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Abstract

We provide sufficient and necessary conditions for the coefficients
of a g-polynomial f over Fy» which ensure that the number of dis-
tinct roots of f in Fgn equals the degree of f. We say that these
polynomials have maximum kernel. As an application we study in
detail g-polynomials of degree ¢"~2 over Fgn which have maximum
kernel and for n < 6 we list all g-polynomials with maximum kernel.
We also obtain information on the splitting field of an arbitrary g-
polynomial. Analogous results are proved for ¢®*-polynomials as well,
where ged(s,n) = 1.
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1 Introduction

A g-polynomial over F» is a polynomial of the form f(z) =), a;x7 , where
a; € Fgn. We will denote the set of these polynomials by £,, ;. Let K denote
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the algebraic closure of Fgn. Then for every Fpn» <L <K, f defines an [Fy-
linear transformation of L, when L is viewed as an F,-vector space. If L is a
finite field of size ¢" then the polynomials of £, , considered modulo (4" —x)
form an IF,-subalgebra of the [F-linear transformations of IL. Once this field
L is fixed, we can define the kernel of f as the kernel of the corresponding
[F,-linear transformation of I, which is the same as the set of roots of f in L;
and the rank of f as the rank of the corresponding IF -linear transformation
of L. Note that the kernel and the rank of f depend on this field I and
from now on we will consider the case L = F,». In this case £, , considered
modulo (27" —z) is isomorphic to the F,-algebra of F-linear transformations
of the n-dimensional [F -vector space Fy». The elements of this factor algebra
are represented by L, , .= {37 aix? : a; € Fn}. For f € L, , if deg f = ¢"
then we call k the g-degree of f. It is clear that in this case the kernel of f
has dimension at most k& and the rank of f is at least n — k.

Let U = (uy,ug, . .., u)r, be a k-dimensional F-subspace of Fgn. It is well
known that, up to a scalar factor, there is a unique g-polynomial of g-degree
k, which has kernel U. We can get such a polynomial as the determinant of
the matrix

k
T x4 ... 4
k
k

The aim of this paper is to study the other direction, i.e. when a given
fe En,q with ¢-degree k has kernel of dimension k. If this happens then we
say that f is a ¢-polynomial with mazimum kernel.

If f(z) = apr + a12” + -+ + azz® (mod 27" — z), with ¢ = ¢° for
some s with ged(s,n) = 1, then we say that f(x) is a o-polynomial (or ¢°-
polynomial) with o-degree (or ¢*-degree) k. Regarding o-polynomials the
following is known.

Result 1.1. [7, Theorem 5] Let IL be a cyclic extension of a field F of degree
n, and suppose that o generates the Galois group of I over F. Let k be an
integer satisfying 1 < k < n, and let ag, aq,...,a be elements of I, not all
them are zero. Then the F-linear transformation defined as

f(x) =apx + a1z +--- + ara®

has kernel with dimension at most k in L.



Similarly to the s = 1 case we will say that a o-polynomial is of mazimum
kernel if the dimension of its kernel equals its o-degree.

Linearized polynomials have been used to describe families of F,-linear
mazimum rank distance codes (MRD-codes), i.e. F-subspaces of £, , of or-
der ¢"* in which each element has kernel of dimension at most k. The first
examples of MRD-codes found were the generalized Gabidulin codes [3, 5],
that is Gy s = (z,27,. .. ,xqs(k_l)>pqn with ged(s,n) = 1; the fact that Gj 4
is an MRD-code can be shown simply by using Result It is impor-
tant to have explicit conditions on the coefficients of a linearized polynomial
characterizing the number of its roots. Further connections with projective
polynomials can be found in [g].

Our main result provides sufficient and necessary conditions on the coef-
ficients of a o-polynomial with maximum kernel.

Theorem 1.2. Consider

f(z) = apxr + ayz® + -+ + ap_z°  — m"k,
with o = ¢°, ged(s,n) =1 and ay, . .. ,ax,_1 € Fyn. Then f(x) is of mazimum
kernel if and only if the matriz
0 0 0 ag
1 0 0 ai
A= o1 0 a (1)
0 0 -+ 1 agp_q

satisfies
n—1
AA% - AT =T,
where A°" is the matriz obtained from A by applying to each of its entries

the automorphism x — x° and I, is the identity matriz of order k.

An immediate consequence of this result gives information on the splitting
field of an arbitrary o-polynomial, ¢f. Theorem [4.1]

In Section [3.1] we study in details the o-polynomials of o-degree n — 2
for each n. For n < 6 we also provide a list of all o-polynomials with

maximum kernel cf. Sections [3.2] and 3.4, These results might yield
further classification results and examples of F -linear MRD-codes.
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2 Preliminary Results

In this section we recall some results of Dempwolff, Fisher and Herman from
[4], adapting them to our needs in order to make this paper self-contained.

