurons. In the heterogeneous
network of cardiac cells STAT3 regulates cell-to-cell communication (for review, see [5]). For instance,
STAT3 promotes cardiac muscle differentiation [6] and vascular element formation in the heart [7],
regulates β-adrenergic functions [8] and extracellular matrix homeostasis [9]. Overwhelming evidence
suggests that STAT3 is beneficial for the heart [10]. STAT3 transduces hypertrophic signals under
physiological (e.g., pregnancy) and pathophysiological (e.g., pressure overload) remodelling [11], plays
a role in the prevention of age-related and postpartum heart failure, and protects the heart against
cardiotoxic doxorubicin and ischaemic injury [2].

Ischaemic heart disease is still a major cause of death and disability worldwide; therefore,
cardioprotective strategies and revealing of signalling are needed. Ischaemic conditioning is
a manoeuvre for protecting the heart against the detrimental effects of ischaemia/reperfusion
injury by means of the application of brief non-harmful ischaemia/reperfusion cycles to elicit
endogenous cardioprotective mechanisms. When the conditioning method is applied before, under
or after the prolonged lethal ischaemia, it is called ischaemic preconditioning, perconditioning or
postconditioning, respectively. Research into the underlying molecular mechanisms of cardioprotection
results in investigation of pharmacological agents that mimic the cardioprotective effect of ischaemic
conditioning (pharmacological conditioning).

Several studies have reported that ischaemia enhances STAT3 phosphorylation [12–14],
and activation of STAT3 protects the myocardium against ischaemia/reperfusion injury (Figure 1,
for review, see [15]). Moreover, STAT3 is involved in many cardioprotective ischaemic
and pharmacological conditioning methods, for instance in ischaemic preconditioning [16],
perconditioning [17] or postconditioning [18] (for review, see [19]).

Many cardiovascular risk factors contribute to the development of ischaemic heart disease and
interfere with the cardioprotective effect of conditioning manoeuvres (for review, see [20]). Therefore,
it is feasible to speculate that risk factors may unfavourably alter protective signalling mechanisms in
the heart (e.g., reperfusion injury salvage kinase signalling or survivor activating factor enhancement
pathways), thereby resulting in unwanted cardiac consequences. This review focuses on the effects
of various cardiovascular risk factors (diabetes, aging, obesity, smoking, alcohol, depression, gender,
comedications) on cardiac STAT3, a well-known cardioprotective signal molecule, under non-ischaemic
baseline conditions and in settings of ischaemia/reperfusion injury with or without cardioprotective
strategies. We systemically analysed phosphorylation (p-STAT3, at Tyr705 and Ser727 sites) and
expression (total-STAT3) of cardiac STAT3. Furthermore, the ratio of p-STAT3 and total-STAT3 was
considered as STAT3 activation.

2. Effect of Cardiovascular Risk Factors on Cardiac STAT3 under Non-Ischaemic Baseline Conditions

2.1. Diabetes

Diabetes mellitus is a condition characterized by an increased blood glucose level. It is one of the
most prevalent metabolic diseases worldwide and is also associated with increased mortality. In 2017,
an estimated 425 million people suffered from diabetes, a number that is expected to increase by 48%
within three decades according to the International Diabetes Federation [21]. Diabetic patients have a
greater chance of developing cardiovascular complications including ischaemic heart disease such
as the life-threatening acute myocardial infarction [22], since diabetes exerts harmful effects on the
cardiovascular system, resulting in cardiomyopathy [23] and vasculopathy [24]. An explanation for
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this may be that diabetes leads to molecular changes in the heart, e.g., marked alteration of cardiac
gene expression profile in various experimental models [25–27].

Based on a literature review, the effect of diabetes on non-ischaemic baseline expression,
phosphorylation or activation of cardiac STAT3 protein seems to be rather controversial. Several
publications demonstrated a significant decrease in cardiac STAT3 phosphorylation and/or activation
in various experimental models of diabetes (Table 1). The first study to demonstrate this phenomenon
was written by Wang and colleagues [28]. They induced type I diabetes in male Sprague-Dawley rats
by streptozotocin (STZ) injection. After five weeks of diabetes induction, they found that myocardial
STAT3 activation (at the Ser727 site) was lower in the diabetic group. Later the same research
group confirmed these results in STZ-induced type I diabetes models [29,30] and demonstrated
that phosphorylation and activation of STAT3 at Tyr705 was also decreased in diabetes [29–31]. Besides
type I diabetes models, reduction of cardiac STAT3 expression was also described in a type II diabetes
model, i.e., STAT3 mRNA was downregulated in non-obese Goto-Kakizaki rats [25]. Moreover, similar
trends were observed in in vitro models of diabetes. In H9c2 cells subjected to high glucose conditions
(25 mM glucose added to the medium), the non-ischaemic baseline STAT3 phosphorylation (Tyr705
and/or Ser727) and activation was significantly decreased [29,32]. Similarly, exposure of isolated adult
rat ventricular cardiomyocytes to high glucose conditions also resulted in reduced non-ischaemic
baseline phosphorylation and activation of STAT3 (Tyr705) [33].

In contrast to the results above, a few studies found that the non-ischaemic baseline level of
phosphorylated STAT3 significantly increased in diabetic hearts (Table 1). For instance, the activation
of cardiac STAT3 was increased four weeks after the induction of diabetes with STZ injection in
C57BL/6 mice [34]. In a longer, 21-week study, a similar increase in phosphorylated STAT3 was
observed in Wistar rats, which were first fed a high-glucose and high-fat diet, then injected with
STZ [35]. Furthermore, in a Sprague-Dawley rat model of STZ-induced diabetes, a significant increase
in non-ischaemic baseline STAT3 activation has been reported [36]. In addition, increases in STAT3
expression was also demonstrated in some studies [36,37]. Baseline phosphorylation and/or activation
STAT3 level also increased in some in vitro studies, such as in H9c2 cells [36] or in primary rat cardiac
fibroblasts [38] subjected to a high glucose condition. Additionally, increased non-ischaemic baseline
STAT3 expression was observed in H9c2 cells [37].

Recently some potential cardioprotective agents have been suggested to attenuate STAT3
dysregulation in diabetes (Table 2). The impaired activation or phosphorylation of STAT3 due to
STZ-induced diabetes was shown to be restored by N-acetylcysteine [28,30]. In a rat model of diabetes
induced by a high-glucose and -fat diet + STZ injection, enhanced phosphorylation of STAT3 due
to diabetes was attenuated by losartan treatment [35]. In another study using an STZ-induced rat
diabetes model, telmisartan attenuated STAT3 expression, which was increased by diabetes [37].

In summary, the findings regarding the effect of diabetes on cardiac STAT3 phosphorylation,
expression and activation are inconsistent. The reasons for these controversies are unclear and may
include substantial differences in the method of induction, type, severity, and duration of diabetes as
well as differences in the method of detection of STAT3 phosphorylation and expression.
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Table 1. Effect of diabetes on cardiac STAT3 under non-ischaemic baseline conditions.

