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Abstract: In breast cancer patients, the diversity of the microbiome decreases, coinciding with
decreased production of cytostatic bacterial metabolites like lithocholic acid (LCA). We hypothesized
that LCA can modulate oxidative stress to exert cytostatic effects in breast cancer cells. Treatment
of breast cancer cells with LCA decreased nuclear factor-2 (NRF2) expression and increased
Kelch-like ECH associating protein 1 (KEAP1) expression via activation of Takeda G-protein coupled
receptor (TGR5) and constitutive androstane receptor (CAR). Altered NRF2 and KEAP1 expression
subsequently led to decreased expression of glutathione peroxidase 3 (GPX3), an antioxidant enzyme,
and increased expression of inducible nitric oxide synthase (iNOS). The imbalance between the
pro- and antioxidant enzymes increased cytostatic effects via increased levels of lipid and protein
oxidation. These effects were reversed by the pharmacological induction of NRF2 with RA839,
tBHQ, or by thiol antioxidants. The expression of key components of the LCA-elicited cytostatic
pathway (iNOS and 4HNE) gradually decreased as the breast cancer stage advanced. The level of
lipid peroxidation in tumors negatively correlated with the mitotic index. The overexpression of
iNOS, nNOS, CAR, KEAP1, NOX4, and TGR5 or the downregulation of NRF2 correlated with better
survival in breast cancer patients, except for triple negative cases. Taken together, LCA, a metabolite
of the gut microbiome, elicits oxidative stress that slows down the proliferation of breast cancer
cells. The LCA–oxidative stress protective pathway is lost as breast cancer progresses, and the loss
correlates with poor prognosis.
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1. Introduction

Evidence is accumulating for the role of bacterial dysbiosis in the pathogenesis of different
cancers [1–16]. Bacteria secrete metabolites that either exert their effects locally, in a paracrine fashion,
or enter the circulation and modulate distantly located cancer cells. For paracrine metabolites, the best
examples are those involved in the carcinogenesis of colorectal cancer [17]. The metabolites that act on
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distantly located cancer cells have similar properties as classical human hormones; they are produced in
a “gland”, i.e., the microbiome, and then transported to distant organs, where they regulate physiology
and behavior [16]. Cadaverine [18], lithocholic acid (LCA) [19], deoxycholic acid [2], and short chain
fatty acids [20] have been identified as hormone-like metabolites. These metabolites have pleiotropic
effects and modulate multiple cancer hallmarks simultaneously [2,18,19]. The metabolites can inhibit
proliferation, decrease epithelial-to-mesenchymal transition, reduce tumor metastasis, decrease cell
migration and transmigration, induce antitumor immunity, rearrange cellular metabolism, induce
senescence, and reduce cancer cell stemness [2,18,19,21].

LCA, in particular, inhibits the proliferation of breast cancer cells [19,22–26]. Serum
glycolithocholate sulfate levels negatively correlate with the proliferation marker Ki67 in human
breast cancers (Reference [24] additional file 9, line 110). Moreover, the bacterial machinery for LCA
biosynthesis is suppressed in the early stages of breast cancer [19]. LCA has cytostatic properties
that are specific to transformed cells [19,22,25]. LCA exerts its anticancer effects through the Takeda
G-protein coupled receptor (TGR5) [19].

Breast cancer is a heterogeneous disease and there are well-established systems for the classification
of breast cancer cases. The AJCC TNM classification [27,28] is based on the size of the primary tumor,
presence of tumor cells in draining lymph nodes, and the existence of distant metastases. Stage 0 reflects
in situ carcinoma, while increasing stages (I–IV) denote the spreading of the disease. The Nottingham
grading system (grade I–III) [29,30] is used to assess the aggressiveness of the disease, where a higher
grade reflects worse clinical outcomes. Finally, the molecular subtypes of breast cancer [31] are based
on the driver gene mutations, which coincide with the expression of pharmacological targets in the
tumors. The following molecular subtypes exist for breast cancer: Luminal A (ER+, HER2−, Ki67low,
PgRhigh), Luminal B (ER+, HER2−, either Ki67high or PgRlow or ER+, HER2+, any Ki67, any PgR),
Her2+ (HER2+, ER−, and PgR−), and triple negative cases (TNBC, HER2−, ER−, PgR−) [31].

Oxidative stress evasion is critical in cancers [32,33]. Thus, antioxidant defense systems, driven
by nuclear factor erythroid 2-related factor 2 (NRF2), play a crucial role in supporting breast cancer
progression [24,34–36]. LCA is associated with the induction of oxidative stress with a preference
towards lipid modifications [37,38]. Moreover, LCA treatment modulates NRF2 activity and expression
in model systems other than breast cancer [39,40]. We hypothesized that LCA can induce oxidative
stress to exert cytostatic effects in breast cancer cells.

2. Materials and Methods

2.1. Chemicals

All chemicals were from Sigma-Aldrich unless otherwise stated. Lithocholic acid (LCA),
cholic acid (CA), chenodeoxycholic acid (CDCA), glutathione (GSH), N-acetyl-cysteine (NAC), and
tert-butylhydrquinone (tBHQ) were from Sigma-Aldrich (St. Louis, MO, USA). LCA was used at
concentrations of 0.1 µm, 0.3 µm, and 1 µm, which corresponded to LCA concentrations in the
breast [41]. GSH and NAC antioxidants were used at a final concentration of 5 mm. The NRF2
activator, tBHQ, was used at concentrations of 5 µm and 10 µm. TGR5 downstream signaling was
inhibited using NF449 (a Gsα-selective antagonist). To inhibit nuclear receptor activation CINPA1
(CAR receptor antagonist), DY268 (FXR receptor antagonist), GSK2033 (LXR receptor antagonist)) were
used. RA839, an NRF2 activator, which were obtained from Tocris Bioscience (Bristol, UK) and were
used at a final concentrations of 5 µm and/or 10 µm. The proteasome inhibitor MG-132 was obtained
from Calbiochem and was used at concentrations of 50 nM and 100 nM. The Silencer Select siRNAs
targeting TGR5 (GPBAR1—siRNA ID: #1 s195791, #2 s45559, #3 s45558), CAR (NR1I3—siRNA ID: #1
s19369, #2 s19370, #3 s19368), VDR (siRNA ID: s14777), PXR (NR1I2—siRNA ID: s16910), and NRF2
(siRNA ID: #1 s9493, #2 s9492, #3 9491) and the negative control siRNA #1 (cat.no. 4390843) were
obtained from Thermo Fisher Scientific and were used at a final concentration of 30 nM.
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2.2. Cell Lines

The 4T1 cells were maintained in RPMI-1640 (Sigma-Aldrich) medium containing 10% FBS
and 1% penicillin/streptomycin, 2 mm L-glutamine, and 1% pyruvate at 37 ◦C with 5% CO2.
The MCF7 cells were maintained in MEM (Sigma-Aldrich) medium supplemented with 10% FBS,
1% penicillin/streptomycin, and 2 mm L-glutamine at 37 ◦C with 5% CO2. The SKBR3 cells were
maintained in DMEM (Sigma-Aldrich, 1000 mg/L glucose) medium supplemented with 10% FBS, 1%
penicillin/streptomycin, and 2 mm L-glutamine at 37 ◦C with 5% CO2. The human primary fibroblast
cells were maintained in DMEM (Sigma-Aldrich, 1000 mg/L glucose, D5546) containing 20% FBS, 1%
penicillin/streptomycin, 2 mm L-glutamine, and 10 mm HEPES at 37 ◦C with 5% CO2.

MCF7, SKBR-3, and 4T1 cells were purchased from the American Type Culture Collection (ATCC).
Cells were regularly checked for mycoplasma contamination. In the cellular experiments, control cells
received vehicle (0.001% DMSO in medium) but no LCA. All cellular experiments were performed in
the presence of 10% FBS unless stated otherwise.

2.3. Proliferation Assay

Cellular proliferation was assessed using a sulforhodamine assay, as described in Reference [42].
Cells were seeded in a 96-well plates (4T1—1500 cells/well) and treated with the primary bile acids, CA
and CDCA (0.01–10 µm) and NRF2 activator, RA839 (5 µm and 10 µm), or GSH and NAC antioxidants
(5 mm) in the presence of LCA (0.3 µm) for 2 days. The cells were then fixed by the addition of
trichloroacetic acid at a final concentration of 10% and were incubated for 1 h at 4 ◦C. Cells were washed
with water and stained with 0.4% (w/v) sulphorhodamine B solution in 1% acetic acid. Unbound dye
was removed by washing with 1% acetic acid. Bound stain was solubilized with 10 mm Tris base and
the absorbance was measured at 540 nm.

2.4. Real-Time Quantitative PCR (RT-qPCR)

RNA isolation and RT-qPCR reactions were performed similarly to in Reference [43]. Total RNA
was isolated from cells and tumor samples using TRIzol reagent (Invitrogen Corporation, Carlsbad,
CA, USA). RNA (2 µg) was reverse transcribed using a High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. The qPCR
was performed with qPCRBIO SyGreen Lo-ROX Supermix (PCR Biosystems Ltd., London, UK) on a
Light-Cycler 480 Detection System (Roche Applied Science, Basel, Switzerland). The 36B4 gene was
used for normalization. Primers are listed in Table 1.

Table 1. Primers used in the RT-qPCR reactions.

