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Abstract. The t-distributed Stochastic Neighborhood Embedding (t-SNE) is an ef-
fective dimension reduction and visualization technique. Despite the brilliant mathe-
matical foundations comprised, the success of good visualization of t-SNE stems from
some supplementary algorithmic hyper-parameters. In this paper, we investigate the
effect of tweaking the hyper-parameters on visualization and clustering. This paper
shows that t-SNE is able to generate linear separable manifold by adjusting early ex-
aggeration parameter and using a heavy-tailed t-distribution kernel. In addition, we
have figured the best clustering method for the embedded manifold, which is the hier-
archical Density-based spatial clustering. We demonstrate results 1 of MNIST, fashion
MNIST, SmallNORB, CIFAR10, and CIFAR100 image datasets.
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1 Introduction
Although humans perceive the world in merely two-dimensional visual data,
the brain is yet capable to comprehend the high-dimensional latent information
beyond. The expression; “Where do we draw the line“ in the English language
punted while debating a vague topic. The perception of two-dimensional data
and the tendency to linearly separate the data are two technique leverage by
humans in analytic. Likewise, the optical illustration of data visualization com-
bined with dimension reduction techniques are the main reasons in the emerging
of decision science based on big data in business, finance, and industry. Con-
sider the upper row in Fig. 1; Four randomly-generated of 10000 data points
in two-dimension. The attempt to fit linear regression lines through the data
yields with at most 40% accuracy in classification of the color-annotated classes.

Stochastic Neighbor Embedding (SNE) [1] is a way to embed by high-
dimensional data into a lower-dimensional space. SNE was culminated by its
most successful version, the t-distribution Stochastic Neighbor Embedding (t-
SNE) [2]. Despite both the computational and the memory complexity of t-
SNE are both O(n2), it demonstrated successful visualization of large real-world
datasets with limited computational demands. The lower row of Fig. 1 illus-
trated the datasets in the upper row after applying t-SNE for 50000 iterations

1Codes and more results can be found in: https://github.com/kkahloots/Improving-t-SNE-
Visualization-and-Clustering
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Figure 1: Four randomly-generated 2d datasets. The upper row shows the
original datasets in 2d space. The lower row shows the embedded manifold after
apply t-SNE. A linear separation attempt is carried out by linear regression.

of optimization by gradient descent. The embedded manifold is clearly linearly
separated by the linear regression lines. Those forms of data in the embedded
manifold are the simplest and can be learned by any linear classifiers with high
accuracy.

For those relatively small datasets, it could not get any better results in
fewer iterations. This raises some questions, which also were mentioned in the
original t-SNE paper [2]. The first question is utilizing t-SNE in other purposes.
The t-SNE is a powerful visualization tool, however, it is not obvious how t-
SNE will perform on the more general task of dimension reduction. Unlike
Principal Component Analysis (PCA), the low-dimensional transformed data
are not extrapolated to higher-dimensional data nor be modeled to transform
another dataset. The second question is the curse of intrinsic dimensionality [3].
The t-SNE employs Euclidean distances between near neighbors, which operates
under the premise that the underlying manifold has a local linearity property.
This appears clearly when applying t-SNE to CIFAR10 and CIFAR100 datasets,
which encompass complicated objects in the images. The third question and
the most troubling one is the non-convex property of the t-SNE cost function.
The objective of the t-SNE loss function is to minimize the Kullback-Leibler
(KL) divergence between the embedded neighbor distribution and the high-
dimensional neighbor distribution. In other words, it attempts to preserve the
distances in relative low-dimensional embedding manifold with the respective
original high-dimensional space.

The complexity arises in transforming the pairwise embedded distances into
probabilities by projecting those distances on student t-distribution. The small
change in the optimization parameter; e.g.-learning ratio, will lead to the total
different embedded manifold. Therefore, a loss function with a lot of potential
local minima can fail to capture the aspects of the original space and thatâs a
weakness in t-SNE.

This paper organizes in six sections. The following section is the related
work, in which previous methods to address t-SNE weakness are browsed. Sec-
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tion 3 is a statistical preface of the mathematical equations in t-SNE model and
a list of clustering metrics that has been used. Section 4 is the experimental
setup and datasets description. section 5 is the results and discussion. Section
6 is the conclusion that shows the most effective values of the parameters to get
best clustering and visualization.