Animal or
Cell Test Group Control Group Tissue

Sample
p-STAT3/t-STAT3

Activation p-STAT3 Phosphorylation t-STAT3
Expression Conclusions Ref.

ventricles ↓ ↓ (NC) Ser727 – (NC) diabetes decreases STAT3 activation [28]
LV ↓ ↓ Tyr705 Ser727 – (NC) diabetes decreases STAT3 activation and phosphorylation [29]

whole
heart

↓ (NC) ↓ Tyr705 Ser727 – diabetes decreases STAT3 phosphorylation [30]
↓ ↓ Tyr705 – (NC) diabetes decreases STAT3 activation and phosphorylation [31]
↑ ↑ ? ↑ diabetes increases STAT3 activation, phosphorylation and expression [36]

Rat Sprague
Dawley Male

STZ-induced
diabetes

nondiabetic

N.D. N.D. N.A. ↑ diabetes increases STAT3 expression [37]

Rat prague
Dawley Male

isolated adult
diabetic rat

cardiomyocytes

isolated adult
nondiabetic rat
cardiomyocytes

cells ↓ ↓ Tyr705 – (NC) diabetes decreases STAT3 activation and phosphorylation [33]

↓ ↓ Tyr705 – (NC) high glucose condition decreases STAT3 activation and
phosphorylation [32]

↓ ↓ Tyr705 Ser727 – (NC) high glucose condition decreases STAT3 activation and
phosphorylation [29]

↑ ↑ (NC) ? ↑ (NC) high glucose condition increases STAT3 activation [36]

H9c2 cells high glucose
conditions

normal glucose
condition

cells

N.D. N.D. N.A. ↑ diabetes increases STAT3 expression [37]

Rat Wistar
N.A.

isolated cardiac
fibroblasts in high
glucose conditions

normal glucose
condition

neonatal
cells ↑ ↑ ? – (NC) high glucose condition increases STAT3 activation and

phosphorylation [38]

Rat Wistar
Male

high-glucose and
-fat diet +

STZ-induced
diabetes

nondiabetic whole
heart

↑ (NC) ↑ ? – (NC) diabetes increases STAT3 phosphorylation [35]

Mouse
C57BL/6 Male

STZ-induced
diabetes nondiabetic ↑ ↑ (NC) ? – (NC) diabetes increases STAT3 activation [34]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; N.D.: not detected; N.A.: not applicable; ?: phosphorylation site was not specified; LV: left
ventricle; STZ: streptozotocin; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3.

Table 2. Effect of pharmacological treatments on non-ischaemic baseline cardiac STAT3 in diabetes.

Animal or
Cell Test Group Control Group Tissue

Sample
p-STAT3/t-STAT3

Activation P-STAT3 Phosphorylation t-STAT3
Expression Conclusions Ref.

ventricles ↑ ↑ (NC) Ser727 – (NC) N-acetylcysteine restores impaired
activation of STAT3 in diabetes [28]

Rat Sprague
Dawley Male

STZ-induced diabetes
+ N-acetylcysteine STZ-induced diabetes

whole heart ↑ (NC) ↑ Tyr705 Ser727 – N-acetylcysteine restores impaired
phosphorylation of STAT3 in diabetes [30]

Rat Wistar
Male

high-glucose and -fat
diet + STZ-induced
diabetes + losartan

high-glucose and -fat
diet + STZ-induced

diabetes
whole heart ↓ (NC) ↓ ? – (NC) losartan attenuates enhanced

phosphorylation of STAT3 in diabetes [35]

Rat Sprague
Dawley Male

STZ-induced diabetes
+ telmisartan STZ-induced diabetes whole heart N.D. N.D. N.A. ↓ telmisartan attenuates enhanced

expression of STAT3 in diabetes [37]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; N.D.: not detected; N.A.: not applicable; ?: phosphorylation site was not specified; LV: left
ventricle; STZ: streptozotocin; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3.
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2.2. Obesity

The definition of obesity among adults is based on a standard cutoff point of body mass index
(i.e., BMI ≥ 30 kg/m2) [39]. Obesity is one of the top health concerns worldwide. According to a
global survey in 195 countries, 604 million adults and 108 million children were obese [39]. Obesity is
a well-known risk factor for cardiovascular diseases [39–41]. In obesity, the adipose tissue is unable
to store more extra fat, which results in lipid overflow to other organs, such as the liver, pancreas
skeletal muscle and heart [42]. Obese individuals are typically predisposed to increased heart rate and
stroke volume, progress to ischaemic cardiomyopathy, compensatory left ventricular hypertrophy and
remodelling, and later dilated cardiomyopathy with cardiac fibrosis and apoptosis [43]. Obesity is often
accompanied by dyslipidemias, hypertension, and insulin resistance, leading to metabolic syndrome.

The adipose tissue produces various adipokines such as leptin, which is involved in the
regulation of appetite. Obesity is associated with elevated circulating leptin levels and hypothalamic
leptin resistance [44]. Clinical studies demonstrated a positive correlation between serum leptin
levels and left ventricular hypertrophy independent of blood pressure values [45,46]. Leptin and
its receptor are expressed in the heart, and leptin has been shown to promote left ventricular
hypertrophy [47–49]. The leptin receptor belongs to cytokine type I receptors, which are known
to signal via activation of the JAK2/STAT3 pathway [50]. The activation of the leptin-STAT3 signalling
by high-fat diet was reported to be associated with hypertrophy and increased expression and
activation of cardiac STAT3 in C57BL/6 mice, while STAT3 activation remained unchanged in
leptin-receptor-deficient db/db mice [51,52] (Table 3). Another study demonstrated increased STAT3
phosphorylation and expression in the hearts of Zucker rats, a genetic model of obesity [53]. Moreover,
increased STAT3 expression has been shown to contribute to the development of left ventricular
hypertrophy in hypercholesterolemic hamsters [54] and pigs suffering from metabolic syndrome [55].
In contrast, another study demonstrated that metabolic syndrome mimicked by high glucose, salt,
and cholesterol treatment in cardiomyocyte-like H9c2 cells reduced viability and STAT3 activation [56].
In Sprague-Dawley rats, a high-fat diet resulted in decreased phosphorylation and expression of cardiac
STAT3, along with an increased sensitivity to doxorubicin-induced cardiotoxicity [57]. Two additional
studies showed no alteration of cardiac STAT3 activation and phosphorylation and expression in
high-fat-diet-induced obese rats [51] or leptin-receptor-deficient obese mice (ob/ob) [58], respectively.

A preclinical study proved that cardiac ciliary neurotrophic factor (CNTF) ameliorated left
ventricular hypertrophy in leptin-deficient ob/ob and leptin-resistant db/db mice via the STAT3 and
ERK1/2 signalling pathway by activation of CNTF receptor that is structurally similar to the leptin
receptor [59].

Altogether, the majority (but not all) of studies showed no change or increase in cardiac STAT3
phosphorylation, expression and/or activation in animal models of experimental obesity and/or
hyperlipidemia. Based on the literature data, it seems that facilitated cardiac STAT3 signalling might
contribute to activation of hypertrophic and surviving pathways in obesity.
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Table 3. Effect of obesity on cardiac STAT3 under non-ischaemic baseline conditions.

