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Abstract

For an arbitrary g-polynomial f over F;» we study the problem
of finding those g-polynomials g over Fy» for which the image sets
of f(x)/x and g(z)/x coincide. For n < 5 we provide sufficient and
necessary conditions and then apply our result to study maximum
scattered linear sets of PG(1,¢).

1 Introduction

Let Fyn denote the finite field of ¢" elements where ¢ = pl for some prime
p. For n > 1 and s | n the trace and norm over Fys of elements of Fyn are
defined as Trgn /s (z) = 2+ 27 +...+ 27 " and Nyn jge () = g T4
respectively. When s = 1 then we will simply write Tr(z) and N(z). Every
function f: Fgn — Fyn can be given uniquely as a polynomial with coeffi-
cients in Fy» and of degree at most ¢" — 1. The function f is [Fy-linear if
and only if it is represented by a g-polynomial, that is,

n—1 )
f@) =3 aw” (1)
=0

with coefficients in Fg». Such polynomials are also called linearized. If f
is given as in , then its adjoint (w.r.t. the symmetric non-degenerate
bilinear form defined by (x,y) = Tr(zy)) is
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ie. Tr(xf(y)) = Tr(yf(x)) for any z,y € Fyn.
The aim of this paper is to study what can be said about two g-polynomials
f and g over Fyn if they satisfy

w(B)m(),

where by Im (f(z)/x) we mean the image of the rational function f(z)/z,
Le. {f(z)/x:x e Fp}.

For a given g-polynomial f, the equality clearly holds with g(z) =
f(Az)/X for each A € Fy,. It is less obvious that holds also for g(z) =
F(Az)/A, see [3, Lemma 2.6] and the first part of [8, Section 3].

When one of the functions in is a monomial then the answer to the
question posed above follows from McConnel’s generalization [24, Theorem
1] of a result due to Carlitz [7] (see also Bruen and Levinger [6]).

Theorem 1.1. [2], Theorem 1] Let p denote a prime, ¢ = p", and 1 < d a
divisor of ¢ — 1. Also, let F: Fy — F, be a function such that F/(0) =0 and
F(1)=1. Then
g—1 g—1
(F(z) - F(y) & =(z—y) 1

for all z,y € Fy if and only if F(z) = 2?’ for some 0 < j < h and d | p/ —1.

Indeed, when the function F of Theorem is [Fy-linear, we easily get
the following corollary (see Section [2| for the proof, or [16], Corollary 1.4] for
the case when ¢ is an odd prime).

Corollary 1.2. Let g(x) and f(x) = ozzqk, q = p", be q-polynomials over
Fgn satisfying Condition (2). Denote ged(k,n) by t. Then g(z) = Bzt with
ged(s,n) =t for some B with Nyn /gt () = Ngn 0¢(83).

Another case for which we know a complete answer to our problem is when

f(z) = Tr(x).

Theorem 1.3 ([8, Theorem 3.7]). Let f(z) = Tr(x) and let g(z) be a q-
polynomial over Fyn such that

Im (f(x)/x) = Im (g(x)/x).

Then g(x) = Tr(Az)/A for some \ € Fyn.



Note that in Theorem we have f () = f(x) and the only solutions for
g are g(z) = f(Az)/A, while in Corollary we have (up to scalars) p(n)
different solutions for g, where ¢ is the Euler’s totient function.

The problem posed in is also related to the study of the directions
determined by an additive function. Indeed, when f is additive, then

flz) = fy)
T —y

I (fia)/2) = { @A oy € )

is the set of directions determined by the graph of f, i.e. by the point
set G == {(z, f(x)): x € Fgn} C AG(2,¢"). Hence, in this setting, the
problem posed in corresponds to finding the Fy-linear functions whose
graph determines the same set of directions. The size of Im (f(x)/x) (for
any f, not necessarily additive) was studied extensively. When f is Fy-linear
the following result holds.

Result 1.4 ([1,2]). Let f be a g-polynomial over Fyn, with mazimum field
of linearity Fy. Then

q" -1

g—1

¢t 1< [ Im(f(2)/2)] <

The classical examples which show the sharpness of these bounds are
the monomial functions 29", with ged(s,n) = 1, and the Tr(z) function.
However, these bounds are also achieved by other polynomials which are
not ”"equivalent” to these examples (see Section 2 for more details).

Two Fg-linear polynomials f(x) and h(z) of Fyn[z] are equivalent if the
two graphs G; and Gy, are equivalent under the action of the group I'L(2, ¢"),
i.e. if there exists an element ¢ € T'L(2,¢") such that g}" = Gp,. In such
a case, we say that f and h are equivalent (via ) and we write h = f,.
It is easy to see that in this way we defined an equivalence relation on
the set of g-polynomials over Fyn. If f and g are two g-polynomials such
that Im (f(z)/x) = Im(g(z)/z), then Im (f,(x)/x) = Im(g,(x)/z) for
any admissible ¢ € I'L(2, ¢") (see Proposition (2.6)). This means that the
problem posed in can be investigated up to equivalence.

For n < 4, the only solutions for g in Problem are the trivial ones,
i.e. either g(x) = f(Ax)/z or g(x) = f(Azx)/x (cf. Theorem .
For the case n =5, in Section [4] we prove the following main result.

Theorem 1.5. Let f(x) and g(x) be two q-polynomials over F s, with maz-
imum field of linearity ¥y, such that Im (f(z)/x) = Im(g(z)/x). Then



either there exists ¢ € T'L(2,¢°) such that f,(z) = az? and gp(z) = B’
with N(a) = N(B) for some i,5 € {1,2,3,4}, or there exists \ € s such

that g(z) = f(Ox)/X or g(x) = f(Az)/\.

Finally, the relation between Im (f(x)/x) and the linear sets of rank
n of the projective line PG(1,¢™) will be pointed out in Section As
an application of Theorem we get a criterium of PT'L(2, ¢°)-equivalence
for linear sets in PG(1,¢°) and this allows us to prove that the family of
(maximum scattered) linear sets of rank n of size (¢"—1)/(¢—1) in PG(1, ¢")
found by Sheekey in [27] contains members which are not-equivalent to the
previously known linear sets of this size.

2 Background and preliminary results

Let us start this section by the following immediate corollary of Result

Proposition 2.1. If Im (f(z)/x) = Im (g(z)/z) for two gq-polynomials f
and g over Fyn, then their mazimum fields of linearity coincide.