Let V be a k-dimensional vector space over the field F and let T" be a
semilinear transformation of V. A T-cyclic subspace of V' is an F-subspace
of V spanned by {v,T'(v),...} over F for some v € V| which will be denoted
by [v]. We first recall the following lemma.

Lemma 2.1. [/, Theorem 1] Let V' be an n-dimensional vector space over
the field F, o an automorphism of F and T an invertible o-semilinear trans-
formation on V. Then

V=wlo... oul

for T-cyclic subspaces satisfying dim[u;| > dim[uy] > ... > dim[u,] > 1.

Theorem 2.2. Let T be an invertible semilinear transformation of V. =
V(k,q") of order n, with companion automorphism o € Aut(Fyn) such that
Fix(o) = F,. Then Fix(T) is a k-dimensional Fq-subspace of V' and (Fix(T))g . =
V.

Proof. First assume that the companion automorphism of 7" is x — x? and
that there exists v € V such that
V=T, . ., T" V).

q

Following the proof of [4, Main Theorem]|, consider the ordered basis By =
(v,T(v),...,T*(v)) and let A be the matrix associated with T with respect
to the basis Br, i.e.

0 0 0
1 0 - 0 aq
e ok
A= 0 1 0 0f2 e Fx*, (2)
00 -+ 1 agr,
where TH(v) = S5, 1T(v) with ag,..., 41 € Fg and, since T is

invertible, we have ay # 0. Denote by T the semilinear transformation of
Flgn having A as the associated matrix with respect to the canonical ordered
basis Bo = (ey,...,e;) of F’;n and companion automorphism x — x?. Note
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that cp,.(Fix(T)) = Fix(T"), where cg, is the coordinatization with respect
to the basis Br. Also, since T has order n, we have

AAT- AT = (3)

where A7 fori € {1,...,n—1}, is the matrix obtained from A by applying to
each of its entries the automorphism x — x¢. A vector z = (2g,...,2x_1) €
IFf;n is fixed by T if and only if

q _
Qp2_1 = 20
q q
20 + 12, 1 = 21

q q —

Eliminating zy, ..., 2x_2, we obatin the equation

k-1 k k—2 k—1

al g +aod 2+ gzl — 2 =0,

which has ¢* distinct solutions in the algebraic closure K of F by the deriva-
tive test. Each solution determines a unique vector of Fix(7") in K*. Also,
the set Fix(T) is an Fg-subspace of K* and hence dimg, Fix(T) = k. Let

{w1,...,w;} be an F-basis of Fix(T) and note that since |Fix(T)| = ¢*,
k

a vector Z%Wi is fixed by T if and only if a; € F,. This implies that
i=1
w1, ..., Wy are also K-independent. Thus (Fix(T))x = K* and {wy,...,w;}
is also a K-basis of K¥. Denote by ¢ the K-linear transformation such that
¢(w;) = e; and by P the associated matrix with respect to the canoni-
cal basis B, so P € GL(k,K). The semilinear transformation ¢ o T o ¢~
has companion automorphism x + x%, order n and associated matrix with
respect to the canonical basis P - A - P79, where P~? is the inverse of
P in which the automorphism z + z? is applied entrywise. Note that

poTog  e;) = o(T(w;)) = ¢(w;) = e, hence
P-A-P =1, (4)

1.e.

Pi=P- A (5)
By Equations and and using induction we get

Pl =P A- AT AT =P,



i.e. P € FI>*. This implies that Fix(T) is an F,-subspace of F%. of dimension
k and hence Fix(T) = cg;(Fix(T)) is a k-dimensional subspace of V(k,q")
with the property that (Fix(T))r,.. = V.

Consider now the general case, i.e. suppose T" as in the statement, that is
T is an invertible semilinear map of order n with companion automorphism
x — 29 and ged(s,n) = 1. Since ged(s,n) = 1 there exist [, m € N such that
1 = sl + mn, and hence ged(l,n) = 1. Then the semilinear transformation
T' has order n, companion automorphism z + x? and Fix(T') = Fix(T"). By
Lemma [2.I we may write

V=wle&.. &ul

where [u;] is a T'-cyclic subspace of V' of dimension m; > 1, for each i €
{1,...,7r}, and >°;_, m; = k. Then we can restrict 7" to each subspace [u;]
and by applying the previous arguments we get that U; = Fix(T"|y,)) is an
IF,-subspace of [u;] of dimension m; with the property that (Ujr,,. = [w].
Thus

Fix(T) =Fix(THY =U, @ ... @ U,

is an F-subspace of dimension & of V' with the property that (Fix(T))p . =
V. O

The existence of a matrix P € GL(k,K), with K the algebraic closure of
a finite field of order ¢, satisfying is also a consequence of the celebrated
Lang’s Theorem [9] on connected linear algebraic groups. More precisely,
by Lang’s Theorem, since GL(k,K) is a connected linear algebraic group,
the map M € GL(k,K) — M- M? € GL(k,K) is onto. In Theorem
it is proved that, if the semilinear transformation of V(k,¢") having A as
associated matrix has order n, then P € GL(k,Fyn).