Gene Symbol MURINE Forward Primer (5′–3′) Murine Reverse Primer (5′–3′)

CAT CCTTCAAGTTGGTTAATGCAGA CAAGTTTTTGATGCCCTGGT
GCLC GATTCGGGATGGGCAACT AAAGGTATCTTGCCTCAGATATGC
GPX2 GTTCTCGGCTTCCCTTGC TTCAGGATCTCCTCGTTCTGA
GPX3 GGCTTCCCTTCCAACCAA CCCACCTGGTCGAACATACT

HMOX1 AGGCTAAGACCGCCTTCCT TGTGTTCCTCTGTCAGCATCA
iNOS GAAGTGCAAAGTCTCAGACATGG GATTCTGGAACATTCTGTGCTGTC
NOX4 GCAGATTTACTCTGTGTGTTGCAT TCCCATCTGTTTGACTGAGGT
NQO1 AGCGTTCGGTATTACGATCC AGTACAATCAGGGCTCTTCTCG
NRF2 CATCAGGCCCAGTCCCTCAAT CAGCGGTAGTATAÓCAGCCAGCT
SOD1 CCATCAGTATGGGGACAATACA GGTCTCCAACATGCCTCTCT
SOD2 TGCTCTAATCAGGACCCATTG GTAGTAAGCGTGCTCCCACAC
SOD3 CTCTTGGGAGAGCCTGACA GCCAGTAGCAAGCCGTAGAA
36B4 AGATTCGGGATATGCTGTTGG AAAGCCTGGAAGAAGGAGGTC
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2.5. SDS-PAGE and Western Blotting

Protein isolation, SDS-PAGE, and western blotting were performed similarly to in Reference [44].
Cells were lysed in RIPA buffer (50 mm Tris, 150 mm NaCl, 0.1% SDS, 1% TritonX 100, 0.5% sodium
deoxycolate, 1 mm EDTA, 1 mm Na3VO4, 1 mm NaF, 1 mm PMSF, protease inhibitor cocktail). Protein
samples (30–50 µg) were separated on 10% SDS polyacrylamide gels and electrotransferred onto
nitrocellulose membranes. After blocking for 1 h with TBST containing 5% BSA, the membranes
were incubated with primary antibodies overnight at 4 ◦C. After washing with 1× TBST solution, the
membranes were probed with IgG HRP-conjugated secondary antibodies (Cell Signaling Technology,
Inc. Beverly, MA, USA 1:2000). Bands were visualized by enhanced chemiluminescence reaction
(SuperSignal West Pico Solutions, Thermo Fisher Scientific Inc., Rockford, IL, USA). Densitometry was
performed using the Image J software [45]. Antibodies used in this study are listed in Table 2.

Table 2. Antibodies used in western blot analyses.

Antibody Symbol Vendor Dilution

NRF2 Abcam (ab31163) 1:1000
NRF2 Novus (NBP1-32822 1:1000

KEAP1 Cell Signaling (8047) 1:1000
GPX3 Abcam (ab104448) 1:1000
iNOS Novus (NB300-605) 1:1000
4HNE Abcam (ab46545) 1:1000

Nitrotyrosine Millipore (06-284) 1:1000
TGR5/GPBAR1 Novus (NBP2-23669) 1:1000

CAR Abcam (ab186869) 1:1000
ACTIN Sigma-Aldrich (A3854) 1:20000

We used the Abcam (ab31163) antibody in our studies, which we validated, due to the ambiguity
in the molecular weight of NRF2. The calculated molecular weight of NRF2 is 68 kDa, however, recent
studies have claimed that NRF2 has a molecular weight of ~130 kDa [46,47]. In the validation studies,
we used a second NRF2 antibody (Novus, NBP1-32822) which, according to the literature [46,47],
recognizes the ~130 kDa form of NRF2. The signal from both antibodies decreased when NRF2 was
silenced by siRNA (Figure 1A). NRF2 protein was stabilized when NRF2 activators (RA839 or tBHQ)
(Figure 1B,C) or a proteasome inhibitor (MG132) (Figure 1D) were administered to the cells. Both high
and low molecular weight bands behaved in a similar fashion regardless of the antibody used. In the
upcoming experiments, we used the Abcam ab31163 antibody and quantitation was done based on the
~70 kDa band.

2.6. Determination of Lipid Peroxidation

Lipid peroxidation was assessed using the thiobarbituric acid-reactive substances (TBARS) assay
as described in [48]. The 4T1 cells were seeded in T150 flasks and were treated with LCA (0.3 µm) or
NRF2 activator (5 µm and 10 µm) together with LCA (0.3 µm) for 2 days. Cells were washed with PBS,
scraped, and collected by centrifugation. After adding 8.1% SDS, 20% acetic acid, 0.8% thiobarbituric
acid (TBA), and distilled water to the cell pellet, the sample was incubated at 96 ◦C for 1 h. Samples
were cooled down and centrifuged, and then the absorbance of the supernatant was measured at
540 nm. As a marker of lipid peroxidation, levels of 4-hydroxynonenal (4HNE)-modified proteins were
also determined using western blotting.
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was determined using two different antibodies (Abcam: ab31163; NOVUS: NBP1-32822). (B–D) 4T1 
cells were treated with NRF2 activators, RA839 or tBHQ, or MG-132, a proteasome inhibitor, in the 
concentrations indicated for 48 h, then NRF2 protein expression was determined by western blotting 
using two different antibodies (Abcam: ab31163; NOVUS: NBP1-32822). 

Figure 1. NRF2 antibody validation. (A) NRF2 expression was silenced in MCF7 cells by transiently
transfecting NRF2-specific siRNAs or a negative control siRNA for 48 h, then NRF2 protein expression
was determined using two different antibodies (Abcam: ab31163; NOVUS: NBP1-32822). (B–D) 4T1
cells were treated with NRF2 activators, RA839 or tBHQ, or MG-132, a proteasome inhibitor, in the
concentrations indicated for 48 h, then NRF2 protein expression was determined by western blotting
using two different antibodies (Abcam: ab31163; NOVUS: NBP1-32822).
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2.7. Transfections

Cells were seeded in 24-well plates (MCF7—50.000 cell/well). On the following day, cells were
transiently transfected with TGR5, CAR, VDR, or PXR siRNA or the negative control at a final
concentration of 30 nM using Lipofectamine RNAiMAX transfection reagent (Invitrogen). Cells were
incubated with transfection complexes in medium containing LCA (0.3 µm) for 48 h. CTL stands
for vehicle-treated (0.001% DMSO in medium), non-transfected cells, while NEG stands for negative
control siRNA-transfected, LCA-treated cells.

2.8. ABTS Decoloration Assay

Preparation of 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was performed as
described [49]. The absorbance of ABTS solution was adjusted to 1.2. LCA and ascorbic acid were
dissolved and diluted in DMSO. Five microliters of samples were added to the wells of 96-well half
area microplates, then 50 µL of ABTS solution was added to the wells. Samples were incubated at RT
for 30 min. Absorbance was measured with Tecan Spark multi-label reader (405 nm). Antioxidant
activity was expressed as a percentage of control (DMSO-treated) samples. The 9% DMSO in ATBS
buffer was used for dilution at all concentrations. An ascorbic acid concentration series was used as a
positive control.

2.9. Database Screening

The kmplot.com database [50] was used to study the link between gene expression levels (CAR,
TGR5, NRF2, KEAP1, iNOS, nNOS, and NOX4) and breast cancer survival in humans. Probe numbers
are indicated in the corresponding tables. The GEO database of the NCBI was assessed using the
following keywords: CAR + breast cancer, iNOS + breast cancer, nNOS + breast cancer, NRF2 + breast
cancer, and TGR5 + breast cancer.

2.10. Tissue Microarray, Immunohistochemistry, and Analysis

This study was authorized by the institutional ethical body. Tissue microarray (TMA) and
immunohistochemistry were performed as described in Reference [51]. The TMA was built from the
archived tissue blocks of 88 breast cancer patients. We took three replicate samples from each block
and we evaluated the staining using the H-score system [52]. For immunohistochemistry, the protocol
of Leica Bond Max™was used. The antibodies and the conditions used are summarized in Table 3.

Table 3. Antibodies and conditions used in tissue microarray (TMA) analyses.

Antibody Symbol Vendor Antigen Retrieval Dilution Detection

NRF2 Abcam (ab31163)

Ventana BenchMark
ULTRA/Roche Cell

Conditioning 1 (CC1)
40 min, 95 ◦C

1:100
OptiView DAB
IHC Detection

kit/Roche

iNOS ThermoFisher
Scientific (PA5-16855)

Ventana BenchMark
ULTRA/Roche Cell

Conditioning 1 (CC1)
20 min, 95 ◦C

1:100
UltraView

Universal DAB
Detection kit/Roche

4HNE Abcam (ab46545)

Ventana BenchMark
ULTRA/Roche Cell

Conditioning 1 (CC1)
20 min, 95 ◦C

1:1000
UltraView

Universal DAB
Detection kit/Roche

TGR5 GeneTEX (GTX100026,
Hsinchu City, Taiwan)

pressure cooker (Avair) in
0.1 m citrate buffer at pH 6 1:1000

EnVision Flex
(K8000, Dako,

Santa Clara, CA,
USA)
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2.11. Animal Study

Animal experiments were authorized by the local and national ethical board (reg. 1/2015/DEMÁB)
and were performed to conform to the relevant EU and US guidelines. We re-analyzed samples from a
previous experiment in line with the 3R principles.

We assessed the effects of the supplementation of LCA on tumor growth and behavior by grafting
4T1 cells to Balb/c female mice, as described in Reference [19]. LCA was administered by oral gavage, in
a dose of 15 nmol once a day. This dose corresponds to the serum reference concentration of LCA [19].
After two weeks, the mice were sacrificed by cervical dislocation, and tumor and metastases were
harvested for subsequent analysis.

The 4T1 cells were suspended (2 × 106/mL) in ice-cold PBS–matrigel (1:1, Sigma-Aldrich) at a 1:1
ratio. From this suspension, female BALB/c mice received 50 µL injections to their second inguinal fat
pads on both sides (105 cells/injection). Tumor growth and animal wellbeing were monitored daily.

Animals received daily oral LCA treatments. LCA stock was prepared in 96% ethanol at 100×
concentration (7.5 mm) for storage at−20 ◦C. LCA stock was diluted each day to a working concentration
of 75 µm in sterile PBS immediately before the treatment. Ethanol vehicle (1% in PBS) was prepared
and diluted similarly. Animals received a daily oral dose of 200 µL/30 g bodyweight from the LCA
solution or the vehicle. Researchers administered LCA and vehicle solutions blind. Treatment was
administered every day at the same time between 8 a.m. and 10 a.m.

Experimental animals were female BALB/c animals between 8–10 weeks of age (20–25 g). Mice
were randomized for all experiments. Animals were bred in the “specific pathogen free” zone of the
Animal Facility at the University of Debrecen, and kept in the “minimal disease” zone during the
experiment. Animal studies have been reported in compliance with the ARRIVE guidelines [53,54].

Mice were purchased from Jackson Laboratories (Bor Harbor, ME, USA) and were subsequently
bred at the animal facility of the University of Debrecen. No more than six mice were housed in each
cage (standard block shape 365 × 207 × 140 mm, surface 530 cm2; 1284 L Eurostandard Type II. L from
Techniplast) with Lignocel Select Fine (J. Rettenmaier und Söhne, Germany) as bedding. Mice had
paper tubes to enrich their environment. The dark/light cycle was 12 h, and temperature 22 ± 1 ◦C.
Cages were changed once a week, on the same day. Mice had ad libitum access to food and water
(sterilized tap water). The animal facility was overseen by a veterinarian. A total of 28 mice were used
in this study and group sizes are indicated in the figure captions.