Proof. Let Fym and F r be the maximum fields of linearity of f and g,
respectively. Suppose to the contrary m < k. Then |Im (g(x)/x)| < (¢" —
D/("—1) < g1 41 < ¢ ™ +1 < |Im(f(z)/x)|, a contradiction by
Corollary N

Now we are able to prove Corollary

Proof. The maximum field of linearity of f(x) is F,, thus, by Proposition
g(x) has to be a ¢'-polynomial as well. Then for ¢ > 1 the result follows
from the t = 1 case (after substituting ¢ for ¢* and n/t for n) and hence
we can assume that f(z) and g(z) are strictly Fg-linear. By (2)), we note
that ¢g(1) = Ozzgk_l, for some zy € Fyn. Let F(x) := g(x)/g(1), then I is
a g-polynomial over Fgn, with F(0) = 0 and F(1) = 1. Also, from (2)), for
each x € Fy. there exists z € Fyn such that

2.2

This means that for each z € Fn we get N (F(x)) = 1. By Theorem

xT

(applied to the g-polynomial F' with d = ¢ — 1 | ¢" — 1 and using the fact
that I is additive) it follows that F(z) = 2P’ for some 0 < j < nh. Then



Proposition yields p/ = ¢* with ged(s,n) = 1. We get the first part of
the statement by putting S = ¢g(1). Then from the assumption it is easy
to deduce N(«) = N(f). O

We will use the following definition.

Definition 2.2. Let f and g be two equivalent q-polynomials over Fyn via
. . . b
the element ¢ € T'L(2,q"™) represented by the invertible matriz <CCL d) and

with companion automorphism o of Fgn. Then

Kgé))”“”q”}:{(? Z)<ff;>a>=w€Fqn}- (3)

K7 (z) = az” + bf (2)”

Let

and
Hf(x) = ca” + df (2)°.

Proposition 2.3. Let f and g be q-polynomials over Fyn such that g = f,
for some p € TL(2,¢"). Then K7 is invertible and g(x) = H7 ((K7)™"(z)).

Proof. Tt easily follows from . O

From it is also clear that
Im (f@(x)) :{c+dz czeIm (f(sc))} (4)
T a4+ bz° T

[Im (fo(z)/x)] = [Im (f(2)/z)|. (5)
From Equations and Result the next result easily follows.

and hence

Proposition 2.4. If two q-polynomials over Fyn are equivalent, then their
mazimum fields of linearity coincide. ]

Note that |Im (g(x)/x)| = [Im (f(z)/z)| does not imply the equivalence
of f and ¢. In fact, in the last section we will list the known examples
of g-polynomials f which are not equivalent to monomials but the size of
Im (f(z)/z) is maximal. To find such functions was also proposed in [16]
and, as it was observed by Sheekey, they determine certain MRD-codes [27].

Let us give the following definition.



Definition 2.5. An element ¢ € TL(2,q") represented by the invertible ma-

triz (Z d) and with companion automorphism o of Fyn is said to be admis-

sible w.r.t. a given g-polynomial f over Fyn if either b =0 or —(a/b)"_1 ¢
Im (f(z)/z).

The following results will be useful later in the paper.

Proposition 2.6. If Im (f(x)/x) = Im(g(x)/x) for some q-polynomials
over Fon, then Im (fo(x)/x) = Im (g,(x)/x) holds for each admissible ¢ €
I'L(2,¢").

Proof. From Im (f(z)/x) = Im (g(x)/z) it follows that any ¢ € I'L(2,¢")
admissible w.r.t. f is admissible w.r.t. ¢ as well. Hence K;f and KJ are
both invertible and we may construct f, and g, as indicated in Proposition
The statement now follows from Equation (4)). O]

Proposition 2.7. Let f and g be q-polynomials over Fyn and take some
¢ € TL(2,¢") with companion automorphism o. Then g,(x) = fo(A7x)/A7
for some X\ € Fyw if and only if g(z) = f(Az)/A.

Proof. First we prove the "if” part. Since g(x) = f(Az)/\ = (wip o fo
wy)(z), where w, denotes the scalar map « € Fgn — ax € Fyn, direct
computations show that Hy = wy /e o H;f owy and K§ = wy )0 0 K;f o Wy.
Then g, = wy/xe © fp owye and the first part of the statement follows. The
“only if” part follows from the "if” part applied to g,(z) = f,(A72)/A7 and
¢! and from (fy),—1 = f and (g,),-1 = g O

Next we summarize what is known about Problem for n < 4.

Theorem 2.8. Suppose Im (f(z)/z) = Im (g(x)/x) for some g-polynomials
over Fgn, n < 4, with maximum field of linearity Fy,. Then there exist
¢ € GL(2,¢") and X\ € Fn such that the following holds.

o Ifn =2 then fo(x) =2 and g(x) = f(Ax)/\.
o [fn =3 then either
fo(2) = Te(x) and g(z) = F(A2)/A

or

folw) = 2% and g(x) = F(Ax)/ or g(z) = Fra) /A

o Ifn=4 then g(x) = f(Ax)/X or g(z) = f(\x)/\.



Proof. In the n = 2 case f(x) = ax+bx?, b # 0. Let ¢ be represented by the
1 0 9 q
/b 1/b>’ Then ¢ € GL(2,¢°) maps f(x) to x¢. Then Propo-

sition and Corollary give go(x) = fo(pux)/pn and hence Proposition
gives g(z) = f(Az)/A for some A € Fyn. If n = 3 then according to [20),

Theorem 5] and [8, Theorem 1.3] there exists ¢ € GL(2,¢*) such that either
fo(x) = Tr(z) or fo(x) = x9. In the former case Proposition and The-
orem (1.3 give g,(x) = fo(pux)/pn and the assertion follows from Proposition
In the latter case Proposition and Corollary give gy(x) = azd
where 7 € {1,2} and N(a) = 1. If i = 1, then g,(z) = f,(ux)/p where
9! = o and the assertion follows from Proposition Let now ¢ = 2 and

matrix <

denote by <é, g) the matrix of ¢~ 1. Also, let A denote the determinant

of this matrix and recall that f,(z) = 29, with ¢ € GL(2,¢%). Then by
Proposition [2.3]
-1
K{ (z)= Az + Ba!

is invertible and its inverse is the map

() ATTey — AT Byt 4 Bltagd’
T) =
N(A) + N(B)

Also, by Proposition [2.3| we have
(o) por (2) = C(a) + Dip(a),

which gives f(z) = (f),-1 ().
Using similar arguments, since N(a) = 1, direct computations show

(2) = (go) s (z) = (AT C + BT D)z — BY Aa? a9 + A1Aaz?
I = et i) = N(A) +N(B) ’

and hence g(z) = f(A\z)/X for each \ € s with N—L = Al=9/q9,
The case n =4 is [8, Proposition 4.2]. O

Remark 2.9. Theorem yields that there is a unique equivalence class of
g-polynomials, with maximum field of linearity I, when n = 2. For n = 3
there are two non-equivalent classes and they correspond to the classical
examples: Tr(z) and z9. Whereas, for n = 4, from [§, Sec. 5.3] and [4,
Table p. 54|, there exist at least eight non-equivalent classes. The possible
sizes for the sets of directions determined by these strictly F4-linear functions
are °+1, 3 +¢>—q+1, >+ ¢*+1 and ¢® + ¢*> + ¢+ 1 and each of them



is determined by at least two non-equivalent g-polynomials. Also, by [13,
Theorem 3.4], if f is a g-polynomial over F 4 for which the set of directions

is of maximum size then f is equivalent either to x¢ or to dx¢ —1—1"13, for some
6 € Fy with N(0) #1 (see [22]).