Remark 2.3. Let T be an invertible semilinear transformation of V =
V(k,q™) with companion automorphism x — z? and let K be the algebraic
closure of Fyn. Denote by T the semilinear transformation of K* asso-
ciated with T as in the proof of Theorem [2.3. If X € K, then the set
E(\) := {v € Kk: T(v) = Av} is an F,-subspace of KE. By [, page 293],
it follows that E(\) = )\qfllFiX(T) and by [4, Main Theorem] E()\) is a k-
dimensional F,-subspace of K*. Also, when T has order n and AT € Fon,

by Theorem E(\) is a k-dimensional F -subspace contained in F’;n such
that (E(\))p,. = FF..



3 Main Results

Now we are able to prove our main result:

Proof of Theorem . First suppose dimg_ker f = k. Then there exist
Uy, U1, - - ., Uk—1 € Fgn which form an F,-basis of ker f.
Put u := (up,u1,...,ux_1) € IF’;”. Since ug, U1, . .., ug—1 are F-linearly in-
dependent, by [10, Lemma 3.51], we get that B := (u,u?’,...,u”""") is an
ordered Fyn-basis of F¥,. Also, u”" = qgutau? +- - +ap_u”" . It can be
seen that the matrix (If) represents the F»-linear part of the [Fyn-semilinear
map 7: v € FF, — v € FF, wr.t. the basis B. Since ged(s,n) = 1, @ has
order n and hence the assertion follows.

Viceversa, let 7 be defined as follows

E]

q

o) Zo
I T
T: _ EIF’;nl—h‘l : E]qucna (6)
Tr—1 Ll—1

where A is as in with the property AA? ... AT"Y = [, Then 7 has
order n and, by Theorem , it fixes a k-dimensional F,-subspace S of IFf;n
with the property that (S)r,, = Fin.

Let Bs = (so, - - .,8¢-1) be an Fy-basis of S and note that, since (S)r . =
]F’;n, Bs is also an Fgn-basis of F’gn, then denoting by B¢ the canonical ordered
basis of F’gn, there exists a unique isomorphism ¢ of ]F’;n such that ¢(s;) = e;
for each i € {1,...,k}. Then@ = ¢poTo¢™!, where: v € Fy, — v¥" € Fl,.
Also,

Gl=¢goriop !, (7)
for each i € {1,...,n — 1}. Also, by (6

T(eo) = e,
T(e1) = 7%(eg) = e,

T(Gk_l) = Tk(eo) = (CL(), e ,ak_l) = Qp€o + 4 Ap—1€k—1-
So, we get that

Tk(eo) = ap€p + alT(eO) R akflTk_l<eo),
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and applying ¢ it follows that

o(7*(e0)) = agd(en) + a1p(7(eg)) + - -+ + ar_16(7" ().

By the previous equation becomes

7" (¢(e0)) = agp(eo) + arz(d(eo)) + - - - + ar—15"" ' (¢(eo)).

Put u = ¢(ey), then

sk s s(k—1)
u? =aggu+au? +---+ap_u?

This implies that wug, uq, ..., us_1 are elements of ker f, where

u = (ug,...,u,_1). Also, they are F -independent since B = (u, ... ,uqs(kfl)) =

(¢(eo), . .., P(ex—1)) is an ordered Fyn-basis of F},. This completes the proof.
0

As a corollary we get the second part of [6, Theorem 10], see also [12]
Lemma 3] for the case s = 1 and [I1] for the case when ¢ is a prime. Indeed, by

s(n—1)

evaluating the determinants in AA ... A9 = I}, we obtain the following

corollary!T]

Corollary 3.1. If the kernel of a ¢°-polynomial f(x) = apr + a;x® + -+ +
ap_127" " — 29" has dimension k, then N(ag) = (—1)"k+D),

Corollary 3.2. Let A be a matriz as in Theorem[1.4. The condition

s(n—1)

AAT ATV

is satisfied if and only if AAT - AT fizes ey = (1,0,...,0).

Proof. The only if part is trivial, we prove the if part by induction on 0 <

i < k—1. Suppose AAT .. ~Aqs<"71)e;fp = e! for some 0 < i < k — 1. Then
by taking ¢°-th powers of each entry we get A" A7 ... Ae? = eT. Since

AeT = el this yields A7 A7 ... A7 Vel = eT. Then multiplying both
sides by A yields AAT AT ... AT Vel = el . ]

'For € Fgn and for a subfield Fgm of Fyn we will denote by Ngn /gm () the norm of z
over Fym and by Trgn /qm () we will denote the trace of x over Fym. If n is clear from the
context and m = 1 then we will simply write N(z) and Tr(z).