2.12. Statistical Analysis

We used a two-tailed Student’s t-test for the comparison of two groups unless stated otherwise.
Fold data were log2 transformed to achieve normal distribution. For multiple comparisons, one-way
analysis of variance test (ANOVA) was used followed by Tukey’s or Dunnett’s honestly significant
(HSD) post hoc test. Data are presented as mean ± SEM unless stated otherwise. Statistical analysis
was done using GraphPad Prism VI software. Correlation studies were done using Pearson correlation
test and linear regression. Mitotic index was log2 transformed before the analysis. Values of p < 0.05
were considered statistically significant. Calculations were performed by R project [55] version 3.5.2.

3. Results

3.1. Lithocholic Acid Inhibited NRF2 Activation

First, we assessed whether LCA administration could influence the expression of key elements in
the antioxidant NRF2/KEAP1 pathway. The LCA concentrations used in the experiments corresponded
to the normal concentrations of LCA in human breast tissue (0.1–1 µm) [41]. LCA treatment of 4T1
mouse breast cancer cells decreased NRF2 protein levels (Figure 2A) while upregulating protein
expression of the NRF2 repressor, KEAP1 (Figure 2B). The pharmacological activation of NRF2 by
RA839 abolished the anti-proliferative effects of LCA (Figure 2C). We assessed the effectiveness of
RA839 by measuring the mRNA expression of a set of NRF2-regulated genes: NAD(P)H quinone
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dehydrogenase 1 (NQO1), glutamate–cysteine ligase catalytic subunit (GCLC), catalase (CAT), and
heme oxygenase 1 (HMOX1), (Figure 3). Taken together, these results show that decreased NRF2
expression played a key role in eliciting the cytostatic effects of LCA.
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Figure 2. LCA inhibited the NRF2/KEAP1 system. (A,B) The 4T1 cells were treated with LCA in the
concentrations indicated for 48 h, then (A) NRF2 and (B) KEAP1 proteins were analyzed by western
blotting. (n = 3, upper panel: representative figure, lower panel: densitometric analysis of western
blots from independent experiments). (C) The 4T1 cells were treated with 0.3 µm LCA and/or the
NRF2 activator, RA839, in the concentrations indicated for 48 h, then total protein concentration was
determined by sulforhodamine B assay (n = 5). Data are plotted as mean ± SEM. * indicates p < 0.05,
control vs. LCA-treated groups. (ns, not significant; KEAP1, Kelch-like ECH associating protein 1;
LCA, lithocholic acid; NRF2, nuclear factor).

3.2. LCA Treatment Induced Oxidative Stress by Reducing NRF2 Expression

The previous results suggested that LCA treatment may impair cellular antioxidant defenses.
In line with that, we found that the protein expression of glutathione peroxidase-3 (GPX3), a key
antioxidant protein, decreased upon LCA treatment (Figure 4A). Oxidative stress is an imbalance
between antioxidant and pro-oxidant genes. Thus, we assessed whether LCA can induce expression of
pro-oxidant genes. LCA induced the mRNA expression of NADPH oxidase 4 (NOX4), a major ROS
producing enzyme (Figure 4B), and inducible NO synthase (iNOS), a major source of nitric oxide in
cells (Figure 4C).



Cancers 2019, 11, 1255 9 of 31

Cancers 2019, 11, x 9 of 31 

 
Figure 3. Pharmacological activation of NRF2 induced the expression of NRF2 target genes. The 4T1 
cells were treated with the NRF2 activator, RA839, in the concentrations indicated for 48 h, then the 
expressions of NRF2 target genes, NQO1, GCLC, CAT, and HMOX1, were determined using RT-qPCR 
(n = 3). Abbreviations: NAD(P)H quinone dehydrogenase 1 (NQO1), glutamate–cysteine ligase 
catalytic subunit (GCLC), catalase (CAT), and heme oxygenase 1 (HMOX1). Data are plotted as mean 
± SD. ** and *** indicate statistically significant differences between control and RA839-treated groups 
at p < 0.01 or p < 0.001, respectively. 

3.2. LCA Treatment Induced Oxidative Stress by Reducing NRF2 Expression 

The previous results suggested that LCA treatment may impair cellular antioxidant defenses. In 
line with that, we found that the protein expression of glutathione peroxidase-3 (GPX3), a key 
antioxidant protein, decreased upon LCA treatment (Figure 4A). Oxidative stress is an imbalance 
between antioxidant and pro-oxidant genes. Thus, we assessed whether LCA can induce expression 
of pro-oxidant genes. LCA induced the mRNA expression of NADPH oxidase 4 (NOX4), a major ROS 
producing enzyme (Figure 4B), and inducible NO synthase (iNOS), a major source of nitric oxide in 
cells (Figure 4C). 

An imbalance between pro-oxidant and antioxidant systems leads to oxidative or nitrosative 
stress. We detected increased lipid and protein oxidation after LCA treatment, as shown by increases 
in thiobarbituric acid reactive species (TBARS) (Figure 4D) and 4-hydroxynonenal adducts (4HNE) 
(Figure 4E) [56]. Moreover, increased expression of iNOS suggested increased production of ONOO− 
[57,58] and the subsequent enhancement of nitrosative stress. Nitrotyrosine levels were increased in 
LCA-treated cells (Figure 4F). Importantly, the activation of NRF2 by RA839 or tBHQ prevented both 
increases in TBARS (Figure 5A) and 4HNE (Figure 5B,C) and decreases in iNOS expression (Figure 
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Figure 3. Pharmacological activation of NRF2 induced the expression of NRF2 target genes. The 4T1
cells were treated with the NRF2 activator, RA839, in the concentrations indicated for 48 h, then
the expressions of NRF2 target genes, NQO1, GCLC, CAT, and HMOX1, were determined using
RT-qPCR (n = 3). Abbreviations: NAD(P)H quinone dehydrogenase 1 (NQO1), glutamate–cysteine
ligase catalytic subunit (GCLC), catalase (CAT), and heme oxygenase 1 (HMOX1). Data are plotted as
mean ± SD. ** and *** indicate statistically significant differences between control and RA839-treated
groups at p < 0.01 or p < 0.001, respectively.Cancers 2019, 11, x 10 of 31 
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Figure 4. LCA-induced oxidative stress in 4T1 breast cancer cells. (A–F) The 4T1 cells were treated
with LCA for 48 h, then the indicated measurements were performed. (A) GPX3 antioxidant protein
expression was analyzed by western blotting (n = 4). (B) NOX4 mRNA expression was determined in
RT-qPCR (n = 4). (C) The level of iNOS protein was detected by western blotting (n = 3). (D) Lipid
peroxidation was measured by determining TBARS (n = 3). (E) The 4HNE levels were determined
by western blotting (representative figure, n = 3). (F) Nitrotyrosine was detected in western blotting
(n = 3). In the cases of 4HNE and nitrotyrosine, similar results were obtained in three independent
experiments. Data are plotted as mean ± SEM. * and ** indicate p < 0.05 or p < 0.01, control vs.
LCA-treated groups. (GPX3, glutathione peroxidase 3; LCA, lithocholic acid; NOX4, NADPH oxidase
4; TBARS, thiobarbituric acid reactive substances; 4HNE, 4-hydroxynonenal).
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An imbalance between pro-oxidant and antioxidant systems leads to oxidative or nitrosative
stress. We detected increased lipid and protein oxidation after LCA treatment, as shown by increases in
thiobarbituric acid reactive species (TBARS) (Figure 4D) and 4-hydroxynonenal adducts (4HNE)
(Figure 4E) [56]. Moreover, increased expression of iNOS suggested increased production of
ONOO− [57,58] and the subsequent enhancement of nitrosative stress. Nitrotyrosine levels were
increased in LCA-treated cells (Figure 4F). Importantly, the activation of NRF2 by RA839 or tBHQ
prevented both increases in TBARS (Figure 5A) and 4HNE (Figure 5B,C) and decreases in iNOS
expression (Figure 5B,C) when applied in combination with LCA. Finally, the thiol antioxidants
glutathione (GSH) and N-acetyl-cysteine (NAC) blunted the LCA-elicited anti-proliferative effects
(Figure 5D) but did not impact other LCA-mediated cancer hallmarks, such as cancer cell metabolism or
epithelial-to-mesenchymal transition [19]. LCA had no direct antioxidant effects in the concentrations
we used in the current study (0.1–1 µm), or at higher concentrations (up to 300 µm), where ascorbic
acid readily acted as an antioxidant (Figure 6).Cancers 2019, 11, x 11 of 31 
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Figure 5. NRF2 activation modulated LCA-induced oxidative stress responses in 4T1 breast cancer
cells. The 4T1 cells were treated with 0.3 µm LCA and the NRF2 activator RA839 or tBHQ in the
concentrations indicated for 48 h. Lipid peroxidation was determined by measuring (A) TBARS (n = 4)
and (B,C) 4-HNE levels using western blotting (n = 3). (D) The 4T1 cells were treated with LCA
(0.3 µm) and/or GSH and NAC (both at 5 mm) antioxidants for 48 h, then total protein concentration
was determined using the sulforhodamine B assay (n = 3). For statistical analysis ANOVA test was
used followed by the Dunnett post-hoc test, where all groups were compared to the LCA-treated
cohort. Data are plotted as mean ± SEM. ** p < 0.01, LCA vs. LCA/NRF2-activator-treated groups
(GSH, reduced glutathione; LCA, lithocholic acid; NAC, N-acetylcysteine; TBARS, thiobarbituric acid
reactive substances; 4HNE, 4-hydroxynonenal).
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Figure 6. LCA did not act as an antioxidant. The ABTS radical scavenging assay was done in 96-well
plates using triplicate samples. LCA was tested in a concentration range of 0.03–300 µm. Ascorbic acid
was used as a positive control. Antioxidant activity was expressed as the percentage of control samples.
Means of three independent experiments± SD are presented. ** and *** indicate a statistically significant
difference between control and ascorbic acid-treated groups at p < 0.01 or p < 0.001, respectively.

To assess whether the phenomena described above were restricted to 4T1 cells, the effects of
LCA were assayed in MCF7 and SKBR3 cancer cell lines. LCA treatment decreased NRF2 expression
(Figure 7A,D) and increased iNOS expression (Figure 7B,E) and 4HNE signals (Figure 7C,F) in both
cell lines, similarly to our observations in 4T1 cells. LCA did not modulate the expression of NRF2,
KEAP1, or 4HNE in primary, non-transformed human fibroblasts (Figure 7G,H). Primary bile acids, in
concentrations corresponding to their serum reference concentrations, did not significantly reduce
cancer cell proliferation (Figure 8).

