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Abstract

Climate change and infectious disease by the chytrid fungus Batrachochytrium dendrobati-

dis (Bd) are major drivers of amphibian extinctions, but the potential interactions of these

two factors are not fully understood. Temperature is known to influence (1) the infectivity,

pathogenicity and virulence of Bd; (2) host-parasite dynamics, especially when both hosts

and parasites are ectothermic organisms exhibiting thermal sensitivities that may or may not

differ; and (3) amphibian vulnerability to extinction depending on their heat tolerance, which

may decrease with infection. Thus, in a global warming scenario, with rising temperatures

and more frequent and extreme weather events, amphibians infected by Bd could be

expected to be more vulnerable if temperatures approach their critical thermal maximum

(CTmax). However, it is also possible that predicted high temperatures could clear the Bd

infection, thus enhancing amphibian survival. We tested these hypotheses by measuring

CTmax values of Bd-infected and Bd-free aquatic tadpoles and terrestrial toadlets/juveniles

of the common midwife toad (Alytes obstetricans) and examining whether exposure of A.

obstetricans individuals to peak temperatures reaching their CTmax clears them from Bd

infection. We show that (1) Bd has a wide thermal tolerance range; (2) Bd is capable of alter-

ing the thermal physiology of A. obstetricans, which is stage-dependent, lowering CTmax in

tadpoles but not in toadlets; and (3) Bd infection is not cleared after exposure of tadpoles or

toadlets to CTmax. Living under climatic change with rising temperatures, the effect of Bd

infection might tip the balance and lead some already threatened amphibian communities

towards extinction.
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Introduction

Batrachochytrium dendrobatidis (Bd), a pathogenic chytrid fungus causing chytridiomycosis

in many amphibians, is considered the most deadly invasive species on the planet [1] and a

main driver behind amphibian species extinctions globally [2, 3], with profound effects on

communities and ecosystems [4]. Environmental conditions can have a large influence on Bd
host-parasite dynamics [5, 6], temperature being a major factor influencing its prevalence (i.e.,

the proportion of infected animals) and virulence [7]. Growth and reproductive characteristics

of Bd are known to highly depend on temperature [8–10], and there is a negative correlation

between temperature and Bd prevalence or pathogen load, chytrid infections often being more

severe in winter or in colder areas [6, 11, 12].

Temperature can influence amphibian population dynamics through its effects on physiol-

ogy of both the host and the fungal pathogen [13]. Amphibians being ectothermic, their

immune system and its responses against pathogens are influenced by environmental tempera-

ture [14–17]. Fever, a crucial response to infection that has evolved both in endotherms and

ectotherms, can confer a survival advantage upon infection by stimulating the immune system

[18]. Infected ectotherms have been shown to raise their body temperature by seeking warmer

sites and spending more time in those sites than uninfected individuals, a phenomenon called

behavioral fever [19, 20, 21]. Also, several studies have reported on the utility of using elevated

temperatures as a method of Bd elimination [22–24].

The recently proposed thermal mismatch hypothesis suggests that infection risk will

decrease as the difference in thermal tolerance of host and pathogen (tolerance mismatch)

increases [25]. A refinement of the hypothesis suggests that infectious disease outbreaks are

most likely to occur at temperatures where the performance gap between pathogen and host is

greatest in favor of the pathogen [10]. Because parasites are thermal generalists, which often

have broader thermal performance breadths than their hosts, and assuming that both hosts

and parasites are locally adapted to climatic conditions in their ranges, this hypothesis posits

that hosts adapted to cooler climates should be especially susceptible to disease under unusu-

ally warm conditions, whereas warm adapted hosts are more prone to infection under cooler

conditions (Fig 1 in [10]).

Extreme weather events have increased in intensity, frequency and unpredictability [26–

30], and temperature extremes have undergone systematic and significant changes over the

last decades [31]. These forms of global climate change are predicted to be more severe at

higher latitudes and altitudes and over land, where they are especially likely to cause a series of

malign effects, including thermal stress in many species [32] and an increase in the frequency

of infectious disease outbreaks [10], leading to profound changes in ecosystem structure and

function [33], and ultimately threatening the integrity of ecosystems [34]. Ectotherms are con-

sidered especially vulnerable to climate change due to the direct dependence of their fitness on

temperature [35, 36], and because new daily, seasonal, or intermittent temperature cycles will

most likely be shifted away from their optimum and closer to lethal extremes [37, 38].