Consider a ¢*-polynomial f(z) = agz + a;2% + -+ + ap_1z7 """ —

sk

x?,

the matrix A € qu“ﬁk as in Theorem and the semilinear map 7 defined in
Note that

T

e, =1(0,1,0,...,0) =¢;
el =(0,0,1,...,0) = e,

Tlc—l
€ :(0,0,0,...,l):ek_l
Tk
€ = (ag, a1, as, ..., ax 1)
k+1 s s s s s s s
T _ q q q q q q q°+1
ey = (aoay_y,ay +awa) j,af +agay y,...,a5 o+ ai)). (8)
Hence, if

eSi = (Qo,i, Ql,ia . 7Qk71,i)

where ();; can be seen as polynomials in ag, a1,

..., ay_1, for i > 0, then
+1 S S S S S
e = (aOQZfl,iﬂ Qg,i + alefl,i’ = 7Qi72,i + ak—lQZq,i)a

i.e. the polynomials @);; for 0 < j < k — 1 can be defined by the following
recursive relations for 0 <7 <k — 1:

1 ifj =4,
@js = { 0 otherwise,
and by the following relations for ¢ > k:

Qji+1 = Q?—l,i + a’jQZ—l,i
Now, we are able to prove the following.
Theorem 3.3. The kernel of a ¢*-polynomial f(x) = apxr + a129 + -+ +
apx? T — g1t e Fn[x], where ged(s,n) = 1, has dimension k if and only
if

1 ifj=0,
Qj’”(ao’al’ oo Q) = { 0 otherwise. (10)



Proof. Relations @ can be written as follows

00 --- 0 aop pe
1il+1 _ 0 1 0 ay .1,7: 7
Qr—1,i+1 0 0 1 ak.—l Z_Li

with ¢ € {0, c. ,n—l} zAISO7 (ono, Q1,07 ey Qk*LO) = (1, O, . ,O) and egt =

(Qoty---,Qr_14) for t € {0,...,n}. By Theorem and by Corollary [3.2]
the kernel of f(z) has dimension k if and only if ey = (Qo 0, Q1.0,-- -, Qr—1.0)

is fixed by AAY" ... Aqs("fl), so this happens if and only if
egn = (QO,na Ql,n; cee 7@]’6*1,”) = (17 07 o 70)
O

Theorem with £k = n — 1 and s = 1 gives the following well-known
result as a corollary.

Corollary 3.4. [10}, Theorem 2.24] The dimension of the kernel of a q-
polynomial f(x) € Fon[x] is n — 1 if and only if there evist a, B € F}. such
that

f(@) = a Te(B2).

Again from Theorem [3.3] we can deduce the following,.

Corollary 3.5. [I(}, Ez. 2.1/] The ¢*-polynomial agx — 27" € Fonz], with
ged(s,n) =1 and 1 < k < n — 1, admits ¢* roots if and only if k | n and
Nqn/qk (Cl()) =1.

3.1 When the ¢°-degree equals n — 2

In this section we investigate ¢°*-polynomials

f(x> = Aox + alxqs + .-+ a/nigqu(n—B) . xqs(n—Q)

with ged(s,n) = 1. By Theorem [B.3] dimker f(z) = n — 2 if and only if
ag, ay, . . ., a,_3 satisfy the following system of equations

10



( Qon=a (n:4+a29+3)—125

Qin = n3_{2—a1(n4+a +q);0

Qan = ao +al_sal 4+ as(al — +al Ty =0,

Qo = a1 als0f + agfaly + ol 37) =0 (1)
(| Qn_sn = n2s5—|—an a0l 4 3(a%254+afb2_s§rqs) =0,

which is equivalent to

ao(al”, +al 1) =1,

1
a; = ag aq _3=: g1(ao, an_3), (12)
2s 25 s .
a; = —aj 5o — ag 3aj 1a0 =: gj(ag, an_3), for 2 <j <n—3.

So, dimg, ker f(x) = n — 2 if and only if ag and a,_3 satisfy the equations
{ ao(gn-1(ao, an—3)*" +a qQSJrq ) =1,
Ap—3 = gn—3(a07 an—3)7
and a; = g;(ag, an—3) for j € {1,...,n —4}.

n—2

Theorem 3.6. Suppose that f(z) = aor + a1zt + -+ ap_sz?"  — 27" " has
mazimum kernel. Then for t > 2 with ged(t — 1,n) = 1 the coefficients a;_o
and a,_; are non-zero and, with s =n —t+1,

2s s s 2s
an72t+1a§_2+q = —ay, tlagt 3 (13)
Also, it holds that

©Ha") @ (14)

2
— an—o(—a] 508, "4+ af,”
In particular, for t > 2 with ged(t — 1,n) = 1 we get
N(an—¢) = (=1)" N(a:—2) (15)

and
N(an—2t41) = (—=1)" N(az-s), (16)

where n — 2t + 1 and 2t — 3 are considered modulo n.
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Proof. Let t > 2 with ged(t — 1,n) = 1 and consider the polynomial F(z) =
f(29), that is,

n+t—3

t t+1 n+t—2
F(z) = apx® + ayz? + -+ + ap_3z? — :

Clearly dimp, ker F' = dimp_ ker f = n — 2. By renaming the coefficients,
F(z) can be written as

q2(n—t+1) q(n—t+1)(n—3) q(n—t+1)(n—2)

F(z) = aort+arz? T fanx +- a3 +ay, 9T

n—t+1 2

q g3t—3 g2t
= Qo + T + -+ ap_3T + Q2T .