3 Preliminary results about Tr(z) and the mono-
mial ¢g-polynomials over F

Let ¢ be a power of a prime p. We will need the following results.

Proposition 3.1. Let f(x) = Z?:o a;z? and g(x) = Tr(x) be g-polynomials
over Fs. Then there is an element ¢ € TL(2,¢°) such that Im (f,(z)/x) =
Im (g(z)/z) if and only if ajasasas # 0, (a1/a2)? = az/as, (az/a3)? = as/ay
and N(a1) = N(ag).

Proof. Let ¢ € T'L(2,¢%) such that Im (f,(x)/x) = Im (g(x)/x). By Propo-
sition the maximum field of linearity of f is F, and by Theorem
there exists A € F5 such that fo(x) = Tr(Axz)/A. This is equivalent to the

existence of a,b,c¢,d, ad —bc # 0 and 0 : x — 2?" such that

{(Tf(y)) e F} B {( 3) <f(x;)“> e F}

Then cz? + df (x)7 € F, for each € Fy5. Let z = 2. Then

4 4

7 1+1

cz+d g alz? =274 4 g a;lz9"",
=0 i=0

for each z. As polynomials of z the left and right-hand sides of the above
equation coincide modulo 27 — 7 and hence comparing coefficients yield

c+daf = dlay’,

da] = ¢ + dlaf?,
o _ oq
daj, = dia;”,

for k = 1,2,3. If d = 0, then ¢ = 0, a contradiction. Since d # 0, if one
of ay,az,as,ay is zero, then all of them are zero and hence f is Fs-linear.
This is not the case, so we have ajasaszaq # 0. Then the last three equations

yield
al a _ as
a2 B as’

8



as q as
as ay’

and by taking the norm of both sides in dag = d%a]? we get N(a1) = N(az).

Now assume that the conditions of tQhe asser‘gion hold. It follows that
asg = agﬂ/a‘f and ag = agﬂ/ag = a3 +q“/a(f 4 Let a; = a;/ap for
i=0,1,2,3,4. Then a1 =1, N(aw) =1, a3 = ozg+1 and oy = a%+q+q2. We
have ag = \9~! for some \ € IF:;5. If

a b\ 1 0
c d) 1—)\1_q4a0/a1 )\l_q4/a1 ’

(3 Z) <féc>) -

T x
<a; A B U LT N e L S Aq3q4xq4> N <Tr(x>\q4)/)\q4> ’

then

ie. fo(r)= Tr()\q4x)/)\q4, where ¢ is defined by the matrix (Z Z) 0

Proposition 3.2. Let f(x) = Z?:o aixqi, with ayasazas # 0. Then there
is an element ¢ € TL(2,¢°) such that Im (fy(x)/x) = Im (2/z) if and only
if one of the following holds:

1. (a1/a2)? = az/as, (az/a3)? = as/as and N(ay) # N(ag), or
2. (ag/a1)” = ay/as, (a1/a2)? = as/as and N(ay) # N(as).

In both cases, if the condition on the norms does not hold, then I'm (f,(x)/x) =

Proof. We first note that the monomials 29 and 29" are equivalent via the

map ¢ := (? (1)> . Hence, by Corollary the statement holds if and only

if there exist a,b,¢,d, ad —bc #0, 0 : z — 2?" and i € {1,2} such that

W) vemep A o) (o) reme) 0

If Condition 1 holds then let o; = a;/a; for j =0,1,2,3,4. So oy =1,
N(ag) # 1, a5 = o™, as = oéJ“qu and it turns out that

1 AN/ 1 o z\
altarare® <—040 1/al> (f(x))_

9



1 ol T
= 24 .3 2 3 4] .
Oé+q+q T x4+ aox? + azz? + agz?

Hence @ is satisfied with i =1, 0 : x — = and

a b\ 1 0434 1 0
c d) aé+q+q2+q3 1 —aQy 1/@1 ’

If Condition holds then let a; = aj/az for j =0,1,2,3,4. So az =1,
N(ag) # 1, ag = a%+q+q3, oy = aﬁqg and (6) is satisfied with ¢ = 2,

o:x+— x and
a b B ai+q+q3+q4 1 1 0
c d) 1 0/{2 —ap 1/az)’

Suppose now that @ holds and put z = x?. Then
(za + bz a?ij ) =cz4d Z aqu]
§=0 §=0

for each z € F s and hence, as polynomials in z, the left-hand side and right-

hand side of the above equation coincide modulo 24" — 2. The coefficients
of z, 24" and 24" with i € {1,2} and k € {1,2,3,4} \ {i} give

i i
b9 a’l = ¢+ daf,

qi qi o—q’i . o
a +bTay” = day,
@000 — JaC
b ap”; = day;,

respectively, where the indices are considered modulo 5. Note that db # 0
since otherwise also a = ¢ = 0 and hence ad — bc = 0. With {r,s,t} =

{1,2,3,4} \ {i}, the last three equations yield:
(ar—i>q2 _ ar
As—j CL57

q
<as—i> _ O
Qt—j at

10




First assume ¢ = 1. Then we have

— ] =— and — ] =—
a9 as as a4
If N(a;) = N(ag), from Proposition and Equation (5| it follows that

[Im (z9/x)| = [Im (Tr(z)/x)|. Since [Im (z9/z)] = (¢" —1)/(¢ — 1) and
[Im (Tr(z)/x)| = ¢" 1 + 1, we get a contradiction.