2 Related Work

The upscaling of t-SNE was and still is the major weakness. Despite a quite
long time, t-SNE has been published and available, it was an issue to scale up
to large datasets with a reasonable amount of time until the fast interpolation-
based t-SNE (Fit-SNE) have been emerged by G. Linderman et al. in [4]. In
addition to C++ and memory optimized implementation, Fit-SNE is a fast
Fourier transform (FFT)-accelerated interpolation-based t-SNE. This method
rapidly computes of one-dimensional (1D) and 2D t-SNE based on polynomial
interpolation and further accelerated using the FFT. The lead author of t-SNE,
Laurens van der Maaten [5], came back with the best t-SNE implementation by
using BallTree to measure distances, however, the Fit-SNE is using Approximate
Nearest Neighbors (Annoy) method [6] which search for points in space that are
close to a given query point. It also creates large read-only file-based data
structures that are mapped into memory so that many processes share the same
data.

The divergence for the t-SNE has been explored. D. Im et al. [7] attempted
to ameliorate the issues non-convex objective function in the t-SNE criterion
by studying the variational dual form such as KL, Reverse-KL (RKL), Jensen-
Shannon (JS), Hellinger distance (HL), and Chi-square (X2). Basically, their
work was an extension of work by Amid et al. [8] is closely related where they
study Îą-divergences from an information retrieval perspective. Both studies
concluded that optimization of the loss function is a trade-off visualization and
parametrized that trade-off by α-divergences.

D. Kobak et al. [9] had replaced the Gaussian kernel by the heavy-tailed
Cauchy kernel in an attempt to solve the âcrowding problemâ of SNE. It is
a problem in the optimization by the gradient of the equidistant points. The
combined gradients are so high so that those points will be squashed together.
The only drawback of this paper [9] is that it applied only to toy dataset, which
does not suffer from the curse of intrinsic dimensionality (see the introduction).

G. Linderman S. Steinerberger [10] had proposed a new parameter for t-SNE
that made it able to recover well-separated clusters. By automatically adjusting
the early exaggeration precisely. Unfortunately, this parameter holds out only
when the dataset is less than 20000 points. Moreover, this solution is equivalent
to adaptive momentum of the gradient descent optimizer.

In this paper, we conducted a practical approach. The t-distribution per se
can be tuned out to output a better visualization. In addition, the spatial nature
of the embed manifold made it suitable for density-based spatial clustering. The
purpose of the clustering we proposed is to find the purest and dichotomized
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form of the manifold that also best representation. The target datasets are
nearly real-world datasets of images.

3 Statistical Preface
In this section, the statistical concept are prefaced in addition to the clustering
metrics that have been measured throughout later sections.

3.1 t-SNE Affinities
The affinities in the low dimensional space:

qij =
wij
Z

(1)

wij = k (‖yi − yj‖) (2)
where yis are the low-dimensional representation.

Then The Embedded Manifold Z is:

Z =
∑
k 6=l

wkl (3)

3.2 Gaussian Kernel

k(d) =
1

(1 + d2/α)
α (4)

Where α is the number of degrees of freedom of the student‘s t-distribution.

3.3 t-SNE Objective
t-SNE objective function is to minimize the KL loss as:

L =
∑
i,j

pij log
pij
qij

(5)

Where pij is symmetric and normalized affinity of point xj and point xi

pij =
pi|j + pj|i

2n
(6)

and pi|j is the directional affinity over all points for j 6= i given as:

pj|i =
exp

(
−‖xi − xj‖2 /2σ2

i

)
∑
k 6=i exp

(
−‖xi − xk‖2 /2σ2

i

) (7)

The gradient of the loss function is:

∂L
∂yi

= 4
∑
j

(pij − qij)wαij (yi − yj) (8)

For a heavy-tailed t-distribution for t-SNE, α should be as α â (0, 0.5]
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3.4 Clustering Metrics

Homogeneity, Completeness and v-measure are selected to evaluate the cluster-
ing. In addition to Purity and Accuracy. Let C be a set of original classes in
the dataset as:

C = {ci|1, . . . , n} (9)

K be a set of clusters
K = {ki|1, . . . ,m} (10)

A br the contingency table produced by the clustering algorithm representing
the clustering solution

A = {aij} (11)

where aij is the number of data points that are members of class ci and elements
of cluster kj .