Since F(x) has maximum kernel, by the second equation of we get
ag # 0, a0 # 0 and the following relation
qs+1 q25
B = T
an72 Oén72 aTL*2

The coefficient a; of F(z) equals the coefficient a; of f(z) with i =n —t +
j(1 —+¢) (mod n), in particular

Qo = Ap—t,

a1 = Gp—2t41,

Qp_3 = Q2¢t—3, (18)
Qp_9 = Az—2,

Op_—g = A3t—4,

and by , we get that a; o and a,,_; are nonzero, and

2s s s 2s
+q° _ °+1 q
Ap—2t4+10p_9 = = —Qp_y; Qo4 3,

which gives . The first equation of gives
q23 q23+qs
B (o%)) ((_anzl) + (_Oén3) ) _ 1’
CKTL*Q an—Z OéTL*Q

25 2s s 2s s
q q“°+q @ tg+1
n—4 + Qp—3 ) =Qp 9 :

that is,
—ap(—a?_a
Then ((18) and «,_4 = as;_4 imply

qs q25 q2s+qs . q25+qs+1
—n—t(—a{_pa5_4 + a3 3" ) =aj_, )
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which gives . By Corollary with s =n —t 4+ 1 we obtain

N (— il ) —1,
Op—2
and taking into account we get
N(an—t) = (—=1)" N(a;—2).
Then and the previous relation yield
N(an-2t41) = (—=1)" N(az:-3).

]

Proposition 3.7. Let f(x) be a ¢°-polynomial with ¢°-degree n — 2 and with
maximum kernel. If the coefficient of 9 is zero, then n is even and f(z) =
a Tryn 2 (B) for some a, B € F..

s s(n—3 s(n—2 .
Proof. We may assume f(x) = apx + a12? + -+ a,_327 7 _ 20" with

a; = 0. By the second equation of , it follows that a,,_3 = 0. By the third
equation of , we get that a; = 0 for every odd integer j € {3,...,n—3}.
If 7 is even then we have

aj = (—1)sqd oL (19)

If n — 3 is even, then this gives us a contradiction with j = n — 3. It follows
that n—3 is odd and hence n is even. By N(ag) = (—1)", there exists A € [,
such that ag = —A1"7"""". So, by we get a; = A =" and hence
Trgn /g2 (A)
flx) = %
O

In the next sections we list all the ¢°-polynomials of Fy» with maximum
kernel for n < 6. By Corollaries and [3.5] the n < 3 case can be easily

described hence we will consider only the n € {4,5,6} cases.

n—i

For f(z) = Y00 ax? € L, , we denote by f(z) := 0t al 20"
the adjoint (w.r.t. the symmetric non-degenerate bilinear form defined by
(z,y) = Tr(zy)) of f.

By [I, Lemma 2.6], see also [2, pages 407-408], the kernel of f and f has
the same dimension and hence the following result holds.
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Proposition 3.8. If f(z) € imq 1 a q°-polynomial with maximum kernel,
then f(x) is a ¢"*-polynomial with maximum kernel.

This will allow us to consider only the s < n/2 case.

3.2 The n =4 case

In this section we determine the linearized polynomials over F « with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is —1.

Because of Proposition [3.8) we can assume s = 1. Corollaries and |3.9
cover the cases when the ¢-degree of f is 1 or 3 so from now on we suppose
f(x) = apx + ay29 — 27", If a; = 0 then we can use again Corollary and
we get agr — 7, with Ng1/2(ag) = 1. Suppose a; # 0. By Equation (|12,
we get the conditions

q+1_q>

2 2
q q°+q\ __
aplag +af ™) =1,

which is equivalent to

{ Nq4/q(a0) =1,

g+l _  ¢?+q+1 q
ap  =aq — Gy,

see (A1) of Section [f]

Here we list the g-polynomials of £, with maximum kernel, up to a
non-zero scalar in Fi,. Applying the adjoint operation we can obtain the list
of ¢*-polynomials over F, with maximum kernel. In the following table the
g-degree will be denoted by k.

k | polynomial form conditions
3 Tr(A\x) Ae T
2 apr — 9 Ng1/g2(ag) =1
2 Nq4/q(a0) — ]_
2 | apr + ayx? — x4 { Git — g+t _ g
1 apx — Nga/q(a0) =1