Now assume i = 2. Then we have (a4/a1)? = a1 /a3 and
2

2
Multiplying these two equations yields aJ o = a1ad and hence

as = a1+q+q / 0 +q (8)

By this implies
3

as=af *'/af. (9)
If N(a1) = N(ag3), then also N(a;) = N(a2) = N(a3) = N(a4). We show that
in this case I'm (f,(z)/x) = Im (Tr(x)/x), so we must have N(a1) # N(as).
According to Proposition it is enough to show (al Jaz)? = az/as and
(a2/a3)? = ag/ay. By (7) we have (al/ag)q = (ag/a4) , which equals as/as
if and only if (ag/a3)? = as/ay, i.e. a3+q = a4ad. Taking into account .
and (9), this equality follows from N(a1) = N(a3). O

4 Proof of the main theorem

In this section we prove Theorem In order to do this, we use the
following two results and the technique developed in [§].

Lemma 4.1 ([8, Lemma 3.4]). Let f and g be two linearized polynomials
over Fon. If Im (f(x)/x) = Im (g(x)/x), then for each positive integer d the

following holds
Z <f(33)>d _ Z <g($)>d
x x
.Z’EIF;n :L‘E]F;n
Lemma 4.2 (see for example [8, Lemma 3.5]). For any prime power q and

integer d we have >, g 2% = —1ifq—1|d and 3, . ¥ = 0 otherwise.
q q

11



Proposition 4.3. Let f(x) = Z?:o a;z? and g(z) = Z?:o biz? be two
q-polynomials over F s such that Im (f(x)/z) = Im(g(z)/x). Then the
following relations hold between the coefficients of f and g:

a0 = bo, (10)
aral = b1bi, (11)

asal’ = byb (12)

a(fﬂag + agaq+q b?Hng + b2b3+q27 (13)

a1a2+q a3 al = blbg+q3 + b1+q3bq (14)

ai+q+q2a33 + aéﬂag T a‘fagl),+q2+q3 + a1 azag aj + a1+q+q GZQJF (15)

3 2 2 3 2 3
q,.9 q q,.9° g 1+¢% g+q¢® a+a?+q> _
ajay azay +araqaz ay +ay toay - +asay =

RO Y e Y T e N E an i
3 2 2 .3 2 3 2 3
bIbg bsbd + bib3b% b + by U BT 4 byl
N(a1) + N(az) + N(as) + N(as) +Tr(a1 ad T g, +aq+q3ag“al+q2+ (16)

q+q? q S4qt as + aQ-l—q +q*

al q 2+¢P+q*

g-i—q +Q+

a a +a a4—|—a1

ag+q a34 1+4¢? +al a24a1+q+q ) =
N(b1) + N(b) + N(bs) + N(ba) + Tr(bbg +0+" py 4 5070 pa'pl+*
b‘f+q2 bg3+q4 by + bz{+q2+q4 bg3b4 + bgb§2+q3+q4 by + b‘{Q bg3+q4 bita
bg+q3 534 b}l+q2 + b({Z bg4 b}l+q+q3 ).

Proof. Equations 1) follow from [8, Lemma 3.6]. To prove we

will use Lemma [4.1| with d = ¢® + ¢? + ¢ + 1. This gives us

q,4® q° ¢t —1+giHl—g+qmt2—g24qnt3—¢® _
E a;ajal, ab E x =

1<4,5,m,n<4 z€F*y
q

L e A A A

iYmn
1<i,j,m<4 z€Fry
i_ J+1__ m—+2__ n+3_ 3 .
By Lemma (4.2{ we have >, s, pd —HaT —atq P+ 0" — _1 if and

only if

¢+ "+ " =149+ + ¢ (mod¢® —1),  (17)

12



and zero otherwise. Suppose that the former case holds. The right-hand
side of is smaller than the left-hand side, thus

¢+ " " =1 g+ P+ PR - 1),

for some positive integer k. We have ¢* + ¢/t + ¢™ 2 + ¢"13 < ¢* + ¢° +
P+ <1+q+@P+3+ (@ +q+2)(¢°—1) and hence k < ¢®> +q+ 1. If
i=1,then¢?|1—kandhencek=1,j=m=1andn=2ork=q>+1,
n =4 and either j =2 and m =3, or j =4 and m = 1. If i > 1, then ¢?
divides ¢ + 1 — k and hence k = ¢+ 1, or k = ¢®> + ¢+ 1. In the former case
t=j=n=2andm=4,ori=j3=2andn=m=3,0or¢i=3, 5 =1,
m=4andn=2,ori=3,j=landm=n=3,orm=1,1=2,j=4
and n = 3. In the latter case © = 3 and n = m = j = 4. Then follows.

To prove we follow the previous approach with d = ¢*+¢>+¢*>+q+1.
We obtain ) )

Z a;adad’ ol ag4 = Z bbIb be’ b

jYm“n j'm%n Yr o

where the summation is on the quintuples (7, j, m, n,r) with elements taken
from {1,2,3,4} such that L; jmnr = (¢ — 1) + (¢ — q) + (¢™"% — ¢*) +
(@™ — ) + (¢"* — ¢*) is divisible by ¢° — 1. Then

Lijmmnr = Kijt o (mod ¢° — 1),
where
Kijrmwe =@ =)+ (@ =)+ @™ =)+ @ =)+ (" -,
such that j=j+1,m' =m+2,n =n+3,7 =r+4 (mod 5) with

7 €{0,2,3,4}, m'e€{0,1,3,4}, n'€{0,1,2,4}, 1 €{0,1,2,3}.
(18)
For ¢ = 2 and ¢ = 3 we can determine by computer those quintuples
(i,5',m',n',7") for which K j s is divisible by ¢°> — 1 and hence ([L6)
follows. So we may assume ¢ > 3. Then
3-¢*-¢—¢"'=(@-D+1-g+(1-)+(1-¢)+(1-¢") <
Ki?jlvm/7n/77‘/ S
@ -+ -+ -+ (" )+ (@ —d") =3¢"-1-g- &,
and hence L; jmnr is divisible by ¢° — 1 if and only if K js ps n o = 0. It
follows that

" +q" +q" + ¢ =1+q+P+¢ + ¢ (19)
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For h € {0,1,2,3,4} let ¢;, denote the number of elements in the multiset
{i,7',m',n',r"} which equals h. So 22:0 cng" = 1+q+ ¢+ ¢+ ¢* for some
0 <¢p, <5 with Zi:o ¢, = 5. We cannot have ¢g = 5 since ¢ > 1. If ¢; =5
for some 1 < ¢ < 4 then the left hand side of is not congruent to 1
modulo ¢, a contradiction. It follows that ¢, < 4. Thus for ¢ > 3 holds
if and only if ¢, =1 for h =0, 1,2, 3,4 and we have to find those quintuples
(i,7,m/,n' ") for which ¢ € {1,2,3,4}, {4,5/,m/,n/,r"} ={0,1,2,3,4} and
are satisfied. This can be done by computer and the 44 solutions yield
(6). O