3.3. LCA-Elicited Oxidative Stress Was Mediated by TGR5 and Partially by CAR Receptor

Next, we aimed to identify the receptors responsible for the effects of LCA. Several nuclear
receptors and the Takeda G-protein coupled receptor (TGR5) can bind and respond to LCA [19]. First,
we used pharmacological agents designed to inhibit LCA receptors, including CINPA1 to inhibit the
constitutive androstane (CAR) receptor, DY268 to inhibit the farnesyl-X receptor (FXR), GSK2033 to
inhibit the liver X receptor (LXR), and NF449, a Gsα-selective antagonist that can inhibit the downstream
signaling of the TGR5 receptor. LCA-mediated reduction in NRF2 protein expression was blocked by
NF449 and CINPA1, while the other inhibitors (GSK2033 and DY268) were ineffective (Figure 9A).
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Figure 7. LCA induced oxidative stress in MCF7 and SKBR-3 human breast cancer cell lines, but not
in primary fibroblasts. (A–C) The MCF7 cells were treated with LCA in the concentrations indicated
for 48 h, then (A) NRF2, (B) iNOS protein expression, and (C) 4HNE were determined by western
blotting (n = 3). (D–F) The SKBR3 cells were treated with LCA for 48 h, then (D) NRF2, (E) iNOS, and
(b) 4HNE expressions were determined by western blotting (n = 3). Upper panels: representative
figures. Lower panels: densitometric analysis of western blots. In the case of 4HNE, similar data were
obtained in three independent experiments. (G,H) Fibroblast cells were treated with 0.3 µm LCA for
48 h then (G) NRF2, KEAP1, and (H) 4HNE expressions were determined by western blotting. Data
are plotted as mean ± SEM. * p < 0.05, control vs. LCA-treated. (LCA, lithocholic acid; NRF2, nuclear
factor, erythroid 2-like 2; 4HNE, 4-hydroxynonenal; iNOS, inducible nitric oxide synthase).
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Figure 8. Primary bile acids did not affect the proliferation of 4T1 breast cancer cells. The 4T1 cells were
treated with CA and CDCA in the concentrations indicated for 48 h, then total protein concentrations
were determined by sulforhodamine B assay (n = 4). Data are plotted as mean ± SEM. (CA, cholic acid;
CDCA, chenodeoxycholic acid).

The pharmacological experiments above were complemented by siRNA depletion experiments.
Other possible LCA receptors, including the vitamin D receptor (VDR) and the pregnane X receptor
(PXR), were also assessed. To provide a comprehensive view, we silenced TGR5, CAR, VDR, and PXR
in MCF7 cells. Silencing of TGR5 and CAR efficiently blocked the LCA-induced decreases in NRF2
protein (Figure 9B,C), similarly to the pharmacological agents. Silencing of VDR and PXR receptor did
not affect LCA-mediated reduction of NRF2 protein levels (Figure 9B). Next, we assessed iNOS protein
level after silencing of TGR5 and CAR receptors. Silencing of either TGR5 or CAR receptors blunted
the LCA-induced decrease in NRF2 and increased iNOS expression (Figure 9C). These data indicate
that LCA exerts its effects through the TGR5 receptor and CAR receptor.

3.4. LCA Supplementation Suppressed Antioxidant Defense in an Animal Model of Breast Cancer

As a next step, we assessed whether the supplementation of LCA could hamper the redox status
of tumors in an in vivo setting. We re-analyzed samples from a previous study we published [19].
In that study, we grafted Balb/c female mice with 4T1 cells and supplemented mice orally with 15 nmol
LCA daily for two weeks. At the end of the study, mice were sacrificed and tumors were harvested.
In the previous study [19], we showed that LCA supplementation in vivo inhibits tumor growth,
metastasis formation, epithelial-to-mesenchymal transition, and bioenergetic changes [19]. These
findings are supported by patient observation and wet chemistry experiments that have been carried
out by others [59–61].
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Figure 9. LCA-induced oxidative stress responses were mediated by TGR5 and by CAR receptors.
(A) The 4T1 cells were treated with 0.3 µm LCA and NF449, CINPA1, DY268, or GSK2033 at a final
concentration of 5 µm for 48 h, then NRF2 protein expression was detected using western blotting
(representative figure, n = 2). (B,C) TGR5, CAR, VDR, and PXR bile acid receptors were silenced in
MCF7 cells by transiently transfecting the cells with the corresponding siRNA or a negative control
siRNA. After 48 h, protein expressions of (B,C) NRF2 and (C) iNOS were determined by western
blotting (n = 3). Data are plotted as mean ± SEM. * p < 0.05, control vs. LCA/siRNA treated. (CAR,
constitutive androstane receptor; FXR, farnesoid X-activated receptor; LCA, lithocholic acid; LXR, liver
X nuclear receptor; NRF2, nuclear factor, erythroid 2-like 2; TGR5/GPBAR1, G protein-coupled bile acid
receptor 1/Takeda G-protein coupled receptor; VDR, vitamin D receptor).

In the tumors of control and LCA-treated mice, we assessed the expression of anti- and pro-oxidant
genes. LCA supplementation reduced the expression of NRF2 and a set of antioxidant genes: catalase
(CAT), glutamate–cysteine ligase catalytic subunit (GCLC), glutathione peroxidase 2 (GPX2), glutathione
peroxidase 3 (GPX3), heme oxygenase 1 (HMOX1), inducible NO synthase (iNOS), NADPH oxidase
4 (NOX4), NAD(P)H quinone dehydrogenase 1 (NQO1), nuclear factor, erythroid 2-like 2 (NRF2),
superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and superoxide dismutase 3 (SOD3)
(Figure 10A). Furthermore, we observed a non-significant increase in iNOS and NOX4 expression in
the LCA-treated mice (Figure 10B). These results suggest that LCA can exert its activity on the redox
balance of cancer cells in vivo, with beneficial effects for the outcome of the disease.
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Figure 10. LCA modulated the expression level of antioxidant and pro-oxidant genes in vivo.
(A,B) Female Balb/c mice were grafted with 4T1 cells and treated with LCA (15 nmol q.d. p.o.)
or vehicle (VEH) (n = 5/5) for 18 days. The mRNA expression levels of the indicated genes were
determined in tumors using RT-qPCR. Error is depicted as SEM. * indicates statistically significant
differences between vehicle and treated groups at p < 0.05. (CAT, catalase; GCLC, glutamate–cysteine
ligase catalytic subunit; GPX2, glutathione peroxidase 2; GPX3, glutathione peroxidase 3; HMOX1,
heme oxygenase 1; iNOS, inducible NO synthase; NOX4, NADPH oxidase 4; NQO1, NAD(P)H quinone
dehydrogenase 1; NRF2, nuclear factor, erythroid 2-like 2; SOD1, superoxide dismutase 1; SOD2,
superoxide dismutase 2; SOD3, superoxide dismutase 3).

3.5. Elements of the LCA-Elicited Anticancer Pathway Correlated with Stage, Grade, and Receptor Status of
the Disease

We assessed the expression of the LCA-elicited oxidative/nitrosative stress markers (TGR5,
iNOS, and 4HNE) using a tissue microarray (TMA) made up of tumor samples from 88 breast
cancer patients. In parallel, we assessed the available public expression databases, GEO Profiles
(https://www.ncbi.nlm.nih.gov/geoprofiles/) and kmplot.com [50]. The typical staining pattern of the
antibodies is shown in Figure 11.

https://www.ncbi.nlm.nih.gov/geoprofiles/
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Figure 11. Staining pattern of the antibodies used in the study. Breast cancer specimens in a TMA were
stained with the antibodies indicated, and the immune reactions were developed using DAB. The black
line indicates 50 µm.

First, we stratified patients for the TMA based on disease stage from stage I to stage IV, based on
the primary tumor size, the lymph node involvement, and distant metastasis (as in Reference [27]).
In our previous study [19], we showed that LCA production by the gut microbiome decreased in breast
cancer and that the capability of the microbiome to synthesize LCA correlated with the disease stage.
Levels of iNOS and 4HNE decreased in stage II and stage III patients compared to stage I patients and
further decreased in stage IV patients (Figure 12A).

Next, we stratified patients based on the pathological grade (Nottingham grade) of the disease.
4HNE expression significantly decreased in grade II and grade III patients compared to grade I patients
(Figure 12B). In line with that, high expression of KEAP1 was associated with better survival for grade
II patients, and high CAR expression was associated with better survival for grade III patients (Table 4).

We also stratified patients as triple negative (TNBC; ER− PR− HER2−) or ER+ cases. The
expression of TGR5, iNOS, and 4HNE decreased in TNBC cases as compared to ER+ cases (Figure 12C).
In line with that, higher expression of CAR, KEAP1, iNOS, nNOS, and NOX4 or lower expression of
NRF2 was associated with better survival when we assessed all patients or ER+ positive cases, but not
TNBC cases (Figure 13, Tables 4 and 5).

Finally, we grouped patients as a function of the mitosis score. Staining for 4HNE, the most direct
indicator of tissue oxidative stress, decreased as mitosis score increased (Figure 12D). Furthermore,
4HNE staining showed a strong negative correlation with the mitosis index (Figure 12E).