Table 1: Linearized polynomials of F,« with maximum kernel with s =1
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3.3 The n =5 case

In this section we determine the linearized polynomials over F s with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is —1. Because of Proposition [3.8] we can as-
sume s € {1,2}. Corollaries and cover the cases when the ¢°-degree
of fis 1 or 4. First we suppose that f has ¢°-degree 3, i.e.
f(z) = apr + a1 x® + agr " — 27

From (12), f(z) has maximum kernel if and only if ag, a; and ay satisfy the
following system:

. qs+1 q23
ay = —ag as
3s 2s 4s 2s s
> +q=°+1 ¢ q7°+q _
“ho 0 T o=
S+1 S+q% q*+go+1
ag=—ad T 4al T ad T,

which is equivalent to

N(CLQ) = 17
A S
al — _ao a2 3
3s 2s 4s 2s s
+¢25+1 +
—ad T a4 agad 7T =1,

see (A2) of Section [
Suppose now that the ¢°-degree is 2, i.e.

f(x) = apx + ara® — 2.

By Theorem the polynomial f(x) has maximum kernel if and only if its
coefficients satisfy

2s 3s s 3s 3s 2s
q q q q q°°+q —
ap(ag aj +aj (ag +af ) =1,
qs+1 q3s q35+q2s o
ao (ao + a‘l ) + al — O,
which is equivalent to

{ N(Clo) = —1,
qs qs+1 . q23+qs+1 qSS
ay +a; - =aqg ap

see (A3) of Section [
Here we list the ¢*-polynomials, s € {1,2} of L5, with maximum kernel,
up to a non-zero scalar in F;. Applying the adjoint operation we can obtain

the list of ¢'-polynomials, ¢ € {3,4}, over F,s with maximum kernel. As
before, the ¢*-degree is denoted by k.
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k polynomial form conditions
4 Tr(A\x) AEFs
N(CLO> =1
s 2s 3s S14] 2s
3| apr + a1x? + asx? — x7 a; = —al Tad
3s 2s 1 4s 2s s
—al Tl fagad T =1
\ . N(ag) = —1
2 apx + ayx? — z9” (o) 35 2
0 1 ¢+, q >+ +1
a;  tay =ay ag
S
1 apr — x4 N(ap) =1

Table 2: Linearized polynomials of F s with maximum kernel with s € {1, 2}

3.4 The n =06 case

In this section we determine the linearized polynomials over F  with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is —1. Because of Proposition [3.8] we can as-
sume s = 1. Corollaries and cover the cases when the ¢-degree of f
is 1 or 5. As before, denote by k the ¢°-degree of f.

We first consider the case k = 2, ie. f(z) = apx + ayz? — 29", By
Theorem [3.3] f(z) has maximum kernel if and only if the coefficients satisfy

N(GO) B 1’ 5 4 3
(a +af ™) = af " (af + af™),
4 3 2 4 4 3
af'af +af'(af +af"™") =~
0

see (A4) of Section [l

If k =3, then f(z) = apz + ayz9 + apx? — 29 and by Theorem it
has maximum kernel if and only the coefficients fulfill

N(ao) = 1, ,

agd+q+1 + agda(fag“ —alay = ad,
ag—i—l _ _a83+q2+q+1a({4 - a(i

ad™ = azal + agzﬂﬂaf,

see (Ab) of Section[5] Note that a; = 0 if and only if a; = 0 and in this case
we get the trace over [Fs.
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Finally, let & = 4. Then the polynomial f(z) = agx + a1z + axz?” +
azz?” — 29" has maximum kernel if and only if the coefficients satisfy

([ N(ag) =1, r
ao(_ag4+q2 + ag”+q4ag4+q3+q2 + agQ-&-q) =1,
ay = _agﬂag?,
g = _agz-H + ag3+q2a32+q+1,
\ a3 _ ag4a85+q2+1 + a32ag3+q+1 . agd+q2+q+1ag’4+q3+q27

see (A6) of Section [p|

Here we list the g-polynomials of L , with maximum kernel, up to a non-
zero scalar in F o Applying the adjoint operation we can obtain the list of
¢°-polynomials over F 6 with maximum kernel.
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4 Application

As an application of Theorem [1.2| we are able to prove the following result
on the splitting field of ¢-polynomials.

Theorem 4.1. Let f(z) = apx + 129 + - + ap_127  — 27 € Fyu[z] with
ag # 0 and let A be defined as in . Then the splitting field of f(x) is Fgnm
where m is the (multiplicative) order of the matriz B == AA... AT

Proof. The derivative of f(z) is non-zero and hence f(z) has ¢* distinct roots
in some algebraic extension of Fyn. Suppose that Fy.n is the splitting field
of f(x) and let ¢ denote the order of B. Then the kernel of the F,-linear
Fnm — Fgnm map defined as x — f(z) has dimension k over F, and hence
by Theorem [1.2] we have

nm-—1

AAT.. . AT = Ij.