Proof of Theorem [1.5]

Since f has maximum field of linearity F,, we cannot have a1 = as = ag =
as = 0. If three of {a1,as,as,as} are zeros, then f(z) = agx + a;x?, for

1 0 ) we have
—ao/a; 1/a;

folz) = 29, Then Proposition and Corollary give go(z) = Bx?
where N(8) = 1 and j € {1,2,3,4}. Now, we distinguish three main cases
according to the number of zeros among {a1, az, a3, as}.

some i € {1,2,3,4}. Hence with ¢ represented by (

Two zeros among {ay, as, a3, a4}

Applying Proposition 4.3 we obtain ag = by. The two non-zero coefficients
can be chosen in six different ways, however the cases a1a2 # 0 and ajag # 0
correspond to azas # 0 and agaq # 0, respectively, since Im (f(x)/x) =
Im ( f (z)/z). Thus, after possibly interchanging f with f, we may consider
only four cases.

First let | f(z) = apx + a12? + a43:q4, araq # 01,

Applying Proposition we obtain 0 = bgb:q:. Since b1by # 0, from we
get bo = b3 = 0 and hence gives

N(a1) + N(aq) = N(b1) + N(bs).

Also, from we have N(a1)N(aq) = N(b1) N(by). It follows that either
N(a1) = N(b1) and N(as) = N(bs), or N(a1) = N(by) and N(as) = N(by).
In the first case by = a1 A\9~! for some \ € ]F(’;5 and by we get g(z) =
f(Ax)/X. In the latter case by = aj\9~! for some \ € F?s and by we

get g(z) = f(Ax)/A\.
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Now consider | f(z) = a12? + azz?, ajas # 0|,

Applying Proposition and arguing as above we have either by = by = 0
or by = b3 = 0. In the first case from we obtain

q 1+¢*+¢® _ 1q31+¢>+¢>
ajas = bib;

and together with this yields N(a;) = N(b1) and N(as) = N(b3). In
this case g(z) = f(Az)/A for some A € Fy;. If by = b3 = 0, then in g(x) the
coefficients of 29" and 29" are zeros thus applying the result obtained in the

former case we get \g(z) = f(Az) and hence after substituting y = Az and
taking the adjoints of both sides we obtain g(y) = f(uy)/u, where u = A1,

The cases | f(z) = a12? + asz? | and | f(z) = aoz? + azz? | can be han-
dled in a similar way, applying Equations f of Proposition

One zero among {a, as, as, as}
Since Im (f(z)/x) = Im (f(z)/x), we may assume a; = 0 or ag = 0.

First suppose a; = 0. Then by either by = 0 or by = 0. In the former
case putting together Equations , , we get N(a;) = N(b;) for
i € {2,3,4} and hence there exists A € Fy; such that g(z) = f(Az)/A. If
a; = by = 0, then in g(x) the coefficient of x? is zero thus applying the
previous result we get g(x) = f(ux)/p, where g = A1,

Now suppose a2 = 0. Then by either by = 0 or b3 = 0. Using the
same approach but applying , and we obtain g(x) = f(A\x)/\
or g(z) = f(Az)/A.

Case ajaqazay # 0

We will apply — of Proposition Note that Equations and
yield aiasasas # 0 < bibobsby # 0. Multiplying by a9 and apply-
ing yield

a2ad™ " — ay(bTTBY + bobdT ) + alT b by = 0.

Taking into account, this is equivalent to

2 2 2 2
(agad™ — 70T ) (agad™ — bobTT) = 0.
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Case 1. asa
Case 2. asay

Case 3. asa

Multiplying by a1 and applying yield
a2ad™ — ay (bbdTT + BB + ol Ib, = 0.
Taking into account, this is equivalent to
(alag+q3 — blbg+q3)(a1ag+q3 — béWSbZ) =0.

We distinguish four cases:

2 1 2 3 3
T =] and araf™ = bbiTT,

a+q® _ 1q+1;4° g+ 314434
=07 b3 and ajay " =b3"" by,

2 2 3 3
9T = bobd™ and arad = b10§"7,

ate® _ 3 _pata? q+¢® _ 11+¢%1q
Case 4. agay " =boby' " and ajay' " =b3 " by.

We show that these four cases produce the relations:

NI (20)
as) aZagsﬂ a bzbgi"ﬂ’

N (2) =1, (21)

N <2> =1, (22)

3 3
N <b1> _af aj _ bibd™ (23)
ay a1 ag+q3 b?,}SH bz’

respectively.
To see observe that from a2a3+q2 = b'f“bg2 and we get

1\ P 241 4 +¢3
N(2)- () Lo (gn)t-adn e
aq az-f—q ay bg +q b4 bzbg +1
where the last equation follows from N(b;/a4)? = N(bi/as). Hence by

alag+q3 = blbg+q3 and we get .

Equation immediately follows from taking alag+q3 = bé+q3bg
into account.
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Now we show . By , we get

S =5 (@)= () (@) (@) e

Since N(by/a1)? = N(b1/a1), by aga?1+q2 = bgbqu, the previous equation

becomes .
bl pe +q al
N(—=)==2 2 2
<a1> ag b (26)

and taking alag+q3 = béﬂs bl and into account we get .

Equation immediately follows from taking alag+q3 = blbg+q3
and into account.

e In Case 3 by we get by = a1 A9 ! for some \ € IF;']‘S and by
and we have g(z) = f(Az)/A.

e Analogously, in Case 2 g(x) = f(Az)/\.

e Case 4 is just Case 3 after replacing g by ¢ since Im (g(x)/x) =
Im (g(z)/x).

This allows us to restrict ourself to Case 1.
Taking and into account, it will be useful to express ai, as, ag
as follows:

1 2 3 1 4
by b? pitpd be it
a=—3, ay= 1+§’, ag = 254 3i4. (27)
ay aj™ al ™

We are going to simplify . Using Equations and it is easy

1+q, ¢°+¢® _ 14+q:°+¢® 1+¢* q+¢® _ ;11+¢°1q+¢® ¢ e q _
to see that a, “asg =by "by " ,a; " ay T =by"" by 7, ay agaz ay =

2 .3 3 2 3 2 2 3 2 3
qpa°pe 4.9, 0 _ papd’y 14 q.9° ¢ _ pa°y 19°1d
b1bybs by , ajay asay = biby b3bs , arasaz a; = by babs by and hence
I4+q+¢> ¢° I4+¢*+¢° I+q+¢® q? +¢*+¢®
a; " al +alay T +ay T al +aga]TTY = (28)
l+gt+q?ya® | papl+a®+a® | pl+ate®pa? a+q°+4°
by by + bjbs + by by + bsb .