Estimating potential risks of species and populations posed by climate change includes the

assessment of the heat tolerance, such as the critical thermal maximum (CTmax). CTmax is

usually quantified under controlled conditions using the Hutchison´s dynamic method, [39]

in which organisms are exposed to a constant heating rate until an end-point is attained. This

end-point represents the upper limit of the ability of animals to counterbalance temperature

increase and marks the loss of homeostasis. According to Huey et al. [40], vulnerability of a

species to rising environmental temperature depends on several factors including the species’

sensitivity to temperature change, its capacity to adapt to such change, its resilience, and its

exposure level. Some studies have proposed that tropical ectotherms will be more susceptible
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to warming-induced extinctions than their temperate counterparts, since their CTmax is only

slightly higher than the highest ambient temperatures they already experience, which leaves

these species with an extremely low warming tolerance [40, 41]. Importantly, infection with Bd
may result in reduced CTmax, as shown for the tropical anuran Litoria spenceri at the adult

stage [42]. Previous studies indicated that Bd infection correlates with cooler temperatures in

the field [11], and laboratory experiments have demonstrated that Bd ceases growth at temper-

atures above 28˚C [8]. Then, the predicted increase in temperatures may indirectly determine

a protection of amphibians from Bd and an experimental heating of hosts may clear themselves

of the pathogen.

Within this context, we conducted a thermal ramping experiment [43] in both aquatic tad-

poles and recently metamorphosed, terrestrial toadlets of two contrasting altitude populations

of Alytes obstetricans, an anuran species from temperate Europe which has been hit hard by

chytridiomycosis [44, 45]. Our goals were (1) to determine if gradually and briefly elevating

environmental temperature close to the CTmax of individuals can be used to clear Bd infection

from both host stages–an experimental heating procedure similar to heating pulses employed

to trigger cleaning Bd from amphibian hosts [42]–and (2) to assess whether infection with Bd
lowers upper thermal tolerance limits of tadpoles or toadlets in this species (as suggested by

reference 42).

Material and methods

We collected a total of 121 A. obstetricans specimens, both larval (80) and recently metamor-

phosed, toadlets (41) from two localities: Toro, at mid-altitude population (Zamora, Central

Spain, geographic coordinates: 41.37 N, 5.44 W; altitude: 740 m above sea level; 80 tadpoles

and 21 toadlets collected) and Acherito, a montane population (Huesca, Northern Spain, geo-

graphic coordinates: 42.88 N, 0.71 W; altitude: 1875 m above sea level; 18 tadpoles and 20 toad-

lets collected). Prevalence of Bd infection in larval stages is known to approach 100% during

colder months at both localities [11, 45]. Animals were collected in November 2012 and May

2013 at Toro and in August 2013 at Acherito.

Prior to the heating experiment, we assessed the developmental stage of tadpoles and mea-

sured body mass of tadpoles and toadlets. Tadpoles originating from Toro were between devel-

opmental stage 26 and 37 [46] and weighed 1.05 ± 0.03 g (mean ± SE), while those originating

from Acherito were between stage 34 and 40 and weighed 1.56 ± 0.07 g. Toadlets collected

from Toro weighed 0.65 ± 0.03 g and those collected from Acherito weighed 1.96 ± 0.07 g. We

acclimated animals for 2 days in 1-L individual containers at 18˚C and a light:dark cycle of

12:12. Containers were filled with dechlorinated tap water in the case of tadpoles, while con-

tainers with toadlets were lined with sterilized paper towels moistened with dechlorinated tap

water. Every 72 hours we changed water and replaced the wet paper towels, and subsequently

fed tadpoles and toadlets ad libitum with commercial food for amphibian tadpoles or with

baby crickets, respectively.