Animal or Cell Test Group Control
Group

Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

high-fat-diet-induced
obese mice non-obese ventricles ↑ ↑ (NC) Tyr705 – (NC) high-fat diet increases STAT3 activation

[52]Mouse C57BL/6
Unknown gender leptin-receptor-deficient

(db/db) obese mice non-obese ventricles – – (NC) Tyr705 – (NC) STAT3 is not activated in db/db obesity

Rat Sprague-Dawley
Male

high-fat-diet-induced
obese rats non-obese whole heart – – (NC) ? – (NC) high-fat diet did not influence

STAT3 activation [51]

Rat Zucker Male leptin receptor deficient
(fa/fa) obese rats non-obese LV ↑ (NC) ↑ ? ↑ fa/fa genetic obesity increases STAT3

phosphorylation and expression [53]

Hamster Golden
Syrian Male

0.2% cholesterol
diet-induced

hypercholesterolemic
hamsters

normo-cholesterolemia LV N.D. N.D. N.A. ↑ hypercholesterolemia increases
STAT3 expression [54]

Pig Bama miniature
Female/Male

high-fat and high-sucrose
diet-induced metabolic

syndrome

non-metabolic
syndrome LV N.D. N.D. N.A. ↑ * metabolic syndrome increases STAT3

mRNA expression [55]

H9c2 cells

metabolic syndrome
induced by high glucose,

salt, and cholesterol
treatment

normal
medium cells ↓ (ELISA) N.E. ? N.E. metabolic syndrome decreases

STAT3 activation [56]

Rat Sprague-Dawley
Male

high-fat-diet-induced
obese rats non-obese whole heart ↓ (NC) ↓ ? ↓ high-fat diet decreases STAT3

phosphorylation and expression [57]

Mouse
Leptin-receptor-deficient
(ob/ob) obese Male

leptin-receptor-deficient
(ob/ob) obese mice non-obese whole heart – (NC) – Tyr705 – STAT3 is not activated in ob/ob obesity [58]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; N.D.: not detected; N.A.: not applicable; ?: phosphorylation site was not specified; LV: left
ventricle; STZ: streptozotocin; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3; *: mRNA expression; ELISA: enzyme-linked immunosorbent assay.
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2.3. Hypertension

According to the 2017 High Blood Pressure Clinical Practice Guideline, systolic blood pressure
≥130 and/or diastolic blood pressure ≥80 mmHg is considered as hypertension [60]. Observational
studies have demonstrated graded associations between hypertension and increased cardiovascular
risk to, e.g., myocardial infarction, heart failure, stroke, peripheral artery disease, etc. [61,62]. Moreover,
patients with hypertension often have other cardiovascular risk factors such as hypercholesterolemia,
obesity, diabetes mellitus, chronic kidney disease and smoking [63].

Left ventricular hypertrophy is a secondary consequence of hypertension and independently
predicts future cardiovascular events [60,64]. Therefore, it is very difficult to separate the effects
of hypertension, left ventricular hypertrophy and later systolic heart failure on cardiac STAT3 in
preclinical and clinical studies. Nevertheless, cardiac phosphorylation of STAT3 has been reported
to increase shortly after (peaking at 60 min) induction of pressure overload by constriction of the
abdominal aorta [65] (Table 4). Among the signalling pathways that mediate cardiac hypertrophy and
heart failure, the activation of the JAK/STAT pathway is thought to play a pivotal role in the response
to various stimuli such as pressure overload, cytokines, neurohormones, growth factors, ischaemia,
etc. [11]. Detailed mechanisms by which STAT3 interacts with a broad range of cellular and molecular
mechanisms to induce left ventricular hypertrophy and heart failure have been discussed in recent
review articles, so here we just refer to these excellent reviews [11,15,66–68].

2.4. Chronic Kidney Disease

Chronic kidney disease (CKD) is a clinical syndrome defined as persistent deterioration of kidney
function [41]. The prevalence of all stages of CKD varies between 7% and 12% worldwide [69].
In CKD patients, cardiovascular diseases are the leading cause of death [70]. The high incidence of
cardiovascular diseases in CKD can be attributed to different systemic complications of CKD [41];
for instance, hypocalcemia and hyperkalemia often lead to life-threatening arrhythmias [70]. Increased
oxidative stress, systemic inflammation, accelerated atherosclerotic process and deteriorating arterial
hypertension in CKD often results in cardiac hypertrophy, later progressing to heart failure [70].

Cardiac STAT3 phosphorylation increased in a rat model of doxorubicin-induced CKD and cardiac
hypertrophy [71] (Table 4). This study also reported that 60 min daily of swimming or running for
11 weeks could attenuate cardiac hypertrophy through the cardiotrophin-1-LIFR-gp130-JAK/STAT3
pathway [71]. Swimming reduced cardiac STAT3 phosphorylation both in the control and CKD group,
which might lead to the attenuation of cardiac hypertrophy in CKD animals [71].

Although alteration of cardiac STAT3 has been reported in CKD, whether this is due to direct
effects or due to secondary effects via cardiovascular complications of CKD (e.g., cardiac hypertrophy
and fibrosis) is very difficult to distinguish.
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Table 4. Effect of hypertension, chronic kidney disease, smoking and alcohol on cardiac STAT3 under non-ischaemic baseline conditions.

Animal or Cell Test Group Control Group Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

HYPERTENSION

Rat Wistar Male pressure overload by abdominal aorta
ligation sham LV ↑ ↑ Tyr705 – (NC) pressure overload increases STAT3 activation

and phosphorylation [65]

CHRONIC KIDNEY DISEASE

doxorubicin-induced CKD sedentary normal kidney function
sedentary whole heart N.D. ↑ ? N.D. doxorubicin-induced CKD increases STAT3

phosphorylationRat Sprague-Dawley
Male doxorubicin-induced CKD swimming doxorubicin-induced

CKD sedentary whole heart N.D. ↓ ? N.D. swimming decreases STAT3 phosphorylation in
doxorubicin-induced CKD

[71]

SMOKING
young (6-week-old) hamsters with

secondhand cigarette smoke exposure
(10 cigarettes for 30 min, 4 weeks)

young hamsters without
secondhand cigarette

smoke exposure
LV N.D. N.D. N.A. – secondhand smoking does not alter STAT3

expression in young hamsters
Hamster N.A. Male aged (72-week-old) hamsters with

secondhand cigarette smoke exposure
(10 cigarettes for 30 min, 4 weeks)

aged hamsters without
secondhand cigarette

smoke exposure
LV N.D. N.D. N.A. ↑ (NC)

STAT3 expression showed a tendency of
increase in aged hamsters due to

secondhand smoking

[72]

young (6-week-old) rats with
secondhand cigarette smoke exposure
(10 cigarettes for 30 min, twice a day

for 4 weeks)

young rats without
secondhand cigarette

smoke exposure
LV N.D. N.D. N.A. ↑ secondhand smoking increases STAT3

expression in young rats [73]
Rat Sprague-Dawley

Male aged (18-month-old) rats with
secondhand cigarette smoke exposure
(10 cigarettes for 30 min, twice a day

for 4 weeks)

aged rats with without
secondhand cigarette

smoke exposure
LV N.D. N.D. N.A. ↑ (NC)

STAT3 expression showed a tendency of
increase in aged rats due to

secondhand smoking

ALCOHOL
Mouse Wild-type

friendly virus B Male 4% alcohol liquid diet for 12 weeks regular liquid diet
(without ethanol) ventricles ↓ ↓ Ser727 – chronic 4% alcohol liquid diet decreases STAT3

activation and phosphorylation

4% alcohol liquid diet for 12 weeks

regular liquid diet
(without ethanol) ventricles – – Ser727 –

chronic 4% alcohol liquid diet does not alter
STAT3 activation, phosphorylation and

expression in mice overexpressing ALDH2
Mouse Transgenic

overexpressing
ALDH2 Male wild-type 4% alcohol

liquid diet for 12 weeks ventricles ↑ ↑ (NC) Ser727 – chronic 4% alcohol liquid diet increases STAT3
activation and does not alter STAT3 expression

[74]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; N.D.: not detected; N.A.: not applicable; ?: phosphorylation site was not specified; LV: left
ventricle; STZ: streptozotocin; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3; CKD: chronic kidney disease; ALDH2: aldehyde dehydrogenase 2.
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2.5. Aging

The aging human population is an epidemiological burden. It is estimated that more than 2 billion
individuals will be over the age of 60 by 2050 worldwide [75]. The prevalence of cardiovascular
diseases increases with age [76,77], and age might be a dominant risk factor in the elderly since the
impact of many traditional risks (e.g., obesity or hypertension) decline with age [78].