Since the coefficients of A are in F,n, this is equivalent to B™ = I}, and hence
t | m. On the other hand

nt—1

Bl = AAT... AT =,

and hence again by Theorem [I.2] the kernel of the F-linear Fyne — Fyne map
defined as = +— f(x) has dimension k over F,. It follows that Fjnm is a
subfield of F ¢ from which m | ¢. O

A further application of Theorem is the following.

Theorem 4.2. Let n,m,s and t be positive integers such that ged(s,nm) =
ged(t,nm) = 1 and s = t (mod m). Let f(x) = apx + a1z + -+ +

s(k—1) sk t(k—1)

127 —z7" and g(x) = apx + arz? + -+ ap_q2d — 27" where
ag, a1, - .., ax—1 € Fym. The kernel of f(x) considered as a linear transforma-
tion of Fgnm has dimension k if and only if the kernel of g(x) considered as
a linear transformation of Fynm has dimension k.

Proof. Denote by A the matrix associated with f(z) as in . By hypothesis,
Ae F’;Xk and it is the same as the matrix associated with g(z). By Theorem
the kernel of f(x), considered as a linear transformation of F nm, has
dimension k if and only if

s(nm—1)

AAT ... Al — I,
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Since s =t (mod m), we have

s(nm—1) t(nm—1)

AAT ... A = AAT ... A = I,
and, again by Theorem [1.2] this holds if and only if the kernel of g(z),
considered as a linear transformation of Fynm, has dimension &. O
Addendum

During the “Combinatorics 2018” conference, the fourth author presented the
results of this paper in the talk entitled “On ¢-polynomials with maximum
kernel”. In the same conference John Sheekey presented a joint work with
Gary McGuire [§] in his talk entitled “Ranks of Linearized Polynomials and
Roots of Projective Polynomials”. It turned out that, independently from
the authors of the present paper, they also obtained similar results.
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5 Appendix

In this section we develop some calculations regarding the relations on the
coefficients of a linearized polynomials with maximum kernel presented in

Sections and [3.4] see also [13].
(A1) By Equation with n =4, s =1 and k = 2, we get the conditions

2 2
q q°+q\ _
. ap(ag +af ™) =1,
> 2
_ qg+1 _gq
ap = —ay ap .

By Corollary the system ¥ is equivalent to the following system

Nq“/q(aO) =1,

2 2
’. q 9°+ay
_ _atl ¢
al —_— _GJO a1 9

which can be rewritten as follows

/ -1 _ 1
by ay ST
0
a0+t ?+g+1 q
1 = Qg 0

Now consider the system

Z* . Nq4/q(a0) 2: 1’
’ at{—l—l _ ag +q+1 ag'
Clearly, S(3') C S(X*), where S(X') and S(¥*) denote the set of so-
lutions of ¥’ and ¥*, respectively. Let (ag,a;) € S(X*), then by using
the norm condition on aqg

q—1 3\ ¢—1
2 1 1 —altd
q _ q _ 0 _
a; = | (3 % =\ 7= =
q q
Qg Qg

14-¢2 3
1 ao q3 -1 . a8+q q3 1 . 1
- g+¢> 0 gt+¢® 0 T atl?

ie. (ag,ar) € S(3') and hence S(X*) = S(¥) = S(2).
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(A2) From with n = 5, ged(s,5) = 1 and k = 3, we get the following

conditions: 9e 25 s
ao(&? + ag +a ) = 17
PN a; = _a83+1a3257
az = —ag%ﬂ - ag%a?sao.

By Corollary Y is equivalent to

Nofoo <1
ap(ad” +ad ") =1,

/.
E . . qs+1 q25
a]_ —_— _ao a2 3
2541 2s s
ay = —al T —ad al ap.

which can be rewritten as follows

NqB/q(ao) = ]_,

541 2s
) = e
. 3s 2s 11 4s 2s s
_ag +q°°+ ag —|—CLg +q ag = 17
2s 3s 2s 2s s
— q=+1 g% +q° _q*+q°+1
az = —ay + ay ag .

By raising the third equation to ¢® and multiplying by agQSH, since

N(ap) = 1, we get the fourth equation. Therefore ', and hence ¥, is
equivalent to

Nqs/q(ao) =1,

qs+1 q2s
ap = —ay ' Gy
q3s+q2.9+1 q4s ’ q25+qs
—ay ay + apay =1

(A3) Applying Theorem [3.3| with n = 5 and k = 2, we get that the polyno-
mial f(z) has maximum kernel if and only if its coefficients satisfy

2s 3s s 3s 3s 2s
_ q** q a( q 5 +q _
o) Qos =ao(ag af +af (af +af )) =1,
. o q.s q35 q35+q25 q25 q35 qs q35 q3s+q25 o
Q5 = q (ao +a; ) + al(ao a; +ag (ao +a; )) =0,
which is equivalent to