In order to determine the CTmax (˚C) of tadpoles and toadlets, we individually placed ani-

mals within a new plastic container and subjected them to a thermostated bath (HUBER

K15-cc-NR). Initial temperature was 20˚C in the case of tadpoles and 19.8˚C for toadlets. Fol-

lowing Hutchinson’s dynamic method for determination of CTmax [47], we increased water

temperature at a constant rate of 0.8˚C min-1 and observed tadpoles and toadlets continuously

until they reached the endpoint. We defined the endpoint as the point at which tested individ-

uals become motionless and fail to respond to external stimuli by prodding 10 consecutive hits

applied each 2 s with a wooden stick [48]. We established a humane endpoint when animals

did not recover motion after 30 min of reaching their CTmax. If so, animals should be
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euthanized with an overdose of tricaine methanesulfonate (MS222, Sigma-Aldrich, Saint

Louis, MO, USA) buffered with NaHCO3 (no animal reached the humane endpoint criteria).

Twenty tadpoles and five toadlets were assigned to the control groups and were subjected to

the bath but not to heating.

In order to examine whether heating to CTmax of the host promotes a cleaning of Bd infec-

tion, immediately before assays, the keratinized mouthparts of tadpoles and the lower ventral

surface and hind limbs of toadlets were swabbed using sterile cotton-tipped swabs (MW100-

100; Medical Wire & Equipment Co, Corsham, UK). After heating experiments, tadpoles and

toadlets were individually kept for an additional 15-day period in new 1-L containers with

dechlorinated tap water or sterilized moistened paper lining, respectively, to allow enough

time for Bd DNA from dead chytrid cells to degrade. Tadpoles were then euthanized with an

overdose of tricaine methanesulfonate buffered with NaHCO3, and whole tadpole mouthparts

were collected and fixed. Surviving toadlets were swabbed on day 15 and released at the exact

point of capture, whereas animals found dead upon daily screenings were toe-clipped immedi-

ately. Tissue samples were stored in 70% ethanol and swabs were stored dry at 4˚C until

processing.

The experiments here performed were carried out in accordance with all current European

directives and Spanish laws, and approved by the competent authorities of the Consejerı́a de

Medio Ambiente from Junta de Andalucı́a (Ref. 12_44). Procedures conformed to the recom-

mended guidelines or use of live amphibians and reptiles in laboratory research (ASIH 2004).

All experimental protocols were approved by the ‘Comité de Ética de Experimentación Animal

CEEA-EBD’. All researchers implied in the experiments (AFL, JB, MT) have the competent

accreditation (Category C) according to the EU Directive 2010/63/EU Article 23.2 accredited

by the Federation of European Laboratory Animal Science Associations (FELASA).

We extracted Bd-DNA using PrepMan Ultra Reagent Protocol as described by Boyle et al.

[49]. Extracted DNA was stored at -20˚C until further processing. We assessed the burden of

infection using the quantitative PCR (qPCR) protocol described by Boyle et al. [49] with a

CFX96 thermocycler (Bio-Rad). Each plate included samples, a negative control and four stan-

dards ranging in concentration from 100 to 0.1 Bd zoospores ml-1 genome equivalents (GE),

all in duplicate (isolate IA042 from Acherito). Samples were scored positive when both repli-

cates received GE-estimates� 0.1 and amplification curves had the typical sigmoidal shape.

Infection loads for tadpoles and toadlets before and after thermal treatments were com-

pared using linear mixed models, with individuals as a random factor, and time (before/after),

population, treatment (control/heated), and the interactions time x population and time x

treatment as fixed factors. Infection load was transformed (log10) to reach normality but also

to reduce differences between values obtained by swabbing the oral discs (initial) and by using

the whole oral disc (final). We analysed variation in Box-Cox transformed values of CTmax of

tadpoles and toadlets separately using general linear models (GLM) because all tadpoles col-

lected from Acherito and no toadlets collected from Toro were infected. We entered popula-

tion origin as a fixed factor and Bd infection load and body mass as covariates. JMP Pro 12

(SAS Institute Inc., NC, USA) was used for all statistical analyses.

Results

Initial prevalence and infection load

Initial prevalence of infection in tadpoles originating from Toro was 50% (n = 80) whereas

it was 100% (n = 18) in tadpoles taken from the Acherito population. Similarly, none of the

21 toadlets collected at Toro were infected, while most toadlets collected at Acherito were

infected (prevalence: 90%, n = 20). Bd loads of infected tadpoles from Toro assigned to the
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experimental group ranged from 960 to 12970 GE (average 3846 GE), whereas infected tad-

poles assigned to the control group ranged from 930 to 1440 GE (average 4419 GE). Tad-

poles from Acherito presented an averaged Bd load of 511 GE, ranging from 6 to 2330 GE.