The first evidence demonstrating a crucial role for cardiac STAT3 in aging was reported by
Jacoby et al., showing the development of cardiac dysfunction and fibrosis with advancing age in mice
with a cardiomyocyte-restricted deletion of STAT3 [79]. Later, reductions in STAT3 phosphorylation
and expression in the right ventricle were shown in 13-month-old mice compared to three-month-old
mice [18] (Table 5). Two years later, the same research group demonstrated that the expression of
STAT3 in subsarcolemmal mitochondria is reduced in the left ventricles of 21-month-old mice [80].
In accordance with these findings, STAT3 activation was reduced in 12-month-old and 24-month-old
rats versus six-month-old controls [81].

In contrast, some studies described no alteration or increase of cardiac STAT3 in association with
advanced age. Phosphorylation was unchanged in 14-month-old mice [82] or 20-24-month-old rats [83],
and p-STAT3beta was not altered in 24-month-old mice [84] (Table 5). Three studies showed that the
level of STAT3 expression was increased in response to aging in old mice [82], hamsters [72] and rats [73];
however, these findings are limited since the activation (i.e., phosphorylation) was not examined.

Although age-related STAT3 dysregulation in human hearts has not been reported, research on
blood samples from two independent cohort studies showed that STAT3 was positively associated
with age [85].

Regarding possible modulation of STAT3 dysregulation in aging, Castello et al. have reported
that alternate-day fasting restored the decline in STAT3 activation in elderly rats to young values and
protected the heart against age-related hypertrophy [81].

Taken together, it is controversial whether STAT3 expression or activation is affected by aging
or not, and further research is needed to elucidate the phenomenon. Nevertheless, fasting seems to be
effective for the restoration of aging-associated STAT3 dysregulation.

2.6. Smoking

Smoking has well-known detrimental effects on health. Both active and passive (secondhand)
smoking are predominant risk factors for coronary heart disease [86]. We et al. reported that passive
smoking increases cardiac STAT3 expression in young rats [73], but does not alter STAT3 expression
in hamsters [72] (Table 4). In aged rats and hamsters exposed to passive smoking, cardiac STAT3
expression showed a tendency to increase [72,73].

2.7. Alcohol

Alcohol consumption is a widespread social habit. Although several studies showed potential
benefits of moderate alcohol consumption on coronary heart diseases [87], heavy alcohol drinking
may lead to the development of cardiomyopathy. In mice, chronic 4% alcohol liquid diet for 12 weeks
induced cardiomyopathy and was associated with decreased STAT3 phosphorylation, which was
reconciled in mice overexpressing aldehyde dehydrogenase 2 [74] (Table 4). This finding indicates a
potential effect of alcohol on STAT3 signalling.

2.8. Comedications

Patients at risk of cardiovascular disease are often treated with various medications that may also
contribute to alteration of cardiac molecular signalling. Administration of the lipid-lowering drug
simvastatin (10 mg/kg single daily dose) for five days in male Wistar rats increased cardiac p-STAT3
without affecting t-STAT3 [88]. Controversially, simvastatin gavage (10 mg/kg single daily dose) for
30 days and then for seven days intraperitoneally did not affect p-STAT3 [89].
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Table 5. Effect of aging on cardiac STAT3 under non-ischaemic baseline conditions.

Animal or Cell Test Group Control Group Tissue Sample p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

Mouse C57Bl6/J
Female aged >13 months young (<3 months) RV – (NC) ↓ Ser727 ↓ age decreases STAT3 phosphorylation and

expression [18]

Mouse C57Bl6/J
Female/Male aged 21 months young (8 weeks) LV mitochondrial

fraction N.D. N.D. N.A. ↓ age decreases STAT3 expression [80]

aged 24 months ↓ ↓ (NC) Tyr705 – (NC)Rat Sprague-Dawley
Male adult 12 months

young (6 months) LV ↓ ↓ (NC) Tyr705 – (NC)
age decreases STAT3 activation and reduced

STAT3 activation may contribute to
age-associated hypertrophy

[81]

Mouse C57BL/6J Male aged 14 months young (2 months) whole heart – – Tyr705 ↑
age does not alter STAT3 activation and

phosphorylation, but increases
STAT3 expression

[82]

Rat Sprague-Dawley
Male

aged 20–24
months young (3–4 months) whole heart – – (NC) Ser727 – (NC) age does not influence STAT3 activation [83]

Mouse C57BL/6J Male aged 24 months young (3 months) whole heart – (NC) – Tyr705 – age does not influence STAT3
phosphorylation and expression [84]

Hamster N.A. Male aged 72 weeks young (6 weeks) LV N.D. N.D. N.A. ↑ age increases STAT3 expression [72]
Rat Sprague-Dawley

Male aged 18 months young (6 weeks) LV N.D. N.D. N.A. ↑ age increases STAT3 expression [73]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; N.D.: not detected; N.A.: not applicable; RV: right ventricle; LV: left ventricle; p-STAT3:
phosphorylated STAT3; t-STAT3: total STAT3.
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2.9. Summary

The effect of various cardiovascular risk factors on cardiac STAT3 signalling under non-ischaemic
baseline conditions remains inconclusive (Figure 2) due to limited literature data or conflicting findings.
Future experimental studies focusing on this area may help us to draw adequate conclusions.
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3. Effect of Cardiovascular Risk Factors on Cardiac STAT3 Activation in Settings of
Ischaemia/Reperfusion

3.1. Diabetes

Diabetes is a well-known risk factor for the development of ischaemic heart disease. Moreover,
clinical studies showed that diabetes mellitus increased the susceptibility of the myocardium to
ischaemia/reperfusion injury and that the long-term outcome of ischaemic heart disease is worsened
by diabetes. However, the effect of diabetes on the susceptibility of the myocardium to acute
ischaemia/reperfusion injury is controversial in animal models. In experimental models of both type I
or type II diabetes, infarct size was demonstrated to be significantly larger, unchanged, or significantly
smaller in diabetic rats compared to nondiabetic controls [29,90–92].

In contrast to discrepancies regarding the effect of diabetes on infarct size, post-ischaemic
phosphorylation/activation of cardiac STAT3 was clearly downregulated in experimental models
of diabetes in all investigations (Table 6). In an animal model of STZ-induced type I diabetes, after
30 min ischaemia and 2 h reperfusion there was a significant reduction in phosphorylated STAT3
(Tyr705) levels in the diabetic group compared to the nondiabetic control group (tissue samples
were collected from the ischaemic zone of the myocardium) [93]. This reduction of post-ischaemic
STAT3 phosphorylation and/or activation due to diabetes was confirmed by several studies of
another research group in the ischaemic tissue as well as in whole heart or ventricular tissue
samples [29,31,33,92,94]. In addition, the phosphorylated STAT3 (Tyr705) and total STAT3 levels
were significantly reduced in a type II diabetes model, i.e., in isolated perfused hearts of leptin
receptor null, homozygous db/db mice subjected to ischaemia/reperfusion compared to wild-type
hearts subjected to ischaemia/reperfusion [95].