Taken together, LCA-elicited oxidative stress correlated well with the mitotic rate in breast cancer.
Furthermore, the LCA-elicited cytostatic system was hampered at higher breast cancer stages, higher
grade carcinomas, or in TNBC cases that had a poor prognosis. In line with that, we identified cases in
the TMA study where the staining for iNOS was well-maintained in the surrounding healthy breast
tissue, but was lost in the cancerous tissues, or when NRF2 expression was upregulated in the cancerous
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tissue as compared to the neighboring healthy tissue. Further supporting our observations, we found
a dataset in the GEO database [62] in which the expression of TGR5 receptor was shown to be lower in
ductal in situ (DCIS) cases compared to control, healthy breast tissue.
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expression levels of oxidative/nitrosative stress markers were analyzed in tumor samples of 88 breast
cancer patients using tissue microarray (TMA), as indicated on the graphs. (A) Patients were stratified
based on disease stage (Stage I–IV), (B) pathological grade of the disease (Grade 1–3), (C) ER+ vs.
TNBC cases, and (D) mitosis score (mitosis score 1–3), and the expression level of indicated markers
were determined using IHC analysis. (E) Linear regression analyses for the correlation between 4HNE
expression levels and the mitotic index were determined using R project. TGR5: Pearson r = −0.13;
p = 0.26; iNOS: Pearson r = −0.16; p = 0.16; 4HNE: Pearson r = −0.34; p = 0.0025. Line represents linear
regression of data (TGR5: y = 25 − 3x; iNOS: y = 38 − 4.7x; 4HNE: y = 78 − 7x). *, **, and *** indicate
p < 0.05, p < 0.01 or p < 0.001, differences between patient groups. (TGR5/GPBAR1, G protein-coupled
bile acid receptor 1/Takeda G-protein coupled receptor; 4HNE, 4-hydroxynonenal).
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expression on survival in breast cancer patients was evaluated by assessing the kmplot.com database. All cancers, ER+, and triple negative cases were analyzed.
The ER+ population also included those patients where ER status was derived from gene expression data. Triple negative cases included patients with ER− status
(including those patients where ER status was derived from gene expression data), PR− status, and HER2− status. The red line indicates high expression while the
black line indicates low expression. Probe IDs, numbers at risk, and hazard ratios are collected in Table 5. nNOS(a) represents 207309_at probe id, while nNOS(b)
represents 207310_at probe set. * indicates that grade 1 patients are depicted. (CAR, constitutive androstane receptor; ER, estrogen receptor; KEAP1, Kelch-like ECH
associating protein 1; NOX4, NADPH oxidase 4; NRF2, nuclear factor, erythroid 2-like 2; TGR5/GPBAR1, G protein-coupled bile acid receptor 1/Takeda G-protein
coupled receptor; iNOS, inducible nitric oxide synthase; nNOS, neuronal nitric oxide synthase).
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Table 4. Connection between iNOS, nNOS, TGR5, CAR, NRF2, and breast cancer patient survival. Bold
numbers represent statistically significant results.

CAR (207007_a_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 0.7 3.00 × 10−10

Grade 1, N = 345 1.15 0.61
Grade 2, N = 901 0.88 0.3
Grade 3, N = 903 0.72 0.0036
ER(+), N = 3082 0.81 0.0013
ER(−), N = 869 0.62 9.20 × 10−6

PR(+), N = 589 0.72 0.063
PR(−), N = 549 0.9 0.49

Lymph(+), N = 1133 0.97 0.73
Lymph(−), N = 2020 0.99 0.93
HER2(+), N = 252 0.69 0.1
HER2(−), N = 800 1.13 0.37

ER(+), PR(+), N = 577 0.79 0.19
ER(+), PR(+), Lymph node (+),N = 344 0.99 0.97
ER(+), PR(+), Lymph node (−),N = 228 0.5 0.037

ER(−), PR(−), N = 298 0.74 0.14
ER(−), PR(−), Lymph node(+),N = 127 0.76 0.3
ER(−), PR(−), Lymph node(−),N = 167 0.97 0.93

ER(−), PR(−), HER2(−),N = 198 0.93 0.77
Basal subtype, N = 618 0.68 0.0025
Luminal A, N = 1933 0.76 0.0015
Luminal B, N = 1149 0.77 0.0069

ER(+), HER2(+), N = 156 1.21 0.53
ER(−), HER2(+), N = 96 0.61 0.12

TGR5 (1552501_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 0.91 0.25
Grade 1, N = 345 0.41 0.12
Grade 2, N = 901 1.21 0.46
Grade 3, N = 903 0.77 0.1
ER(+), N = 3082 1 0.98
ER(−), N = 869 0.74 0.025
PR(+), N = 589 1.21 0.33
PR(−), N = 549 0.96 0.81

Lymph(+), N = 1133 0.98 0.9
Lymph(−), N = 2020 0.91 0.61
HER2(+), N = 252 1.12 0.68
HER2(−), N = 800 0.91 0.51

ER(+), PR(+), N = 577 1.18 0.4
ER(+), PR(+), Lymph node(+),N = 344 1.39 0.19
ER(+), PR(+), Lymph node(−),N = 228 0.76 0.4

ER(−), PR(−), N = 298 0.96 0.86
ER(−), PR(−), Lymph node(+),N = 127 0.96 0.89
ER(−), PR(−), Lymph node(−),N = 167 1.25 0.61

ER(−), PR(−), HER2(−),N = 198 0.9 0.73
Basal subtype, N = 618 0.79 0.15
Luminal A, N = 1933 1.1 0.44
Luminal B, N = 1149 0.83 0.24

ER(+), HER2(+), N = 156 1.07 0.88
ER(−), HER2(+), N = 96 0.94 0.86
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Table 4. Cont.

NRF2 (201145_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 1.23 2.00 × 10−4

Grade 1, N = 345 1.1 0.72
Grade 2, N = 901 0.87 0.25
Grade 3, N = 903 1.06 0.63
ER(+), N = 3082 1.27 2.40 × 10−4

ER(−), N = 869 1.04 0.71
PR(+), N = 589 1.23 0.24
PR(−), N = 549 1.49 0.0075

Lymph(+), N = 1133 1.14 0.21
Lymph(−), N = 2020 1.11 0.21
HER2(+), N = 252 1.32 0.21
HER2(−), N = 800 1.34 0.031

ER(+), PR(+), N = 577 1.27 0.19
ER(+), PR(+), Lymph node(+),N = 344 1.08 0.71
ER(+), PR(+), Lymph node(−),N = 228 1.96 0.051

ER(−), PR(−), N = 298 1.01 0.95
ER(−), PR(−), Lymph node(+),N = 127 1.23 0.45
ER(−), PR(−), Lymph node(−),N = 167 0.93 0.8

ER(−), PR(−), HER2(−),N = 198 0.9 0.66
Basal subtype, N = 618 1.01 0.95
Luminal A, N = 1933 1.33 0.0011
Luminal B, N = 1149 1.26 0.017

ER(+), HER2(+), N = 156 1.69 0.097
ER(−), HER2(+), N = 96 1.26 0.47

KEAP1 (202417_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 0.84 0.0015
Grade 1, N = 345 0.98 0.94
Grade 2, N = 901 0.73 0.012
Grade 3, N = 903 0.93 0.54
ER(+), N = 3082 0.89 0.06
ER(−), N = 869 0.92 0.41
PR(+), N = 589 1.09 0.64
PR(−), N = 549 0.91 0.55

Lymph(+), N = 1133 0.76 0.006
Lymph(−), N = 2020 0.98 0.83
HER2(+), N = 252 1.14 0.57
HER2(−), N = 800 0.92 0.55

ER(+), PR(+), N = 577 1.06 0.76
ER(+), PR(+), Lymph node(+),N = 344 0.98 0.91
ER(+), PR(+), Lymph node(−),N = 228 1.38 0.33

ER(−), PR(−), N = 298 0.95 0.82
ER(−), PR(−), Lymph node(+),N = 127 1 1
ER(−), PR(−), Lymph node(−),N = 167 1.12 0.72

ER(−), PR(−), HER2(−),N = 198 1.07 0.8
Basal subtype, N = 618 1 0.98
Luminal A, N = 1933 0.9 0.24
Luminal B, N = 1149 0.91 0.36

ER(+), HER2(+), N = 156 0.89 0.7
ER(−), HER2(+), N = 96 1.18 0.61
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Table 4. Cont.

iNOS (210037_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 0.72 5.40 × 10−9

Grade 1, N = 345 1.21 0.48
Grade 2, N = 901 0.95 0.68
Grade 3, N = 903 0.85 0.15
ER(+), N = 3082 0.8 0.00066
ER(−), N = 869 0.63 1.40 × 10−5

PR(+), N = 589 1.34 0.099
PR(−), N = 549 1.01 0.95

Lymph(+), N = 1133 1.12 0.25
Lymph(−), N = 2020 1 0.96
HER2(+), N = 252 0.79 0.3
HER2(−), N = 800 1.04 0.75

ER(+), PR(+), N = 577 1.32 0.13
ER(+), PR(+), Lymph node(+),N = 344 1.52 0.058
ER(+), PR(+), Lymph node(−),N = 228 1.04 0.9

ER(−), PR(−), N = 298 0.90 0.59
ER(−), PR(−), Lymph node(+),N = 127 1.03 0.91
ER(−), PR(−), Lymph node(−),N = 167 0.91 0.77

ER(−), PR(−), HER2(−),N = 198 0.8 0.37
Basal subtype, N = 618 0.63 0.00042
Luminal A, N = 1933 0.75 0.00082
Luminal B, N = 1149 0.77 0.0077

ER(+), HER2(+), N = 156 1.04 0.9
ER(−), HER2(+), N = 96 0.92 0.79

nNOS (207309_at) HR (Hazard Ratio) p-value (Log Rank Test)

All Breast Cancers, N = 3951 0.71 6.70 × 10−10

Grade 1, N = 345 0.85 0.55
Grade 2, N = 901 0.99 0.96
Grade 3, N = 903 0.91 0.41
ER(+), N = 3082 0.77 5.80 × 10−5

ER(−), N = 869 0.68 2.80 × 10−4

PR(+), N = 589 0.79 0.19
PR(−), N = 549 1.07 0.67

Lymph(+), N = 1133 1.08 0.47
Lymph(−), N = 2020 0.91 0.25
HER2(+), N = 252 0.7 0.11
HER2(−), N = 800 0.92 0.51

ER(+), PR(+), N = 577 0.86 0.41
ER(+), PR(+), Lymph node(+),N = 344 1.23 0.35
ER(+), PR(+), Lymph node(−),N = 228 0.34 0.0055

ER(−), PR(−), N = 298 0.96 0.83
ER(−), PR(−), Lymph node(+),N = 127 1.07 0.8
ER(−), PR(−), Lymph node(−),N = 167 1.55 0.16

ER(−), PR(−), HER2(−),N = 198 1.17 0.53
Basal subtype, N = 618 0.73 0.013
Luminal A, N = 1933 0.72 0.00019
Luminal B, N = 1149 0.69 0.00014

ER(+), HER2(+), N = 156 1.4 0.28
ER(−), HER2(+), N = 96 0.48 0.024
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Table 4. Cont.

nNOS (207310_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 0.8 3.80 × 10−5

Grade 1, N = 345 1.27 0.37
Grade 2, N = 901 1.20 0.14
Grade 3, N = 903 0.89 0.27
ER(+), N = 3082 0.84 7.70 × 10−3