Infected toadlets from Acherito assigned to the experimental group ranged from 1 to 2690

GE (average 472 GE), while infected ones assigned to the control group ranged from 7 to 71

GE (average 115 GE).

Effect of host heating to CTmax on Bd prevalence and infection load

All tested tadpoles (78) and toadlets (36) recovered after reaching their CTmax. Averaged

CTmax values were very high and extremely similar for both tadpoles (37.3˚C) and toadlets

(37.7˚C; Fig 1). Heating to CTmax did not clear Bd infection. None of the 20 tadpoles collected

from Toro, neither the 18 tadpoles from Acherito that tested positive for Bd at the start,

changed their infection score. Similarly, all 20 control tadpoles maintained their infection sta-

tus after completing the experiment.

Larval populations differed in Bd loads (F1,103 = 23.699, p < 0.001), which were higher in

Acherito. Although no significant differences were found between initial and final larval Bd
loads (F1,80 = 0.970, p = 0.328) or between control and heated tadpoles (F1,80 = 0.001,

p = 0.973), the interaction between these two factors was significant (F1,80 = 8.837, p = 0.004),

indicating that heated tadpoles, but not control tadpoles, increased their infection load after

the experiment (Fig 2).

All toadlets from Toro survived until completion of the experiment, 15 days after exposure

to CTmax. On the other hand, only four of the 20 toadlets collected at Acherito survived until

the end of the experiment. From those four toadlets, two were Bd-free and the other two had

low Bd loads (9 and 27 Bd zoospore GE, respectively) at the beginning of the experiment. Most

toadlets died 6 days (13 animals) after the beginning of the experiment, the rest died on day 9

(3 animals). Toadlets that died on days 6 and 9 did not differ in Bd loads at the beginning of

the experiment or on the day of death (Student’s t-tests; t<0.8, p<0.43 in both cases). None of

the 14 Acherito toadlets that were initially Bd-infected lost their infection after going through

the CTmax experiment.

Toadlets showed no significant differences between initial and final Bd loads (F1,15 = 0.454,

p = 0.511) or between heated and control animals (F1,15 = 1.764, p = 0.204), and the interaction

between these two factors was not significant (F1,15 = 0.004, p = 0.951).

Effect of Bd infection load on thermal tolerance limits

The linear model used to analyse differences in CTmax of tadpoles was highly significant (R2 =

0.63, F3,76 = 41.359, p< 0.001). We observed a significant difference in CTmax between the

two studied populations (F1,76 = 61.28, p< 0.0001), with CTmax being higher in tadpoles col-

lected from Acherito than those obtained from Toro (mean ± SE: 38.238 ± 0.075 vs.

36.975 ± 0.061˚C). Most importantly, a significant negative relationship between Bd infection

load and CTmax was found (F1,76 = 5.77, p = 0.0189), with a slightly lower CTmax in infected

(37.046 ± 0.083˚C) than non-infected tadpoles (37.500 ± 0.127˚C). The effect of larval body

mass had a marginally non-significant influence on CTmax (F1,76 = 3.45, p = 0.0673). In the

case of toadlets, neither population origin nor body mass or Bd infection status had a signifi-

cant effect on CTmax values (R2 = 0.03, F3,35 = 0.3238, p = 0.8081).