The same trend was observed in in vitro models of diabetes or acute hyperglycaemia. In H9c2
cells subjected to high glucose conditions (25 mM glucose), the post-ischaemic STAT3 phosphorylation
and activation (at Ser727 and Tyr705 sites) were significantly lower [29,32]. Similarly, exposure of
isolated adult rat ventricular cardiomyocytes to high glucose conditions also resulted in reduced
post-ischaemic STAT3 activation (at Tyr705 site) [33,92].

In summary, post-ischaemic STAT3 phosphorylation and/or activation are significantly decreased
due to diabetes in all studies irrespective of the applied models, which may contribute to increased
susceptibility to myocardial ischaemia/reperfusion injury in diabetes.
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Table 6. Effect of diabetes on cardiac STAT3 in settings of ischaemia/reperfusion.

Animal or Cell Test Group Control Group Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

ischaemic
zone ↓ (NC) ↓ Tyr705 – diabetes decreases post-ischaemic

STAT3 phosphorylation [93]

LV ↓ ↓ Tyr705
Ser727 – (NC) diabetes decreases post-ischaemic

STAT3 activation and phosphorylation [29]

whole heart ↓ ↓ Tyr705 – (NC) diabetes decreases post-ischaemic
STAT3 activation and phosphorylation [31]

Rat Sprague-Dawley
Male

in vivo regional (LAD)
30 min/120 min I/R in
STZ-induced diabetes

I/R nondiabetic

ventricles ↓ ↓ Tyr705
Ser727 – diabetes decreases post-ischaemic

STAT3 activation and phosphorylation [92]

Rat Sprague-Dawley
Male

in vivo regional (LAD) 30
min/90 min I/R in

STZ-induced diabetes
I/R nondiabetic ischaemic

zone ↓ ↓ Tyr705 – (NC) diabetes decreases post-ischaemic
STAT3 activation and phosphorylation [94]

Rat Sprague-Dawley
Male

ex vivo global 30 min/120 min
I/R in STZ-induced diabetes I/R nondiabetic LV ↓ ↓ (NC) Tyr705 – (NC) diabetes decreases post-ischaemic

STAT3 activation [33]

Mouse leptin receptor
null, homozygous db/db

Male

ex vivo global 30 min/60 min
I/R in high-fat-diet-induced

diabetes

I/R C57BL/6J wild-type
mouse whole heart ↓ ↓ Tyr705 ↓

diabetes decreases post-ischaemic
STAT3 activation, phosphorylation

and expression
[95]

Rat Sprague-Dawley
Male

isolated adult diabetic rat
cardiomyocytes subjected to

SI/R

isolated adult
nondiabetic rat

cardiomyocytes subjected
to SI/R

cells ↓ ↓ Tyr705 – (NC) diabetes decreases post-ischaemic
STAT3 activation and phosphorylation [33]

normal glucose
conditions + 6 h/12 h

SI/R
cells ↓ ↓ Tyr705

Ser727 – (NC)
high glucose condition decreases

post-ischaemic STAT3 activation and
phosphorylation

[29]

H9c2 cells
high glucose conditions + 6

h/12 h SI/R
high glucose conditions cells ↓ ↓ Tyr705 – (NC)

high glucose condition decreases
post-ischaemic STAT3 activation and

phosphorylation
[32]

Rat Sprague-Dawley
Male

isolated adult rat
cardiomyocytes subjected to
high glucose conditions + 45

min/2 h SI/R

normal glucose
conditions + 45 min/2 h

SI/R
cells ↓ ↓ (NC) Tyr705 – (NC)

H9c2 cells high glucose conditions + 45
min/2 h SI/R

normal glucose
conditions + 45 min/2 h

SI/R
cells ↓ ↓ (NC) Tyr705 – (NC)

high glucose condition decreases
post-ischaemic STAT3 activation [92]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; LV: left ventricle; STZ: streptozotocin; LAD: left anterior descending coronary artery; I/R:
ischaemia/reperfusion; SI/R: simulated ischaemia/reoxygenation; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3.
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3.2. Obesity

Obese people are more prone to developing coronary artery disease [40]. Leptin signalling has
been shown to ameliorate cardiac dysfunction and remodelling four weeks after myocardial infarction
by increasing STAT3 phosphorylation in calorie-restricted lean and obese ob/ob mice [58] as well as
in tamoxifen-inducible leptin receptor knockout mice [96] (Table 7). The obesity-associated hormone
leptin has been shown to exert an infarct size-limiting effect after 35 min global ischaemia and 35 min
reperfusion in non-obese C57Bl/6 mice [97]; however, leptin treatment was associated with reduced
levels of phosphorylated and total STAT3 after myocardial infarction in this study [97]. Another study
demonstrated that cardiac STAT3 activation was not altered due to diet-induced hypercholesterolemia
in rabbit hearts subjected to 30 min ischaemia and 10 min reperfusion [98].

3.3. Chronic Kidney Disease

The hypertrophic and fibrotic myocardium is more sensitive to ischaemia; therefore, acute
myocardial infarction is a common cause of cardiovascular morbidity and mortality in CKD
patients [70]. To date, only one study has reported data on cardiac STAT3 in experimental CKD.
Neither expression nor activation of cardiac STAT3 was affected by CKD in a rat model of in vivo
ischaemia/reperfusion [99] (Table 7).

3.4. Aging

Aging aggravates myocardial ischaemia/reperfusion injury in humans [100] and
rodents [100–103]. An experimental study showed reduced STAT3 activation in the left ventricle at
reperfusion after regional ischaemia in 13-month-old mice compared to three-month-old mice [18]
(Table 7). Another study found unaltered activation of cardiac STAT3 in aged rats subjected to 30 min
ischaemia and 15 min reperfusion compared to young controls undergoing ischaemia/reperfusion [83].

3.5. Gender

It is well known that the risk of cardiovascular diseases is higher in males compared to
females. The molecular and cellular basis of the cardiovascular gender difference has been reviewed
elsewhere [104]. Scientific evidence suggests that the female sex hormone oestrogen exerts a
cardioprotective effect, which also explains why postmenopausal women have a higher cardiovascular
risk compared to younger females [105].

Wang et al. demonstrated that in hearts isolated from male wild-type C57BL/6J mice and
subjected to ex vivo global ischaemia/reperfusion, the STAT activation was lower compared to
hearts from female mice [106] (Table 7). This difference was also associated with better functional
recovery after ischaemia/reperfusion in female mice [106]. Myocardial STAT3 activation after
ex vivo ischaemia/reperfusion was also attenuated in the hearts of male Sprague-Dawley rats
compared to females [107]. However, in the same study, in hearts of castrated male rats subjected
to ischaemia/reperfusion, the myocardial STAT3 activation was higher compared to hearts of male
controls, possibly due to lower levels of endogenous testosterone. Moreover, exogenous testosterone
administration decreased activation of STAT3 in hearts of castrated males as well as in females
compared to males; therefore, it was concluded that testosterone has a negative effect on myocardial
STAT3 activation after ischaemia/reperfusion [107].