Homogeneity is defined as:

h =

{
1 if H(C,K) = 0

1− H(C|K)
H(C) else (12)

where

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

(13)

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
n

log

∑|K|
k=1 ack
n

(14)

Completeness is symmetrical to homogeneity and defined as:

c =

{
1 if H(K,C) = 0

1− H(K|C)
H(K) else (15)

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

(16)

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
n

log

∑|C|
c=1 ack
n

(17)

The V-measure is the harmonic mean between homogeneity and completeness:

Vβ =
(1 + β) ∗ h ∗ c
(β ∗ h) + c

(18)

where β is a scalar and usually β = 1
Clustering Purity is defined for a dataset with N data points, for a particular

cluster is defined as: kr of size nr
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Figure 2: The upper row shows original two-dimensional space of the datasets;
MNIST, fashion MNIST, SmallNORB, CIFAR10, and CIFAR100. The lower
row shows the embedded manifold by applying t-SNE with α = 1.

P (Kr) =
1

nr
max
i

(
nir
)

(19)

The overall purity of the clustering solution is obtained as a weighted sum of
the individual clustering purity and is given by:

Purity =

k∑
r=1

nr
N
P (Kr) (20)

The Clustering Accuracy is defined as:

accuracy(y, ŷ) = max

∑n
i=1 1 {li = map (ki)}

n
(21)

Where li is the ground-truth label, ki is the cluster assignment produced by
the algorithm and map ranges over all possible one-to-one mappings between
clusters and labels.

4 Experimental Setup

The target datasets are well-known image datasets and used widely in the re-
search papers. The simplest is MNIST dataset, which is hand-written digits
with 10 labels classes. The most complex is the CIFAR 100, which is a set
of miscellaneous 100 labeled classes. All datasets have 60000 data points. The
Fit-SNE was applied with regular t-distribution, i.e.- α = 1 as mention equation
4. As shown in the lower row of Fig. 2, the t-SNE works quite fine with both
MNIST and fashion MNIST but not that good for the rest of the datasets. Fur-
thermore, there are no a small amount of unassigned data points inter-clusters,
which make linearly separation is extremely incorrect. In the SmallNORB im-
age, for instance, the yellow cluster (labeled as “human“) to the right-side is
very adjacent to the red and the blue clusters. In addition, the yellow cluster is
drifted apart to the right-side and to the left side of the manifold.
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Figure 3: Clustering attempts for the datasets by using k-means, Spectral Clus-
tering, GMM, and HDBSCAN. The lines are linear regression to separate one-
vs-all classes.

After deliberation and experimentation, the alpha was set to 0.4. This selec-
tion makes t-SNE a heavy-tailed kernel transformer that maximizes equation 5.
The visualization results were promising as shown in Fig. 3. The lingering task
is to cluster the manifold space and measure the clustering metrics in equations
15,17,19 and 20. Seven clustering algorithms were applied on the embedded
manifold; K-means [11], Spectral Clustering [12], Ward hierarchical Clustering
[13], Birch Clustering [14], Gaussian Mixture Model [15], DBSCAN [16], and
HDBSCAN [17].

5 Results and Discussion

Three objectives are sought by this paper; to generate an ecstatic visualization
for the manifold and to cluster the manifold into homogeneous clusters and to
be able to separate the clusters in a linear way. The objective of clustering
the embedded manifold is to group the similar data points together. It is a
possibility that the same labeled class be split into multiple clusters. The plau-
sible explanation is that said labeled class has multiple pattern of data. The
purity of a given resulting cluster indicate that this cluster has the same labeled
class. Fig. 3 and Table 1 show clustering metrics for several clustering algo-
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Table 1: Clustering metrics for the target datasets for original labled classes
and for harmonic mean of the standard deviation of the data

Number of Clusters the original labeled classes Harmonic mean of the std of the dataset
Kmeans MNIST fMNIST Small NORB CIFAR 10 CIFAR 100 MNIST fMNIST Small NORB CIFAR 10 CIFAR 100