ER(−), N = 869 0.72 1.90 × 10−3

PR(+), N = 589 1.07 0.72
PR(−), N = 549 1.04 0.8

Lymph(+), N = 1133 1 0.97
Lymph(−), N = 2020 1.09 0.34
HER2(+), N = 252 0.78 0.26
HER2(−), N = 800 1 0.97

ER(+), PR(+), N = 577 1.07 0.73
ER(+), PR(+), Lymph node(+),N = 344 1.51 0.06
ER(+), PR(+), Lymph node(−),N = 228 0.59 0.13

ER(−), PR(−), N = 298 1.18 0.41
ER(−), PR(−), Lymph node(+),N = 127 1.02 0.93
ER(−), PR(−), Lymph node(−),N = 167 1.42 0.25

ER(−), PR(−), HER2(−),N = 198 1.44 0.14
Basal subtype, N = 618 0.76 0.037
Luminal A, N = 1933 0.75 0.0011
Luminal B, N = 1149 0.85 0.09

ER(+), HER2(+), N = 156 1.15 0.65
ER(−), HER2(+), N = 96 0.45 0.013

NOX4 (236843_at) HR (Hazard Ratio) p-Value (Log Rank Test)

All Breast Cancers, N = 3951 0.75 0.00027
Grade 1, N = 345 0.76 0.6
Grade 2, N = 901 0.68 0.14
Grade 3, N = 903 0.69 0.79
ER(+), N = 3082 0.7 0.00027
ER(−), N = 869 0.8 0.1
PR(+), N = 589 0.71 0.082
PR(−), N = 549 1.04 0.85

Lymph(+), N = 1133 0.78 0.057
Lymph(−), N = 2020 1.08 0.71
HER2(+), N = 252 1.31 0.33
HER2(−), N = 800 0.81 0.16

ER(+), PR(+), N = 577 0.69 0.06
ER(+), PR(+), Lymph node(+),N = 344 0.73 0.21
ER(+), PR(+), Lymph node(−),N = 228 0.97 0.93

ER(−), PR(−), N = 298 1.23 0.41
ER(−), PR(−), Lymph node(+),N = 127 1.35 0.34
ER(−), PR(−), Lymph node(−),N = 167 1.07 0.87

ER(−), PR(−), HER2(−),N = 198 1.25 0.49
Basal subtype, N = 618 0.72 0.046
Luminal A, N = 1933 0.71 0.0061
Luminal B, N = 1149 0.77 0.089

ER(+), HER2(+), N = 156 1.34 0.51
ER(−), HER2(+), N = 96 1.5 0.25
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Table 5. Numerical values for kmplot analysis in Figure 7.

Probe
Time (Months)

HR
0 50 100 150 200 250

A
ll

ca
nc

er
s

N
um

be
r

at
ri

sk
CAR low 1998 1154 486 124 10 2 0.7

(0.63–0.79)207007_at high 1953 1365 589 117 17 1

TGR5 low 58 41 13 1 0.41
(0.13–1.3)1552501_a_at high 50 44 15 4

NRF2 low 1977 1368 624 145 11 0 1.23
(1.1–1.37)201146_at high 1974 1151 451 96 16 3

KEAP1 low 1978 1181 513 131 17 2 0.84
(0.75–0.93)202417_at high 1973 1338 562 110 10 1

iNOS low 1993 1154 446 107 14 2 0.72
(0.65–0.81)210037_s_at high 1958 1365 629 134 13 1

nNOS low 1981 1128 454 114 14 3 0.71
(0.64–0.79)207309_at high 1970 1391 621 127 13 0

nNOS low 2016 1185 470 112 15 2 0.8
(0.71–0.89)207310_s_at high 1935 1334 605 129 12 1

NOX4 low 885 464 145 32 6 1 0.75
(0.64–0.88)236843_at high 879 513 200 36 4 1

ER
+

N
um

be
r

at
ri

sk

CAR low 1561 1024 443 114 12 3 0.81
(0.71–0.92)207007_at high 1521 1092 476 87 10 0

TGR5 low 628 382 149 25 5 1 1
(0.83–1.22)1552501_a_at high 620 399 139 35 5 1

NRF2 low 1541 1132 525 113 6 0 1.27
(1.12–1.44)201146_at high 1541 984 394 88 16 3

KEAP1 low 1544 1011 448 106 14 2 0.89
(0.78–1.01)202417_at high 1538 1105 471 95 8 1

iNOS low 1543 995 393 97 14 2 0.8
(0.71–0.91)210037_s_at high 1539 1121 526 104 8 1

nNOS low 1544 986 407 105 17 3 0.77
(0.68–0.88)207309_at high 1538 1130 512 96 5 0

nNOS low 1561 1013 409 101 12 2 0.84
(0.74–0.96)207310_s_at high 1521 1103 510 100 10 1

NOX4 low 639 387 129 28 6 1 0.7
(0.57–0.85)236843_at high 609 394 159 32 4 1

Tr
ip

le
ne

ga
ti

ve

N
um

be
r

at
ri

sk

CAR low 99 42 13 1 0 0.93
(0.57–1.51)207007_at high 99 41 6 1 0

TGR5 low 64 30 8 1 0 0.9
(0.48–1.68)1552501_a_at high 62 29 9 1 0

NRF2 low 99 41 5 1 0 0.9
(0.55–1.45)201146_at high 99 42 14 1 0

KEAP1 low 99 44 12 2 0 1.07
(0.66–1.73)202417_at high 99 39 7 0 0

iNOS low 99 44 15 1 0 0.8
(0.49–1.3)210037_s_at high 99 39 4 1 0

nNOS low 100 44 16 1 0 1.77
(0.72–1.9)207309_at high 98 39 3 1 0

nNOS low 102 51 14 2 0 1.44
(0.89–2.35)207310_s_at high 96 32 5 0 0

NOX4 low 64 30 8 2 0 1.25
(0.66–2.35)236843_at high 62 29 9 0 0
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4. Discussion

In breast cancer, the diversity of the gut microbiome is reduced [4]. The gut microbiome produces
a large set of metabolites, and a subset of these metabolites (e.g., LCA or cadaverine) have anticancer
effects on breast cancer cells [18,19,21,22,25,26]. In addition to the reduction in microbial diversity,
the production of these antiproliferative metabolites is decreased in breast cancer patients [18,19].
Cadaverine and LCA exert their effects by modulating a plethora of cancer hallmarks. LCA reverts
EMT, modulates cancer cell metabolism, induces anticancer immunity, and inhibits proliferation [19].
In supraphysiological concentrations, LCA induces cell death [21,22]. Interestingly, cadaverine, another
cytostatic bacterial metabolite, does not induce oxidative stress [18].

We widened the scope of LCA-mediated effects by showing that, when LCA was applied in
concentrations corresponding to tissue LCA concentrations [41], oxidative stress was increased through
the downregulation of NRF2 and increased expression of pro-oxidative enzymes. In other words,
LCA-induced increases in oxidative and nitrosative stress stem from an imbalance between pro-oxidant
and antioxidant systems. Enhanced production of reactive species damages proteins and lipids.
The production of reactive species has a primary role in slowing down breast cancer cell proliferation;
however, in our study, antioxidants did not modulate LCA-induced epithelial-to-mesenchymal
transition or cellular metabolism, which have been reported to be mediated by changes in oxidative
stress in breast cancer [63]. A possible explanation for this discrepancy is the relatively small increase
in reactive species in our models compared to the previous study [63]. LCA most likely mediates
other pathways through NRF2, including the hypoxic response through hypoxia-inducing factors [63],
mTORC1 [64], and proteostasis [65]. An interesting study showed that increased free radical production
reprograms breast cancer cells from cancer stem cells to tumor stroma cells [66], suggesting that LCA
could also induce a phenotypic switch to stroma cells.

The role of oxidative stress in breast cancer is controversial [67], as increases in reactive species
can be pro-carcinogenic [68–72] as well as anti-carcinogenic [66,73,74] in breast cancer. In our study,
higher expression of pro-oxidant genes and oxidative stress markers was associated with clinically
benign forms of breast cancer (non-TNBC, low stage or low grade forms); however, pro-oxidant genes
and oxidative stress markers gradually decreased in late stages, higher grades, or triple negative cases.
In other words, the loss of the LCA–TGR5–oxidative stress pathway correlated with worse clinical
outcomes. In accordance with that, higher CAR expression correlated with better survival. However,
this benefit was lost in triple negative cases. Our results support the beneficial, cytostatic effects of
oxidative stress. Our study correlates well with a metadata analysis study [33] which demonstrated that
while increased oxidative stress, due to DNA damage and the consequent accumulation of mutations,
represents a risk factor for breast cancer initiation, increased lipid peroxidation is associated with
longer survival.

The NRF2–KEAP1 system and reactive species were shown to modulate the clinical behavior of
breast cancer. NRF2 overexpression is an independent adverse prognostic factor for cancer recurrence
and disease-free survival for breast cancer patients [75]. Moreover, there are SNPs in NRF2 and
KEAP1 that modulate protein expression, and the polymorphisms associated with higher NRF2 or
lower KEAP1 expression are associated with worse clinical outcomes [76–78]. In addition, oxidative
stress and low NRF2 expression have been shown to potentiate the effects of doclitaxel [73] and
other chemotherapeutic agents [79,80]. Apparently, the LCA-mediated pro-oxidative phenotype has
a central role in mediating the clinical behavior of breast cancer. These findings correlate well with
our observations from immunohistochemical and survival analysis. As an extension to the published
studies, we demonstrated that TGR5, the receptor of LCA, is also crucial in mediating the effects
of NRF2.

Our dataset revealed that estrogen and HER2 signaling affect the activity of the LCA-elicited
pathways. The expression of the pro-oxidative iNOS and the oxidative stress marker, 4HNE, was lower
in TNBC cases than in ER+ HER+ or HER+ cases. Similar trends were true for trace amino acid receptors
(TAAR) 1, 2, 3, 5, 8, and 9, which are receptors of another bacterial cytostatic metabolite, cadaverine [18].
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Although the molecular mechanism for the enhanced effectiveness of LCA in ER+/HER+ cancers has
not been elucidated, other studies have substantiated the importance of the HER2 signaling pathway,
such as in the finding that HER2 signaling induces iNOS and reduces cell proliferation [81].

The gut microbiome loses its diversity in breast cancer [4], and bacterial production and serum
levels of cytostatic metabolites, such as LCA and cadaverine, decrease [18,19]. Low serum LCA content
correlates with higher cancer cell proliferation rate [24]. A causative relationship between microbiome
dysbiosis and breast cancer has been evidenced by a large set of studies [82–87] showing that antibiotic
treatment increases breast cancer incidence. This observation has been further strengthened by our
observation that primary bile acids were less effective in inducing cytostasis in breast cancer than LCA,
a secondary bile acid. Therefore, reduction in microbiome biomass reduces LCA production, taking
out an effective natural cytostatic compound.