3.6. Depression

Depression is common in patients with coronary heart disease and is associated with increased
cardiovascular mortality [108]. Depression was not shown to influence STAT3 activation in an ex vivo
model of regional ischaemia/reperfusion in hearts isolated from Sprague-Dawley rats exposed to
experimental depression induced by chronic mild stress [109] (Table 7).
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Table 7. Effect of obesity, chronic kidney disease, aging, gender and depression on cardiac STAT3 in settings of ischaemia/reperfusion.

Animal or Cell Test Group Control Group Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

OBESITY

Mouse leptin
-receptor-deficient
(ob/ob) obese Male

leptin-receptor-deficient (ob/ob)
obese mice + heart failure induced

by coronary artery ligation

non-obese + heart
failure induced by

coronary artery
ligation

whole heart ↓ (NC) ↓ Tyr705 ↓
ob/ob obesity decreases STAT3

phosphorylation and expression in
heart failure

[58]

Rabbit New
Zealand white Male

in vivo regional 30 min/10 min I/R
in diet-induced

hypercholesterolemic rabbits

IR in normo-
cholesterolemia whole heart – – (NC) Tyr705 – (NC)

diet-induced hypercholesterolemia
has no effect on post-ischaemic STAT3

activation
[98]

CHRONIC KIDNEY DISEASE

Rat Wistar Male
in vivo regional (LAD) 25 min/120

min I/R in 5/6
nephrectomy-induced CKD

I/R sham whole heart – – Tyr705 – I/R has no effect on STAT3 in 5/6
nephrectomy-induced CKD [99]

AGING
Mouse C57Bl6/J

Female
in vivo regional 30 min/10 min I/R

in aged mice young I/R LV ↓ ↓ (NC) Ser727 – (NC) age decreases post-ischaemic STAT3
activation [18]

Rat
Sprague-Dawley

Male

in vivo regional 30 min/15 min I/R
in aged rats young I/R whole heart – – (NC) Ser727 – (NC) age does not influence post-ischaemic

STAT3 activation [83]

GENDER

↓ ↓ Tyr705 – (NC) post-ischaemic STAT3 activation and
phosphorylation is lower in male miceMouse C57BL/6

Female/Male
ex vivo global 20 min/60 min I/R in

male mice
I/R in female mice whole heart

N.D. N.D. N.A. ↓ * post-ischaemic STAT3 mRNA
expression is lower in male mice

[106]

Rat
Sprague-Dawley

Female/Male

ex vivo global 25 min/40 min I/R in
male mice I/R in female mice whole heart ↓ ↓ (NC) Tyr705 – (NC) post-ischaemic STAT3 activation is

lower in male rats [107]

DEPRESSION
Rat

Sprague-Dawley
Male

ex vivo regional (LCA) 35 min/10
min I/R in chronic mild stress

(3-week-long)-induced depression
I/R non-depressed LV – – (NC) Tyr705 – (NC) depression does not alter

post-ischaemic STAT3 activation [109]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; N.D.: not detected; N.A.: not applicable; LV: left ventricle; LAD: left anterior descending
coronary artery; LCA: left coronary artery; I/R: ischaemia/reperfusion; SI/R: simulated ischaemia/reoxygenation; CKD: chronic kidney disease; *: mRNA expression; p-STAT3:
phosphorylated STAT3; t-STAT3: total STAT3.
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3.7. Comedications

Administration of the lipid-lowering drug simvastatin (10 mg/kg single daily dose) for five days
in male Wistar rats did not affect ischaemia/reperfusion-induced STAT3 phosphorylation [88].

4. Effect of Cardioprotective Strategies against Ischaemia/Reperfusion on Cardiac STAT3
Activation in the Presence of Cardiovascular Risk Factors

4.1. Diabetes

In the literature, studies exist reporting both preserved as well as impaired cardioprotection by
ischaemic or pharmacological conditionings [91]. Nevertheless, ischaemic pre- and postconditioning
mechanisms, which aim to attenuate ischaemia/reperfusion injury, were inefficient or required extra
ischaemia/reperfusion cycles to induce cardioprotection in the majority of animal models of chronic
diabetes [90,110,111]. The efficacy of pharmacological preconditioning was also impaired in diabetes,
for instance in the case of isoflurane [112] or L-glutamate [113]. In contrast, the infarct-size-limiting
effect of remote preconditioning induced by repeated non-invasive limb ischaemia was preserved in
STZ-induced diabetes [29].

Several studies have demonstrated that the presence of diabetes attenuated phosphorylation
and/or activation of STAT3 in hearts undergoing ischaemia/reperfusion with ischaemic [31],
pharmacological [29,33,93,94], or remote [29] conditioning when compared to nondiabetic controls
subjected to ischaemia/reperfusion with corresponding conditioning (Table 8). In these studies various
ischaemic or pharmacological conditioning either increased or did not change STAT3 activation in
the diabetic state. These studies suggest that diabetes aggravates the stimulatory effect of various
conditioning on the phosphorylation/activation of cardiac STAT3. Similar pattern was shown in an
in vitro model of hyperglycaemia in H9c2 cells [29].

Recently, some promising agents have been suggested to prevent STAT3 dysregulation in diabetes.
In diabetic mice, rapamycin [95] (Table 8) and its nanoformulated form, Rapatar [114] (Table 9),
increased the phosphorylation and activation of STAT3 (Tyr705), which could contribute to the
infarct-size-reducing effect of these treatments. The combination of antioxidant N-acetylcysteine and
allopurinol restored the decreased levels of p-STAT3 (Ser727, Tyr705) after ischaemia/reperfusion and
so contributed to smaller infarct size in STZ-induced diabetes [92]. N-acetylcysteine treatment together
with sevoflurane postconditioning has the same beneficial effects [94] (Table 9). In some studies,
the phosphorylation/activation of STAT3 was also increased in response to various cardioprotective
agents in diabetes models [32,92,94,114] (Table 9).

In summary, the majority of articles revealed that diabetes attenuates ischaemic or
pharmacological conditioning-induced cardiac STAT3 activation after ischaemia/reperfusion.
This could be related to the loss of cardioprotection and increased infarct size in diabetes. Interestingly,
there are some potential therapeutic agents like the antioxidant N-acetylcysteine and allopurinol
or rapamycin that can restore the STAT3 phosphorylation and so can contribute to attenuated
myocardial damage.
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Table 8. Effect of diabetes on cardiac STAT3 activation due to cardioprotective strategies against ischaemia/reperfusion.