The following equations can be proved applying , and :

b
a () bab{" T = af ay T (29)

17



(Zf) bq2b§+q+q _ a‘fa”q +q (30)

b P q

<i> bqb;’+q2+q3 _ a%*q”daf, (31)
N<$>@%¥W“=awaﬂf (2)

Then can be written as

N(b -1
<N®Mmr4xm%ﬂ“f+%@ﬂ“f>:;gﬁi)<g%wa+@%ﬁﬁfy
1/44

If N(bi/as) = 1, then (24) equals 1 and hence aja$™ = b ™' which
means that we are in Case 2. Then again g(z) = f(Az)/\. , ,

Otherwise dividing by N(b1/a4)—1 and substituting N(b; /a4) = b1 bg+q3 /begd+1
we obtain

3 2 3 2 3 3 2 3 3 2
blbg+q (bgb?fq T b?bé*‘q +q ) = bzbg +1(b?1 b§+q+q + bg b}-&-q—irq ).

Substituting N(bl/a4)be§3+1/bg+q3 for by and using the fact that N(by /a4) €
F, we obtain

2
o) n(Bs N bty — pitIte ) = .
aq bg ayq

This gives us two possibilities:

N (Zi) bq+q bs lerq+f137 (33)

by b\ 2
N(=)=N[—=]) . 34
< bs > (a4 > (34
First consider the case when holds.

We show N(a;) = N(bl) that is, . We have a2a3+q2 — b?“‘lb‘f from
and hence N(ag) N(as)? = (b1)2 N(bg) It follows that

M@ ()
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Combining this with we obtain N(b2) = N(ag). Then N(b;) = N(ay)

3 3. .
follows from ajad*® = b6 since we are in Case 1.

From now on we can suppose that holds.
Then yields

2

bi\?Y b3
—= == 35
<b2> by (35)
Multiplying both sides of by bZZ and applying gives
oL QI g (36)

Then multiplying by and taking into account we obtain

2.3 24 3
at{ail))-l-q +q° _ b3b?1+q +q° (37)

Multiplying and yield

142403 3.1 2 1 3 2 2,.3
(b(fb3+q +q )(bg b1+q+q ) (a2+q+q az )(aga?fq +q )

On the other hand, from , and taking and into account, it
follows that

q;1+¢%+¢3 @l+q+¢%> _ 1+q+¢® g
bibs + by by = a,

2 2 3
q+q°+q
a4 + CL3(I4 .

1 2 3 1 3 2 3.1 2 2 3 1 2 3
billb3+q +q — a2+Q+q aZ and b(2] b1+q+q q+q~+q , Or bi]b3+q +q —

Hence = agay
2, 3 39 2 1 32 .
azadtTTT and b 0T = 6, "l . In the former case (31)) yields

N(bi/as) = 1, which is (21)). In the latter case and gives

3
q1.9°+1
byb3 bq3

14+q+q® _ @ 14q+¢% _ 1q11+¢%+¢°
b = N(a4/l)1)b2 b = bjbs ,

bybd e
and hence ) "
é = (bi’) : (38)
Equation (35]) is equivalent to
byb?” = bsbd | (39)

while is equivalent to
bab{ = blbs.
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Dividing these two equations by each other yield

2 2
g°—1 _ 319-1;9°—q
bt =y

It follows that there exists A € IF‘; such that

I = Absb?, (40)
thus
bs = 3"/ (B{N) (41)
and by
2 2
by = by P/ (pITT )). (42)

Then can be written as

3
b\ bbb s
N<>: vl el A
4 bybs 2

and hence .
N(z):As (43)
a4
By , and we get
N(a1) = N(b2)?/(N(b1)A?). (44)
By , and we have
N(az) = N(b1)A (45)
By , and we get
N(az) = N(b2)?/(N(b1)?\%), (46)
and by we have
N(ag) = N(bg) /N3 (47)

Before we go further, we simplify and prove
N(a1) + N(az) + N(as) + N(as) = N(by) + N(b2) + N(b3) + N(bs).  (48)

It is enough to show

Ay Ao As Ay

A A

2 3 4 3 4 1 2 2 3 4 2 4
Tr(a%ad tatg as +a‘f+q ag a3+q +qdt1 ag Ty —l—a‘frq +a

q3
i) 1 as aq+
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As Ag A7 As

2 3 4 2 3 4 3 4 2 2 4 3
q,9°+q°+q q° _q°+q* 1+q q+q° q* 1+q q° _q* 1+q+q°\ __
ajag agtajp az T ay " tay Caz ay " Fap ap ay )=

B1 By Bs Bsg

Te(b968 "7 by 4 59705 by T IR Ty T

Bs Bsg B> By

bgb§2+q3+q4b4_i_;)clﬁbf-&-q“bi-&-q+bg+q3bg4b}1+q2 +b(f2bg4b}1+q+q3),

which can be done by proving Tr(A;) = Tr(B;) fori = 1,2,...,8. Expressing
a3 with a4 in (27)), and using as well, we get a3 = bgsaﬁ4+1/b(f3+q4. Then
ay,az,as can be eliminated in all of the A;, i € {1,2...,8}. It turns out
that this procedure eliminates also a4 when i € {2,4,7,8} and we obtain
Ay = BSQ, Ay = BZQ, A; = B?S and Ag = BgQ. In each of the other cases
what remains is N(a4) times an expression in by, by, b3, bs. Then by using
we can also eliminate N(a4) and hence A; can be expressed in terms of
b1,b9,b3,by. This gives Ay = By and A5 = Bs. Applying also and (38))
we obtain A3 = ng and Ag = Bg.