Discussion

Our main observation that CTmax values obtained for Bd-infected tadpoles were significantly

lower than those of uninfected ones supports similar results reported for the adult stage of the
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Fig 1. CTmax (˚C) in both tadpoles and toadlets from the two studied localities, Acherito and Toro. Uninfected animals appear in blue and Bd-infected

animals are in red. Numbers above each box-plot are sample sizes. Horizontal lines depict medians, boxes represent interquartile ranges, whiskers extend to

minima-maxima, dots show potential outliers.

https://doi.org/10.1371/journal.pone.0216090.g001
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Australian frog Litoria spenceri [42]. Therefore, this fungal pathogen may be capable of altering

the thermal physiology of the hosts it infects, or, in a narrower sense, to lower their ability to

withstand high temperatures. In a global warming scenario this could have serious conserva-

tion implications for many amphibian species, especially for tropical species, which often live

close to their thermal limits [41, 48]. On the other hand, temperate amphibian species may be

relatively secure from similar impacts of warming, since their warming tolerance (the

Fig 2. Bd loads (GE, log10 transformed) in both groups of tadpoles (control and heated) at the initial and final time. Horizontal lines

depict medians, boxes represent interquartile ranges, whiskers extend to minima-maxima.

https://doi.org/10.1371/journal.pone.0216090.g002
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difference between their CTmax and environmental temperatures) is higher in most cases

[41]. Because permanent ponds are in general deeper and cooler than shallow ephemeral water

bodies, A. obstetricans and many other species using permanent ponds as their larval habitat

could be on the safe side in this respect, while species spawning and developing in temporary

water bodies may be exposed to higher risk. Nonetheless, amphibians of the temperate zone

may also be highly vulnerable to climate change, because temperatures are predicted to rise

more steeply in these regions [50], and, coupled with the observation of Bd-infection lowering

CTmax, the presence of the chytrid fungus may push local populations towards extinction.

However, we have to note that the decrease in CTmax accountable to Bd-infection was less

than 0.5˚C for tadpoles and a similar effect could not be detected in toadlets, while CTmax was

still higher than 37˚C in infected tadpoles and even higher in toadlets. Thus, our results indi-

cate that Bd-infection may lower upper thermal tolerance limits of amphibians, but this

decrease is minimal in A. obstetricans and will have to be assessed in a variety of other species

before we can determine the importance of this effect.

It is generally believed that temperature tolerance of Bd ranges from 4 to 25˚C, with its ther-

mal optimum for growth and reproduction falling between 17–25˚C [8–10]. However, A.

obstetricans optimum thermal breadth (TB80) for larval growth was much warmer, ranging

between 21–28˚C (M. Tejedo, P. Pintanel, unpublished results), thus suggesting the prediction

of thermal mismatch hypothesis [10]. In our experiment, where we exposed infected tadpoles

and toadlets to elevated temperatures, we did not observe clearance of infection even though

the CTmax, and thereby the highest ambient temperatures reached around 37.5˚C, which is

almost 10˚C higher than the CTmax of Bd. An in vitro study [51] showed Bd-wipeout in all

cultures after only 4 hours of exposure to 37˚C. We know of only two studies that exposed

amphibians to similarly high temperatures in order to clear Bd-infection: Woodhams and col-

leagues [22] exposed juvenile frogs to 37˚C for 8 hours on two consecutive days, which resulted

in clearance of infection in all individuals; in the other study, exposure to 35˚C for one day,

preceded by 30˚C for 12 hours, was ineffective in clearing Bd from adult frogs [52]. In our

experiment, we elevated temperature from 20˚C to around 37.5˚C at a rate of 0.8˚C min-1,

meaning that infected animals spent ca. 12 min at temperatures beyond 28˚C, the upper ther-

mal limit of Bd, and 4 min at temperatures beyond 35˚C, which is likely too brief to kill Bd or

alternatively, triggering host immunity [53]. From these studies it appears that even tempera-

tures close to the thermal maximum that amphibians can withstand without lasting damage

have to be maintained for more than just a few minutes. The effective combinations of elevated

temperatures and duration of application/exposure of thermal stress in order to clear Bd-infec-

tion or at least to largely suppress infection loads remain to be determined.

To conclude, our study shows that besides other malign effects on its amphibian hosts, Bd can

also reduce their critical thermal maximum (CTmax), at least for tadpoles. A reduction in thermal

tolerance can have serious consequences for the persistence of amphibian populations at many

localities worldwide, especially under the ongoing process of global climate change. At the same

time, our results and those of previous studies suggest that short spikes in peak temperatures are

unlikely to clear Bd-infection from amphibian hosts. Finally, our study draws attention to the

importance of determining effective combinations of time and temperature parameters in order

to deploy optimized and safely applicable disinfection treatments against this deadly disease.
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