Animal or Cell Test Group Control Group Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

I/R nondiabetic + morphine ischaemic
zone ↓ (NC) ↓ Tyr705 –

in vivo regional (LAD) 30 min/120
min I/R in STZ-induced diabetes +

morphine I/R in STZ-induced diabetes ischaemic
zone – (NC) – (NC) Tyr705 – (NC)

diabetes attenuates morphine-induced
post-ischaemic STAT3 phosphorylation,

and morphine cannot enhance
post-ischaemic STAT3 phosphorylation
in diabetes, which may contribute to the

abrogation of morphine-induced
cardioprotection in diabetes

[93]

I/R nondiabetic + isoflurane
PostC LV ↓ ↓ (NC) Tyr705 – (NC)

ex vivo global 30 min/120 min I/R
in STZ-induced diabetes +

isoflurane postconditioning
(PostC)

I/R in STZ-induced diabetes LV – – (NC) Tyr705 – (NC)

diabetes attenuates post-ischaemic
STAT3 activation due to isoflurane
PostC, and isoflurane PostC cannot

enhance post-ischaemic STAT3
activation, which may contribute to the

abrogation of cardioprotection by
isoflurane PostC in diabetes

[33]

I/R nondiabetic + sevoflurane
PostC area at risk ↓ (NC) ↓ (NC) Tyr705 – (NC)

in vivo 30 min/90 min I/R in
STZ-induced diabetes +

sevoflurane PostC

in vivo 30 min/90 min I/R in
STZ-induced diabetes area at risk – – (NC) Tyr705 – (NC)

the activation of STAT3 due to
sevoflurane PostC is lower when

applied in diabetes, and sevoflurane
PostC cannot enhance post-ischaemic
STAT3 activation both in diabetic rats

[94]

I/R nondiabetic + ischaemic
PostC whole heart ↓ (NC) ↓ (NC) Tyr705 – (NC)

Rat Sprague-Dawley
Male

in vivo 30 min/120 min I/R in
STZ-induced diabetes + ischaemic

PostC I/R in STZ-induced diabetes whole heart – – (NC) Tyr705 – (NC)

diabetes abrogates post-ischaemic
STAT3 activation due to ischaemic PostC [31]

I/R nondiabetic + repeated
non-invasive limb ischaemic

PostC
LV ↓ (NC) ↓ (NC) Tyr705

Ser727 – (NC)

Rat Sprague-Dawley
Male

in vivo 30 min/120 min I/R in
STZ-induced diabetes + repeated

non-invasive limb ischaemic
preconditioning I/R in STZ-induced diabetes LV ↑ ↑ (NC) Tyr705

Ser727 – (NC)

the activation of STAT3 is lower in
repeated non-invasive limb ischaemic

preconditioning when applied in
diabetes, the STAT3 activation is
increased due to preconditioning

in diabetes

[29]

normal glucose condition +
remote time-repeated hypoxic

preconditioning
cells ↓ (NC) ↓ (NC) Tyr705

Ser727 – (NC)

H9c2 cells
6 h/12 h SI/R under high glucose
conditions + remote time-repeated

hypoxic preconditioning high glucose conditions + 6 h/12
h SI/R cells ↑ ↑ Tyr705

Ser727 – (NC)

the activation of STAT3 is lower in
remote time-repeated hypoxic

preconditioning when applied in
diabetes, the STAT3 activation is

increased due to remote time-repeated
hypoxic preconditioning in high glucose

conditions

[29]

I/R nondiabetic + rapamycin whole heart – – Tyr705 –Mouse leptin receptor
null, homozygous

db/db Male

ex vivo global 30 min/60 min I/R
in db/db diabetes + rapamycin ex vivo global I/R 30 min/60

min in db/db diabetes whole heart ↑ ↑ Tyr705 ↑

rapamycin increases (restores) STAT3
activation, phosphorylation and

expression in diabetes
[95]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; LV: left ventricle; STZ: streptozotocin; LAD: left anterior descending coronary artery; I/R:
ischaemia/reperfusion; SI/R: simulated ischaemia/reoxygenation, PostC: postconditioning; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3.
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Table 9. Effect of cardioprotective agents against ischaemia/reperfusion on cardiac STAT3 in diabetes.

Animal or Cell Test Group Control Group Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

Mouse leptin
receptor null,

homozygous db/db
Male

ex vivo global 30 min/60 min
I/R in type II diabetes + Rapatar I/R in type II diabetes whole heart ↑ ↑ Tyr705 – (NC)

Rapatar treatment induces
post-ischaemic STAT3

phosphorylation in diabetes
[114]

in vivo 30 min/90 min I/R in
STZ-induced diabetes +

N-acetylcysteine

in vivo 30 min/90 min I/R in
STZ-induced diabetes area at risk ↑ ↑ (NC) Tyr705 – (NC)

N-acetylcysteine enhances
post-ischaemic STAT3 activation

in diabetes
[94]

in vivo 30 min/90 min I/R in
STZ-induced diabetes ↑ ↑ (NC) Tyr705 – (NC)

in vivo 30 min/90 min I/R in
STZ-induced diabetes +

sevoflurane postconditioning
↑ ↑ (NC) Tyr705 – (NC)

in vivo 30 min/90 min I/R in
STZ-induced diabetes +

sevoflurane postconditioning +
N-acetylcysteine in vivo 30 min/90 min I/R in

STZ-induced diabetes +
N-acetylcysteine

area at risk

↑ ↑ (NC) Tyr705 – (NC)

STAT3 activation induced by
sevoflurane postconditioning +
N-acetylcysteine is superior to

sevoflurane postconditioning or
N-acetylcysteine in diabetes

[94]

in vivo regional (LAD) 30
min/120 min I/R in

STZ-induced diabetes +
N-acetylcysteine + allopurinol

I/R in STZ-induced diabetes ventricles ↑ ↑ (NC) Tyr705
Ser727 – (NC)

N-acetylcysteine + allopurinol
increases (preserves)

post-ischaemic STAT3 activation
in diabetes

isolated adult rat
cardiomyocytes subjected to 45

min/2 h SI/R under high
glucose conditions + adiponectin

↑ ↑ (NC) Tyr705 – (NC)
adiponectin increases

post-ischaemic STAT3 activation
in high glucose conditions

Rat
Sprague-Dawley

Male

isolated adult rat
cardiomyocytes subjected to 45

min/2 h SI/R under high
glucose conditions +

N-acetylcysteine + allopurinol

high glucose conditions + 45
min/2 h SI/R cells

↑ ↑ (NC) Tyr705 – (NC)

45 min/2 h SI/R under high
glucose conditions +

N-acetylcysteine + allopurinol

high glucose conditions + 45
min/2 h SI/R ↑ ↑ (NC) Tyr705 – (NC)

N-acetylcysteine + allopurinol
increases (preserves)

post-ischaemic STAT3 activation
in high glucose conditions

[92]

H9c2 cells

12 h/6 h SI/R under high
glucose conditions + propofol

high glucose conditions + 12 h/6
h SI/R

cells

↑ ↑ Tyr705 – (NC)
propofol enhances STAT3

activation in settings of SI/R
under high glucose conditions

[32]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; LV: left ventricle; STZ: streptozotocin; LAD: left anterior descending coronary artery; I/R:
ischaemia/reperfusion; SI/R: simulated ischaemia/reoxygenation; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3.
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4.2. Obesity

There is a shortage of studies investigating the effect of obesity on ischaemic or pharmacological
conditioning-induced cardiac STAT3 activation after ischaemia/reperfusion. Nevertheless,
an experimental study demonstrated that cardiac STAT3 activation was increased in rabbit hearts
subjected to two cycles of preconditioning with 5 min ischaemia/10 min reperfusion followed by
30 min ischaemia and 10 min reperfusion as compared to the ischaemia/reperfusion control group [98].
In this study, the natural olive constituent oleuropein induced nutritional cardioprotection in normal
and cholesterol-fed rabbits by activating the STAT3 signalling pathway, which was similar to the effects
seen in ischaemic preconditioning hearts [98] (Table 10).