Let x = N(bg/b1). Multiplying both sides of by A9/ N(by), taking

into account , , and for the left hand side and and
for the right hand side we get the following equation

A AT+ 2+ 2X = 20 28 2?A 4 A
After rearranging we get:
(1—=MN(z =N (z =) (z—XI) =0

First suppose , then we have three possibilities.
If
T =\,
in which case N(bs) = N(ap) follows from ([45)). Since ged(g —1,¢° — 1) =
ged(q? —1,¢° — 1), in F?s the set of (g — 1)-th powers is the same as the set
of (¢> — 1)-th powers and hence there exists and element v € s such that

3 3
§HC = b1b3TT we

by = l/q2_1a2. Therefore, since we are in Case 1, from a;a
obtain by = 19 !a;. Equations and give g(x) = f(vz)/v.
If
z =\,
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then N(as) = N(b1) follows from (7). Then equals 1 and hence
alag+q3 = b?lbg%rl which means that we are in Case 2, thus g(z) = f(uz)/p.
If
=\,

then we show that there exists ¢ € I'L(2, ¢°) such that either Im (g,(z)/z) =
Im (29/z) or Im (g,(z)/2) = Im (Tr(z)/z). In the former case by Propo-
sition and Corollary we get fo(r) = az? and g,(z) = Bz? for
some i,j € {1,2,3,4}, with N(«) = N() = 1. In the latter case, by The-
orem and by Propositions and there exists y € Fy; such that
g(x) = f(px)/p.

According to Proposition [3.2] part 2, it is enough to show

(1?4/1?1)q2 = by /bs, (bl/b2)q2 = b3 /by.

(Note that there is no need to confirm N(b1) # N(b3) since otherwise the
result follows from the last part of Proposition and from Theorem )
The second equation is just , thus it is enough to prove the first one.

First we show , ,
b2bg+q — b%+q+q ) (49)

g+1\ 2
N bﬁ = )\2 = b2 q )
by bsb?

and hence after rearranging

From we have

2 3 4
q°+q°+q q+1
by by bd

213104 q
biﬂ +q°+q b3b1

On the right-hand side we have A\, which is in F,, thus, after taking ¢-th
powers on the left and ¢3-th powers on the right, the following also holds

3 4 3 4
q°+q*+11q q°+q
b2 b3 7b2

g+ +at+l T gty gt
by b3 by

After rearranging we obtain (49)).
Now we show that (by/b1)? = b1 /b3 is equivalent to (49). Expressing by

from we get

(ba/b1)" = b1 /by = bé+qug4 = bi+q2+q4,
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where the equation on the right-hand side is just the ¢*-th power of .

Finally, consider the case| A = 1]. Then b3 = b2™ /b9, by = b%+q+q2 / b‘{+q2
and it follows from Proposition that there exists ¢ € T'L(2,¢°) such
that either I'm (g, (z)/x) = Im (x9/x) or Im (g,(x)/x) = Im (Tr(x)/z). As
above, the assertion follows either from Proposition and Corollary or
from Theorem [1.3] and by Propositions [2.6] and

This finishes the proof when Hle a;b; # 0. O

5 New maximum scattered linear sets of PG(1,¢°)

A point set L of aline A = PG(W,Fy») = PG(1, ¢") is said to be an Fy-linear
set of A of rank n if it is defined by the non-zero vectors of an n-dimensional
[F,-vector subspace U of the two-dimensional Fyn-vector space W, i.e.

L=Ly .= {<U>Fqn cuelU \ {0}}

One of the most natural questions about linear sets is their equivalence.
Two linear sets Ly and Ly of PG(1, ¢") are said to be PT'L-equivalent (or
simply equivalent) if there is an element in PT'L(2, ¢") mapping Ly to Ly.
In the applications it is crucial to have methods to decide whether two linear
sets are equivalent or not. This can be a difficult problem and some results
in this direction can be found in [8, 11]. If Ly and Ly are two equivalent
[F-linear sets of rank n in PG(1,¢") and ¢ is an element of I'L(2, ¢") which
induces a collineation mapping Ly to Ly, then Lye. = Ly . Hence the first
step to face with the equivalence problem for linear sets is to determine
which F,-subspaces can define the same linear set.

For any g¢-polynomial f(z) = Z:‘L:_ol a;z? over Fyn, the graph Gy =
{(z, f(z)): @ € Fgn} is an Fy-vector subspace of the 2-dimensional vector
space V = Fyn x Fyn» and the point set

Ly = Lo, = {{(, F(@)e,0: @ € Fn)

is an Fy-linear set of rank n of PG(1, ¢"). In this context, the problem posed
in corresponds to find all F-subspaces of V' of rank n (cf. [8, Proposition
2.3]) defining the linear set L. The maximum field of linearity of f is the
maximum field of linearity of Ly, and it is well-defined (cf. Proposition
and [8, Proposition 2.3]). Also, by the Introduction, for any g-polynomial f
over Fyn, the linear sets Ly, Ly, (with fi(z) := f(Az)/\ for each \ € F}n)
and L ; coincide (cf. [3, Lemma 2.6] and the first part of [8, Section 3]). If f
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and g are two equivalent g-polynomials over Fn, i.e. Gy an G, are equivalent
w.r.t. the action of the group I'L(2,¢"), then the corresponding F,-linear
sets Ly and L, of PG(1,¢") are PI'L(2, ¢")-equivalent. The converse does
not hold (see [I1] and [8] for further details).

The relation between the problem posed in and the equivalence prob-
lem of linear sets of the projective line is summarized in the following result.

Proposition 5.1. Let Ly and L, be two Fy-linear sets of rankn of PG(1,¢").
Then Ly and Ly are PTL(2, ¢")-equivalent if and only if there exists an el-
ement ¢ € I'L(2,¢") such that Im (f,(z)/x) = Im (g(x)/x). O

Linear sets of rank n of PG(1,¢") have size at most (¢" —1)/(¢ —1). A
linear set Ly of rank n whose size achieves this bound is called mazimum
scattered. For applications of these objects we refer to [26] and [I8].

Definition 5.2 ([I5, 21]). A mazimum scattered Fy-linear set Ly of rank
n in PG(1,¢") is of pseudoregulus type if it is PI'L(2, ¢")-equivalent to Ly
with f(x) = x? or, equivalently, if there exists an element ¢ € GL(2,¢")
such that

Lye = {{(z,29)pn: ® € Fyn}.
By Proposition and Corollary it follows

Proposition 5.3. An Fy-linear set Ly of rank n of PG(1,q") is of pseu-
doregulus type if and only if f(x) is equivalent to " for some i with ged(i,n) =
1. O

For the proof of the previous result see also [19].
The known pairwise non-equivalent families of g-polynomials over Fy»
which define maximum scattered linear sets of rank n in PG(1, ¢") are

L fo(x) =29, 1<s<n—1,gcd(s,n) =1 ([5,12]),

2. gos(x) = 627 + 297" n > 4, Npw s (6) & {0,1} [ ged(s,n) =1 (22
for s =1, [27, 23] for s # 1),

s s+n/

3. hss(x) = da? + a4 2 n e {6,8), ged(s,n/2) = 1, Nyn jgnr2(6) ¢
{0,1}, for the precise conditions on § and g see [9, Theorems 7.1 and
7.21A

IThis condition implies ¢ # 2.
2 Also here ¢ > 2, otherwise the linear set defined by hs,s is never scattered.
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4. kp(z) = 27+ 2 4 b2 n =6, with b2 +b=1, g = 0,+1 (mod 5)
([10]).