Number of clusters 10 10 5 10 100 10 10 5 10 50
Clustering Accuracy 0.809 0.565 0.447 0.227 0.081 0.809 0.565 0.447 0.227 0.067
Clustering purity 0.856 0.569 0.450 0.237 0.087 0.856 0.569 0.450 0.237 0.068
v measure score 0.843 0.572 0.223 0.090 0.149 0.843 0.572 0.223 0.090 0.129
Spectral Clustering

Number of clusters 10 10 5 10 100 10 10 5 10 50
Clustering Accuracy 0.275 0.210 0.460 0.195 0.081 0.275 0.210 0.460 0.195 0.070
Clustering purity 0.297 0.217 0.460 0.200 0.091 0.297 0.217 0.460 0.200 0.072
v measure score 0.280 0.138 0.337 0.080 0.153 0.280 0.138 0.337 0.080 0.130
Gaussian Mixture

Number of clusters 10 10 10 10 100 10 10 10 10 50
Clustering Accuracy 0.821 0.594 0.047 0.226 0.081 0.821 0.594 0.047 0.226 0.066
Clustering purity 0.797 0.630 0.887 0.235 0.085 0.797 0.630 0.887 0.235 0.068
v measure score 0.799 0.603 0.380 0.089 0.147 0.799 0.603 0.380 0.089 0.127
HDBSCAN

Number of clusters 100 100 500 332 69 100 100 500 332 86
Clustering Accuracy 0.273 0.317 0.741 0.101 0.081 0.273 0.317 0.741 0.101 0.085
Clustering purity 0.966 0.972 0.987 0.323 0.085 0.966 0.972 0.987 0.323 0.090
v measure score 0.677 0.723 0.721 0.130 0.156 0.677 0.723 0.721 0.130 0.163

rithms. Deciding the number of clusters is crucial clustering algorithms. When
the number of clusters was set to be equal to the original labeled classes, all
clustering algorithms gave out bad results. By understanding the nature of the
manifold, the clustering task should not be subjective to the original labeled
classes. Instead, the spatial condensed points should lay in the same cluster.
By relying on heavy-tailed t-SNE, the similar points are guaranteed to have
small affinities in the manifold space.

Despite the good measurements of k-means and GMM clustering, as shown
in 1, they failed in the visual objective because they have to cluster each and
every point. On the other hand, the HDBSCAN clusters only spatially con-
nected points and leave the perplexing points unclustered. By dropping the
unclustered points from the manifold, the ecstatic visualization is achieved re-
gardless of the losing about 5% of the data. Because the datasets are large scale,
traditional t-SNE failed in allocating the required memory and carrying out the
computations. On the other hand, the Fit-SNE uses the FFT transformation
to interpolate. The 5% sparse data points inter-clusters are the downside of the
Fit-SNE.

Fig. 4 shows the final results of clustering of the embedded manifold. HDB-
SCAN successfully detected multiple clusters. The results by HDBSCAN make
the ultimate sense and meets the clustering objective. For instance, the zero
digits in the MNIST dataset have three patterns in this handwriting. Simi-
larly, the six digits have three patterns too. Fig. 4, in the middle of the upper
row, shows multiple detected patterns for the same labeled classes. The class
âsandalâ has four patterns in the fashion MNIST dataset and they have been
detected successfully.
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Figure 4: Clustering for the datasets by using HDBSCAN. The number of clus-
ters was set by the harmonic mean of the standard deviations of the images,
Nonetheless, HDBSCAN has detected the clusters based on spatial densities. In
the upper row, zoom in for sub-manifold that is demonstrating multiple patterns
for the same class label.

6 Conclusion

In this paper, t-SNE had been demonstrated to be unsuited for large datasets,
whilst the Fit-SNE was efficient only be adjusting the degree of freedom to be
0.4. The clustering of embedded manifold for the famous datasets MINIST,
fashion MNIST, SmallNORB, CIFAR10, and CIFAR100 has been investigated
thoroughly. The most successful clustering was HDBSCAN due to its spatial
mechanism to glue points together and due to its ability of drop out the spars
inter-clusters points. The resulting clusters had detected several patterns for
the same labeled classes. In addition, the visualization was ecstatic and the
clusters were well-distinguished.
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