4.3. Chronic Kidney Disease

There are only limited data on the possible interaction of CKD with cardioprotective strategies.
Byrne et al. reported that ischaemic conditioning still reduces infarct size after four weeks of subtotal
nephrectomy in male Wistar rats [99]. This study found that (i) the level of phosphorylated STAT3
was significantly increased by ischaemic preconditioning both in the CKD and controls, (ii) the level
of STAT3 expression was not different in response to CKD or ischaemic preconditioning, and (iii) the
activation of STAT3 was significantly increased due to ischaemic preconditioning in both the CKD and
control animals [99] (Table 10). Since the relevance of these findings were challenged due to the short
duration of kidney disease [115], our research group used male Wistar rats after 29 weeks of subtotal
nephrectomy and demonstrated that ischaemic preconditioning was still cardioprotective in a chronic
uremic condition [116]. Nevertheless, cardiac STAT3 has not been investigated in this model [116].

4.4. Aging

Several clinical [117,118] and animal [18,119] studies showed that the beneficial effect of
cardioprotective approaches is lost in aged hearts (for review, see [120,121]). To date, one study
was conducted on revealing the association of STAT3 dysregulation and loss of cardioprotection by
ischaemic conditioning. In the aged mouse heart, ischaemic postconditioning was ineffective and
associated with reduced cardiac STAT3 activation. Therefore, the authors concluded that reduced
STAT3 activation might contribute to the age-related loss of protection [18] (Table 10).

4.5. Depression

Depression is common in patients with coronary heart disease and is associated with increased
cardiovascular mortality [108]. Endothelial protection induced by ischaemic postconditioning
disappears in patients with major depression [122]. Furthermore, ischaemic postconditioning was
ineffective in rats with chronic depression induced by three-week mild stress [109]. In hearts
of non-depressed animals, ischaemic postconditioning enhanced STAT3 activation; however,
postconditioning failed to increase STAT3 activation in depressed condition (Table 10). The authors
concluded that impaired activation of STAT3 may contribute to a loss of cardioprotection [109].



Int. J. Mol. Sci. 2018, 19, 3572 20 of 29

Table 10. Effect of cardioprotective strategies against ischaemia/reperfusion on cardiac STAT3 activation in obesity, chronic kidney disease, aging and depression.

Animal or Cell Test Group Control Group Tissue
Sample

p-STAT3/t-STAT3
Activation p-STAT3 Phosphorylation t-STAT3

Expression Conclusions Ref.

OBESITY

Rabbit New
Zealand White

Male

in vivo regional 30 min/10
min I/R in diet-induced

hypercholesterolemic rabbits +
oleuropein

I/R in diet-induced
hypercholesterolemic

rabbits
whole heart ↑ ↑ (NC) Tyr705 – (NC)

oleuropein increases post-ischaemic
STAT3 activation in diet-induced

hypercholesterolemia
[98]

CHRONIC KIDNEY DISEASE

Rat Wistar Male
5/6 nephrectomy-induced

CKD + ischaemic
preconditioning

I/R in 5/6
nephrectomy-induced

CKD
whole heart ↑ ↑ Tyr705 –

ischaemic preconditioning increases
STAT3 activation and phosphorylation

in 5/6 nephrectomy-induced CKD
[99]

AGING

Mouse C57Bl6/J
Female

in vivo regional I/R +
ischaemic postconditioning

(PostC) in aged mice

young I/R +
ischaemic PostC LV ↓ ↓ (NC) Ser727 – (NC)

STAT3 activation is lower in aged rats
subjected to ischaemic PostC, which

may contribute to the age-related loss
of ischaemic PostC-induced protection

[18]

Rat
Sprague-Dawley

Male

in vivo regional I/R +
sevoflurane-PostC in aged rats

young I/R +
sevoflurane-PostC whole heart – – (NC) Ser727 – (NC) age does not influence STAT3

activation in sevoflurane-PostC [83]

DEPRESSION
I/R non-depressed +

ischaemic PostC LV ↓ ↓ (NC) Tyr705 – (NC)
Rat

Sprague-Dawley
Male

ex vivo regional (LCA) 35
min/10 min I/R in depression
induced by chronic mild stress

(3-week) + ischaemic PostC

I/R in chronic mild
stress-induced

depression
LV – – (NC) Tyr705 – (NC)

the activation of STAT3 due to
ischaemic PostC is abrogated when

applied in chronic mild stress
[109]

↓ in green cells: decrease; ↑ in red cells: increase; – in blue cells: no change; NC: not confirmed; LV: left ventricle; STZ: streptozotocin; LCA: left coronary artery; I/R: ischaemia/reperfusion;
SI/R: simulated ischaemia/reoxygenation; CKD: chronic kidney disease; PostC: postconditioning; p-STAT3: phosphorylated STAT3; t-STAT3: total STAT3.
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4.6. Comedications

Certain pharmacological agents used for preventing ischaemic heart disease (e.g., glyceryl
trinitrate, statins) have been reported to interfere with the cardioprotective effect of
conditionings [123–125]. Rosuvastatin administered on the day before in vivo myocardial infarction
(8 mg/kg single dose), and thereafter at 4 mg/kg orally for five weeks, enhanced p-STAT3/t-STAT3 in
the peri-infarct area [126].

5. Conclusions and Future Perspectives

Here, we reviewed current knowledge regarding the effect of various cardiovascular risk factors on
STAT3 in the heart under non-ischaemic baseline conditions, and in settings of ischaemia/reperfusion
injury with or without cardioprotective strategies (i.e., ischaemic pre- or postconditioning, as well
as remote or pharmacological conditioning). Our conclusions may be somewhat limited as, in the
case of most risk factors, only a few studies have focused primarily on the alteration of cardiac
STAT3 due to a specific risk factor (e.g., hypertension, chronic kidney disease, smoking, alcohol
consumption). Therefore, it is difficult to find strong evidence in those areas, and further studies are
urged to investigate the effect of these risk factors on myocardial STAT3 signalling.

Nevertheless, in this review we highlighted that under non-ischaemic baseline conditions the
STAT3 phosphorylation in response to risk factors is inconsistent (e.g., diabetes, obesity, aging)
(Figure 2). The reason for this is unclear and may include differences in the species and strain
of animals, the type, severity, and duration of risk factor condition as well as differences in the method
of detection of STAT3 phosphorylation and expression.

More interestingly, most of the findings indicate that certain risk factors (e.g., diabetes, obesity,
aging, male gender) attenuate the activation of cardiac STAT3 in settings of ischaemia/reperfusion,
which may contribute to a worsening of the ischaemic tolerance of the heart. Moreover, based
on our review of the literature, it seems that risk factors including diabetes, aging and depression
decrease, which likely plays a role in the loss of cardioprotection (Figure 3). These results point out the
therapeutic potential of restoring STAT3 dysregulation. Indeed, there are some potential therapeutic
agents like the antioxidant N-acetylcysteine and allopurinol or rapamycin that beneficially affect STAT3
dysregulation in diabetes. However, the availability of compounds directly and selectively targeting
STAT3 phosphorylation is currently very limited, and development of such agents would facilitate
further research on the feasibility of STAT3 modulation as a cardioprotective intervention. Moreover,
pharmacological STAT3 activation in relation to ischaemia/reperfusion (especially in the presence of
risk factors) should be cardioselective and temporary due to the fact that prolonged upregulation of
STAT3 in non-cardiac tissues is associated with various malignancies.

In summary, there is still no consensus in this research field and further focused studies are
needed to elucidate the role of cardiovascular risk factors in dysregulation of myocardial STAT3 under
different physiological and pathophysiological conditions. Further testing of the therapeutic potential
of STAT3 activation in cardiac ischaemia/reperfusion in the presence of various cardiovascular risk
factors should also be straightforward.
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