Remark 5.4. All the previous polynomials in cases 2.,5.,4. above are ex-
amples of functions which are not equivalent to monomials but the set of
directions determined by their graph has size (¢" —1)/(q—1), i.e. the corre-
sponding linear sets are maximum scattered. The existence of such linearized
polynomials is briefly discussed also in [16, p. 152].

For n = 2 the maximum scattered F,-linear sets coincide with the Baer
sublines. For n = 3 the maximum scattered linear sets are all of pseudoreg-
ulus type and the corresponding g-polynomials are all GL(2, ¢3)-equivalent
to z¢ (cf. [20]). For n = 4 there are two families of maximum scattered
linear sets. More precisely, if L; is a maximum scattered linear set of
rank 4 of PG(1,¢?), with maximum field of linearity F,, then there exists
¢ € GL(2,¢%) such that either f,(z) = 29 or f,(z) = d29 + 29| for some
6 € Iy with Ny, (6) ¢ {0,1} (cf. [13]). It is easy to see that Ly = Ly, for
any s with ged(s,n) = 1, and f; is equivalent to f; if and only if j € {i,n—1i}.
Also, the graph of g, s is GL(2, ¢")-equivalent to the graph of g, s-1.

In [22, Theorem 3] Lunardon and Polverino proved that Lg, ; and Ly,
are not PT'L(2, ¢")-equivalent when ¢ > 3, n > 4. This was extended also
for ¢ = 3 [10, Theorem 3.4]. Also in [I0], it has been proven that for n = 6,8
the linear sets Ly, , L Ly, ,, and Ly, are pairwise non-equivalent for any
choice of s, s, 4,0, b. 7

In this section we prove that one can find for each ¢ > 2 a suitable
6 such that Ly, ; of PG(1,¢°) is not equivalent to the linear sets Ly, , of
PG(1,q°) for each p € Fs, with Ngs /q(1) € {0,1}. In order to do this, we
first reformulate Theorem [LH] as follows.

95,67

Theorem 5.5 (Theorem [L.5)). Let f(z) and g(z) be two g-polynomials over
Fgs such that Ly = Lg. Then either Ly = Ly is of pseudoregulus Atype or
there exists some A € Frs such that g(x) = f(Az)/A or g(z) = F(Ax)/A
holds.

From [27, Theorem 8] and [23, Theorem 4.4] it follows that the fam-
ily of Fy-subspaces Uy, ;, s ¢ {1,n — 1}, ged(s,n) = 1, contains members
which are not I'L-equivalent to the previously known F,-subspaces defining
maximum scattered linear sets of PG(1,¢"). Our next result shows that
the corresponding family Ly, ; of linear sets contains (at least for n = 5)
examples which are not PI'L-equivalent to the previously known maximum
scattered linear sets.
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Theorem 5.6. Let go5(x) = 529" + 29 for some 6 € Fs with N(8)® # 1.

Then Lg, s is not PTL(2, ¢°)-equivalent to any linear set Ly, and hence it
s a new mazimum scattered linear set.

Proof. Suppose, contrary to our claim, that Ly, ; is PT'L(2, ¢°)-equivalent
to a linear set Lg, ,. From Proposition and Theorem taking into
account that Ly, , is not of pseudoregulus type, it follows that there exist
¢ € TL(2,¢°) and )\ € s such that either (92.5)p(x) = g1u(Ax)/A or
(92,6)0(x) = g1,u(Ax)/A. This is equivalent to say that there exist o, 5, A,
B, C, D € Fgp with AD — BC # 0 and a field automorphism 7 of Fgs such

that
A B 7 P
(G [ O R D BN

where N(«a) # N(B) and a8 # 0. We may substitute 2™ by y, then
a(Ay + BSTy” + By? )1 + B(Ay + BiTy” + By? )1 =

Cy + D"y + Dy?

for each y € F;s. Comparing coefficients yields C' = 0 and

aA? + BB 59T =0, (50)
BBY = D67, (51)
aB1§9 = D, (52)
aB?+ AT = 0. (53)
Conditions and give
BT~ = §latDr /3. (54)

On the other hand from we get A4 = — B4’ / Bq2 and substituting
this into we have

BT = 50T gL [ (55)
Equations and give N(B/a) = N(6)*" and N(a/B)? = N(§)7,

respectively. It follows that N(4)5™ = 1 and hence N(§)® = 1, a contradic-
tion. O
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Open problems
We conclude the paper by the following open problems.

1. Is it true also for n > 5 that for any pair of ¢-polynomials f(z) and
g(x) of Fgn[z], with maximum field of linearity Fy, if Im (f(x)/z) =
Im (g(x)/x) then either there exists ¢ € I'L(2,¢") such that f,(z) =
azd and g,(x) = Bz¢’ with N(a) = N(B) and ged(i,n) = ged(j,n) =
1, or there exists A € Fj. such that g(z) = f(Az)/A or g(z) =
FOx)/N?

2. Is it possible, at least for small values of n > 4, to classify, up to equiv-
alence, the g-polynomials f(z) € Fgnlz] such that [Im (f(z)/x)| =
(¢" —1)/(¢ —1)? Find new examples!

3. Is it possible, at least for small values of n, to classify, up to equiv-
alence, the g-polynomials f(z) € Fnlx] such that |[Im (f(z)/x)| =
¢" ' 4+ 1? Find new examples!

4. Is it possible, at least for small values of n, to classify, up to equiv-
alence, the g-polynomials f(x) € Fgn[z] such that in the multiset
{f(z)/x: 2 € Fyu} there is a unique element which is represented
more than ¢ — 1 times? In this case the linear set Ly is an i-club of
rank n and when ¢ = 2, then such linear sets correspond to translation
KM-arcs cf. [14] (a KM-arc, or (¢ +t,t)-arc of type (0,2,t), is a set of
q +t points of PG(2,2"), such that each line meet the point set in 0,2
or in ¢ points, cf. [I7]). Find new examples!

5. Determine the equivalence classes of the set of g-polynomials in [F 4 [x].
6. Determine, at least for small values of n, all the possible sizes of

Im (f(x)/z) where f(x) € Fgn[z] is a g-polynomial.
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