Nq5/q2<a0)3: -1, 3 3s, 2

S S S S S S

ao(ad ai + ai (a;é +af 7)) =1,
S S S S

af Pal +al ) +ay =0,
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. 2s 3s s 3s 35 2s 1
because of Corollary and since al a? +af (af +af ) = —.
Qo
The above system can be rewritten as follows

N 5/q(a0) —17

agS _|_ a135+q2$ _ _aq%ﬁ’

a({3sa825+q +1 . a[{5+102 ags7
which is equivalent to

N 5/(1(0’0) = —1,3 . ‘

a4 ol = a? gl T

alag4s+q3s+q2s _ ZIH

Qg

If the first and the second equations are satisfied, clearly also the last
one is fulfilled, hence ¥ is equivalent to the following system

{ N5 q(a0) = —1,
q S4+1 35 q2s+q5+1
+a0 =af af .

(A4) By Theorem , with n =6, s =1 and k = 2, we get

3 4 +
Qus = soff e +f 0+ e’ ol +af af' + af 7)) = 1
Quo=ad ar(ad +al )+ (o™ +ad)(af af +af (af +al ")) =0,
which is equivalent to
3 4
al (af +al " )+a‘f(a8 af +a‘f (af +af 7)) = o
o+ ao(% @1 + af (ao + af e )) =0,
i.e.
3 4
ao (ao —|—aq o )—l—a‘{(ag al —|—a‘{ (ao + af e )=+

4 ao’
q*+q¢3 __a
ao al + al (ao + a ) — ag-i,—l .

By Corollary the previous system is equivalent to

N( )—1

*+¢? ar. @ q* a? a*+¢? 1
ao (ao —|—a >+a1<ao a; +a; (ao +af ")) =4,
ao al + af (ao + af +q) — 4T,

Ao
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which is equivalent to

N(ao) =1,
q+1

ao (ao +aq+1) - Z¢11+1 = %7

af af +af (af +af ") = — o,

hence it is equivalent to

N(ao) = 1,
(ag—i— §+1) @ _ q5+q4+q ( +aq+1>7

4 2 4
A+ _ a
af af +af (af +a ) = g

(A5) By Theorem [3.3| with n = 6, s =1 and k = 3, we get

GOQ3,5 = 17
Qg75 + ang,s =0,
Q({,E) + a2Qg,5 =0,

where
Qos = ao(al +al +q)
Q15 = a8a2 + al(al + a3 +q)
Q25 = a02 + a2 aj + aQ(al +al +q),

hence we obtain the following system

ao(ao +a2 al +a2(a1 +al S+’ ) =1,
a —l—ao(a1 + al i ) =0,
ao

3 3 2
a2 q q°+q7\ _
a0 + a2 ao + al(al + CL2 ) — 0

By Corollary [3.1] it is equivalent to

N(ao) = ]_
ao(ao +a2 al + a2(a1 + al S+’ ) =1,
agg + aq e - _aﬁ-qv

0
“2—1—(12 ao —l—al(a1 +al +q):0,
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by substituting the third equation into the others we get

.
N(a ) =1,
q> agal —1
aO(ao + a2 aj — a(1)+q) =4
e+e® _ a
a’l + a’ - _a(l]vqua
2 q+1
a @ q a _
a tay ag s =0,
\
1.e.
N((lo) = 1,
3 3
q°+g+1 q q+1 q _ 4q
ayg + ag al ag N asa; = ag,
q+1 __ @+q*+q+1 a? q
ay = _ao ap — ag,
1 1
af! = ayal + al tag

(A6) Equations withn =6, s=1and k =4 are

ao(a2 +ad +q) =1,

a0a3 + al(a2 +ad +q) =0,
ao + a3 al + ag(% +ad +q)
al + a3 aj + CL3(CL2 + a3 +q)

0,
0,
which, by Corollary [3.1], is equivalent to

( N(ap) =1,

ao(ag2 + a§2+q) =1,

agag + al(a2 + al +q) =0,

ao2 + a;a1 + ag(ag +al +q) =0,
\ al +a3 as +a3(a2 + al +q) =0,

thus it can be rewritten as follows

’N( ):1

°+q _ 1

a2 +a a0
a

9 a0a3 +a0— ;

c12
ao +a3 af + 2 =0,

g q a3
ay +a3 ay + 2 =0,
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and hence

( N(CL()) = 1,
aolag +aj ) =1,
a = —ag+1a§2,
ay = CL82+1 — afcﬁao,
[ a3 = —a‘fzao — a%Qagao,
i.e.
( N(a0> T ]‘27 5 4 4 3 2 2
Go(—ag +q + ag +q ag +q°+q + ag +CI) =1,
a; = —ag+1&§2,
ay = —a82+1 + ags+q2a82+q+1,
\ a3 _ a§4ag3+q2+1 + ag2ag3+q+l . a83+q2+q+1ag4+q3+q2.
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