Previously, we showed that LCA exerts its effects through the TGR5 receptor [19]. TGR5
overexpression has been shown to be beneficial in ampullary cancer by prolonging patient survival [88].
Our current data provide evidence that TGR5 expression and activation is a protective factor in breast
cancer, and LCA is a physiological ligand for TGR5 in healthy individuals. Moreover, we identified
CAR as an alternative LCA receptor. CAR overexpression in tumors is associated with better patient
survival, similarly to TGR5 overexpression.

We have shown that LCA, a metabolite of the microbiome, induces oxidative and nitrosative stress
by creating an imbalance in pro- and antioxidant systems in breast cancer cells. LCA and other similar
bacterial metabolites (e.g., cadaverine) have properties that are similar to human hormones, as they are
produced at a site (gut microbiome) different from the one(s) where they elicit their effects (breast). We
have also provided evidence that the lower expression and activity of the LCA–TGR5 signaling system
that characterizes triple negative breast cancers correlates with worse clinical outcomes in breast cancer.
These findings have translational applicability by targeting TGR5/CAR signaling and oxidative stress
for the treatment of breast cancer.

5. Conclusions

In this study, we showed that the cytostatic effects of the bacterial metabolite LCA depend on
oxidative stress brought about by the downregulation of the NRF2/Keap1 system and the induction of
iNOS, and, hence, nitrosative stress. LCA elicits these effects by activating TGR5 and CAR receptors.
The LCA-induced oxidative stress pathway provides better survival in human breast cancer, and the
downregulation of the expression of its components characterize the triple negative cases.
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Abbreviations

CAR constitutive androstane receptor
CAT catalase
CA cholic acid
CDCA chenodeoxycholic acid
ER estrogen receptor
FXR farnesoid X-activated receptor
GCLC glutamate–cysteine ligase catalytic subunit
GSH reduced glutathione
GPX2 glutathione peroxidase 2
GPX3 glutathione peroxidase 3
Her2 Human epidermal growth factor receptor 2/herceptin receptor/erbB receptor
HMOX1 heme oxygenase 1
iNOS inducible NO synthase
KEAP1 Kelch like ECH associating protein 1
LCA lithocholic acid
LXR liver X nuclear receptor
Mib1 molecular immunology borstel-1
NOX4 NADPH oxidase 4
NAC N-acetylcysteine
nNOS neuronal NOS
NQO1 NAD(P)H quinone dehydrogenase 1
NRF2 nuclear factor, erythroid 2-like 2
PR progesterone receptor
PXR pregnane X receptor
SOD1 superoxide dismutase 1
SOD2 superoxide dismutase 2
SOD3 superoxide dismutase 3
SRB sulphorhodamine B
TBA thiobarbituric acid
TBARS thiobarbituric acid reactive substances
TGR5/GPBAR1 G protein-coupled bile acid receptor 1/Takeda G-protein coupled receptor
TNBC triple negative breast cancer
VDR vitamin D receptor
4HNE 4-hydroxynonenal
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18. Kovács, T.; Mikó, E.; Vida, A.; Sebő, É.; Toth, J.; Csonka, T.; Boratkó, A.; Ujlaki, G.; Lente, G.; Kovács, P.; et al.
Cadaverine, a Metabolite of the Microbiome, Reduces Breast Cancer Aggressiveness through Trace Amino
Acid Receptors. Sci. Rep. 2019. [CrossRef]

19. Miko, E.; Vida, A.; Kovacs, T.; Ujlaki, G.; Trencsenyi, G.; Marton, J.; Sari, Z.; Kovacs, P.; Boratko, A.;
Hujber, Z.; et al. Lithocholic Acid, a Bacterial Metabolite Reduces Breast Cancer Cell Proliferation and
Aggressiveness. Biochim. Biophys. Acta 2018, 1859, 958–974. [CrossRef]

20. Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty
Acids in Health and Disease. Adv. Immunol. 2014, 121, 91–119.

21. Luu, T.H.; Bard, J.M.; Carbonnelle, D.; Chaillou, C.; Huvelin, J.M.; Bobin-Dubigeon, C.; Nazih, H. Lithocholic
Bile Acid Inhibits Lipogenesis and Induces Apoptosis in Breast Cancer Cells. Cell Oncol. (Dordr) 2018, 41,
13–24. [CrossRef]

22. Goldberg, A.A.; Beach, A.; Davies, G.F.; Harkness, T.A.; Leblanc, A.; Titorenko, V.I. Lithocholic Bile Acid
Selectively Kills Neuroblastoma Cells, While Sparing Normal Neuronal Cells. Oncotarget 2011, 2, 761–782.
[CrossRef]

23. Bai, P.; Goedert, J.J.; Kovács, T.; Mikó, E.; Vida, A. Methods for Diagnosing Breast Cancer; WIPO: Ginevra,
Switzerland, 2018.

24. Tang, X.; Lin, C.C.; Spasojevic, I.; Iversen, E.S.; Chi, J.T.; Marks, J.R. A Joint Analysis of Metabolomics and
Genetics of Breast Cancer. Breast Cancer Res. 2014, 16, 415. [CrossRef]

25. Goldberg, A.A.; Titorenko, V.I.; Beach, A.; Sanderson, J.T. Bile Acids Induce Apoptosis Selectively in
Androgen-Dependent and -Independent Prostate Cancer Cells. Peer J. 2013, 1, e122. [CrossRef]

26. Gafar, A.A.; Draz, H.M.; Goldberg, A.A.; Bashandy, M.A.; Bakry, S.; Khalifa, M.A.; AbuShair, W.; Titorenko, V.I.;
Sanderson, J.T. Lithocholic Acid Induces Endoplasmic Reticulum Stress, Autophagy and Mitochondrial
Dysfunction in Human Prostate Cancer Cells. Peer J. 2016, 4, e2445. [CrossRef]

27. Tnm Classification of Malignant Tumours; Brierly, J.D. (Ed.) John Wiley and Sons: Oxford, UK, 2017.
28. Badve, S.S.; Beitsch, P.D.; Bose, S.; Byrd, D.R.; Chen, V.W.; Connolly, J.L.; Dogan, B.; D’Orsi, C.J.; Stephen, E.B.;

Giuliano, A.; et al. Breast. In Ajcc Cancer Staging Manual, 8th ed.; AJCC: Chicago, IL, USA, 2018.

http://dx.doi.org/10.1186/1479-5876-10-253
http://dx.doi.org/10.1371/journal.pone.0083744
http://dx.doi.org/10.1038/srep30751
http://dx.doi.org/10.1038/srep28061
http://dx.doi.org/10.1128/AEM.01235-16
http://dx.doi.org/10.1371/journal.ppat.1006480
http://dx.doi.org/10.1016/j.cell.2016.03.001
http://dx.doi.org/10.1038/nrc3610
http://dx.doi.org/10.1016/j.chom.2011.10.003
http://dx.doi.org/10.1007/s10565-016-9320-6
http://dx.doi.org/10.3390/cells8040293
http://dx.doi.org/10.1016/j.ccell.2018.03.004
http://dx.doi.org/10.1038/s41598-018-37664-7
http://dx.doi.org/10.1016/j.bbabio.2018.04.002
http://dx.doi.org/10.1007/s13402-017-0353-5
http://dx.doi.org/10.18632/oncotarget.338
http://dx.doi.org/10.1186/s13058-014-0415-9
http://dx.doi.org/10.7717/peerj.122
http://dx.doi.org/10.7717/peerj.2445


Cancers 2019, 11, 1255 28 of 31

29. Elston, C.W.; Ellis, I.O. Pathological Prognostic Factors in Breast Cancer. I. The Value of Histological Grade in
Breast Cancer: Experience from a Large Study with Long-Term Follow-Up. Histopathology 1991, 19, 403–410.
[CrossRef]

30. Bloom, H.J.; Richardson, W.W. Histological Grading and Prognosis in Breast Cancer; a Study of 1409 Cases
of Which 359 Have Been Followed for 15 Years. Br. J. Cancer 1957, 11, 359–377. [CrossRef]

31. Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F.
“Primary Breast Cancer: Esmo Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up”.
Ann. Oncol. 2015, 26, 8–30. [CrossRef]

32. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
33. Lee, J.D.; Cai, Q.; Shu, X.O.; Nechuta, S.J. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk

and Prognosis: A Systematic Review of the Epidemiologic Literature. J. Womens Health (Larchmt) 2017, 26,
467–482. [CrossRef]

34. Nourazarian, A.R.; Kangari, P.; Salmaninejad, A. Roles of Oxidative Stress in the Development and Progression
of Breast Cancer. Asian Pac. J. Cancer Prev. 2014, 15, 4745–4751. [CrossRef]

35. Jezierska-Drutel, A.; Rosenzweig, S.A.; Neumann, C.A. Role of Oxidative Stress and the Microenvironment
in Breast Cancer Development and Progression. Adv. Cancer Res. 2013, 119, 107–125.

36. Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. Nrf2 and the Hallmarks of Cancer. Cancer Cell 2018, 34, 21–43.
[CrossRef]

37. Fuentes-Broto, L.; Martinez-Ballarin, E.; Miana-Mena, J.; Berzosa, C.; Piedrafita, E.; Cebrian, I.; Reiter, R.J.;
Garcia, J.J. Lipid and Protein Oxidation in Hepatic Homogenates and Cell Membranes Exposed to Bile Acids.
Free Radic. Res. 2009, 43, 1080–1089. [CrossRef]

38. Fuentes-Broto, L.; Miana-Mena, F.J.; Piedrafita, E.; Berzosa, C.; Martinez-Ballarin, E.; Garcia-Gil, F.A.;
Reiter, R.J.; Garcia, J.J. Melatonin Protects against Taurolithocholic-Induced Oxidative Stress in Rat Liver.
J. Cell Biochem. 2010, 110, 1219–1225. [CrossRef]

39. Chen, P.; Li, J.; Fan, X.; Zeng, H.; Deng, R.; Li, D.; Huang, M.; Bi, H. Oleanolic Acid Attenuates
Obstructive Cholestasis in Bile Duct-Ligated Mice, Possibly Via Activation of Nrf2-Mrps and Fxr Antagonism.
Eur. J. Pharmacol. 2015, 765, 131–139. [CrossRef]

40. Liu, J.; Wu, K.C.; Lu, Y.F.; Ekuase, E.; Klaassen, C.D. Nrf2 Protection against Liver Injury Produced by Various
Hepatotoxicants. Oxid. Med. Cell Longev. 2013, 2013, 305861. [CrossRef]

41. Raju, U.; Levitz, M.; Javitt, N.B. Bile Acids in Human Breast Cyst Fluid: The Identification of Lithocholic
Acid. J. Clin. Endocrinol. Metab. 1990, 70, 1030–1034. [CrossRef]

42. Fodor, T.; Szanto, M.; Abdul-Rahman, O.; Nagy, L.; Der, A.; Kiss, B.; Bai, P. Combined Treatment of Mcf-7 Cells
with Aicar and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through Amp-Activated
Protein Kinase (Ampk) and Foxo1. PLoS ONE 2016, 11, e0150232. [CrossRef]

43. Szántó, M.; Brunyánszki, A.; Márton, J.; Vámosi, G.; Nagy, L.; Fodor, T.; Kiss, B.; Virag, L.; Gergely, P.; Bai, P.
Deletion of Parp-2 Induces Hepatic Cholesterol Accumulation and Decrease in Hdl Levels. Biochem. Biophys.
Acta Mol. Basis Dis. 2014, 1842, 594–602. [CrossRef]

44. Nagy, L.; Marton, J.; Vida, A.; Kis, G.; Bokor, E.; Kun, S.; Gonczi, M.; Docsa, T.; Toth, A.; Antal, M.; et al.
Glycogen Phosphorylase Inhibition Improves Beta Cell Function. Br. J. Pharmacol. 2018, 175, 301–319.
[CrossRef]

45. Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. Imagej2:
Imagej for the Next Generation of Scientific Image Data. BMC Bioinform. 2017, 18, 529. [CrossRef]

46. Lau, A.; Tian, W.; Whitman, S.A.; Zhang, D.D. The Predicted Molecular Weight of Nrf2: It Is What It Is Not.
Antioxid Redox Signal. 2013, 18, 91–93. [CrossRef]

47. Venkatraman, G.; Benesch, M.G.; Tang, X.; Dewald, J.; McMullen, T.P.; Brindley, D.N. Lysophosphatidate
Signaling Stabilizes Nrf2 and Increases the Expression of Genes Involved in Drug Resistance and Oxidative
Stress Responses: Implications for Cancer Treatment. FASEB J. 2015, 29, 772–785. [CrossRef]

48. Mabley, J.G.; Pacher, P.; Bai, P.; Wallace, R.; Goonesekera, S.; Virag, L.; Southan, G.J.; Szabo, C. Suppression
of Intestinal Polyposis in Apcmin/+ Mice by Targeting the Nitric Oxide or Poly(Adp-Ribose) Pathways.
Mutat. Res. 2004, 548, 107–116. [CrossRef]

49. Hegedus, C.; Lakatos, P.; Kiss-Szikszai, A.; Patonay, T.; Gergely, S.; Gregus, A.; Bai, P.; Hasko, G.; Szabo, E.;
Virag, L. Cytoprotective Dibenzoylmethane Derivatives Protect Cells from Oxidative Stress-Induced Necrotic
Cell Death. Pharmacol. Res. 2013, 72, 25–34. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2559.1991.tb00229.x
http://dx.doi.org/10.1038/bjc.1957.43
http://dx.doi.org/10.1093/annonc/mdv298
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1089/jwh.2016.5973
http://dx.doi.org/10.7314/APJCP.2014.15.12.4745
http://dx.doi.org/10.1016/j.ccell.2018.03.022
http://dx.doi.org/10.1080/10715760903176927
http://dx.doi.org/10.1002/jcb.22636
http://dx.doi.org/10.1016/j.ejphar.2015.08.029
http://dx.doi.org/10.1155/2013/305861
http://dx.doi.org/10.1210/jcem-70-4-1030
http://dx.doi.org/10.1371/journal.pone.0150232
http://dx.doi.org/10.1016/j.bbadis.2013.12.006
http://dx.doi.org/10.1111/bph.13819
http://dx.doi.org/10.1186/s12859-017-1934-z
http://dx.doi.org/10.1089/ars.2012.4754
http://dx.doi.org/10.1096/fj.14-262659
http://dx.doi.org/10.1016/j.mrfmmm.2004.01.006
http://dx.doi.org/10.1016/j.phrs.2013.03.002


Cancers 2019, 11, 1255 29 of 31

50. Lanczky, A.; Nagy, A.; Bottai, G.; Munkacsy, G.; Szabo, A.; Santarpia, L.; Gyorffy, B. Mirpower: A Web-Tool to
Validate Survival-Associated Mirnas Utilizing Expression Data from 2178 Breast Cancer Patients. Breast Cancer
Res. Treat. 2016, 160, 439–446. [CrossRef]

51. Csonka, T.; Murnyák, B.; Szepesi, R.; Bencze, J.; Bognár, L.; Klekner, Á.; Hortobágyi, T. Assessment of
Candidate Immunohistochemical Prognostic Markers of Meningioma Recurrence. Folia Neuropathol. 2016,
54, 114–126. [CrossRef]

52. Stenger, M. Calculating H-Score. Available online: http://www.ascopost.com/issues/april-10-2015/calculating-
h-score/ (accessed on 7 January 2019).

53. Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Animal Research: Reporting in Vivo
Experiments: The Arrive Guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [CrossRef]

54. McGrath, J.C.; Drummond, G.B.; McLachlan, E.M.; Kilkenny, C.; Wainwright, C.L. Guidelines for Reporting
Experiments Involving Animals: The Arrive Guidelines. Br. J. Pharmacol 2010, 160, 1573–1576. [CrossRef]

55. R Core Team. A Language and Environment for Statistical Computing. Available online: https://www.R-
project.org/ (accessed on 1 December 2018).

56. Aryal, B.; Rao, V.A. Specific Protein Carbonylation in Human Breast Cancer Tissue Compared to Adjacent
Healthy Epithelial Tissue. PLoS ONE 2018, 13, e0194164. [CrossRef] [PubMed]

57. Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007,
87, 315–424. [CrossRef] [PubMed]

58. Szabo, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, Pathophysiology and Development of
Therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662–680. [CrossRef] [PubMed]

59. Ingman, W.V. The Gut Microbiome: A New Player in Breast Cancer Metastasis. Cancer Res. 2019, 79,
3539–3541. [CrossRef] [PubMed]

60. Buchta Rosean, C.; Bostic, R.R.; Ferey, J.C.M.; Feng, T.Y.; Azar, F.N.; Tung, K.S.; Dozmorov, M.G.; Smirnova, E.;
Bos, P.D.; Rutkowski, M.R. Preexisting Commensal Dysbiosis Is a Host-Intrinsic Regulator of Tissue
Inflammation and Tumor Cell Dissemination in Hormone Receptor-Positive Breast Cancer. Cancer Res. 2019,
79, 3662–3675. [CrossRef] [PubMed]

61. Tang, W.; Putluri, V.; Ambati, C.R.; Dorsey, T.H.; Putluri, N.; Ambs, S. Liver- and Microbiome-Derived
Bile Acids Accumulate in Human Breast Tumors and Inhibit Growth and Improve Patient Survival.
Clin. Cancer Res. 2019. [CrossRef] [PubMed]

62. NCBI_GEO_Profiles. Tgr5 in Breast Cancer. Available online: https://www.ncbi.nlm.nih.gov/geoprofiles/
70190573 (accessed on 12 August 2018).

63. Zhang, H.S.; Du, G.Y.; Zhang, Z.G.; Zhou, Z.; Sun, H.L.; Yu, X.Y.; Shi, Y.T.; Xiong, D.N.; Li, H.; Huang, Y.H.
Nrf2 Facilitates Breast Cancer Cell Growth Via Hif1a-Mediated Metabolic Reprogramming. Int. J. Biochem.
Cell Biol. 2018, 95, 85–92. [CrossRef]

64. Dermit, M.; Casado, P.; Rajeeve, V.; Wilkes, E.H.; Foxler, D.E.; Campbell, H.; Critchlow, S.; Sharp, T.V.;
Gribben, J.G.; Unwin, R.; et al. Oxidative Stress Downstream of Mtorc1 but Not Akt Causes a Proliferative
Defect in Cancer Cells Resistant to Pi3k Inhibition. Oncogene 2017, 36, 2762–2774. [CrossRef]

65. Lisek, K.; Walerych, D.; del Sal, G. Mutant P53-Nrf2 Axis Regulates the Proteasome Machinery in Cancer.
Mol. Cell Oncol. 2017, 4, e1217967. [CrossRef]

66. Luo, M.; Shang, L.; Brooks, M.D.; Jiagge, E.; Zhu, Y.; Buschhaus, J.M.; Conley, S.; Fath, M.A.; Davis, A.;
Gheordunescu, E.; et al. Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox
Signaling. Cell Metab. 2018, 28, 69–86. [CrossRef] [PubMed]

67. Hegedus, C.; Kovacs, K.; Polgar, Z.; Regdon, Z.; Szabo, E.; Robaszkiewicz, A.; Forman, H.J.; Martner, A.;
Virag, L. Redox Control of Cancer Cell Destruction. Redox Biol. 2018, 16, 59–74. [CrossRef] [PubMed]

68. Garrido, P.; Shalaby, A.; Walsh, E.M.; Keane, N.; Webber, M.; Keane, M.M.; Sullivan, F.J.; Kerin, M.J.;
Callagy, G.; Ryan, A.E.; et al. Impact of Inducible Nitric Oxide Synthase (Inos) Expression on Triple Negative
Breast Cancer Outcome and Activation of Egfr and Erk Signaling Pathways. Oncotarget 2017, 8, 80568–80588.
[CrossRef] [PubMed]

69. Ranganathan, S.; Krishnan, A.; Sivasithambaram, N.D. Significance of Twist and Inos Expression in Human
Breast Carcinoma. Mol. Cell Biochem. 2016, 412, 41–47. [CrossRef] [PubMed]

70. Girotti, A.W. Upregulation of Nitric Oxide in Tumor Cells as a Negative Adaptation to Photodynamic
Therapy. Lasers Surg Med. 2018, 50, 590–598. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10549-016-4013-7
http://dx.doi.org/10.5114/fn.2016.60088
http://www.ascopost.com/issues/april-10-2015/calculating-h-score/
http://www.ascopost.com/issues/april-10-2015/calculating-h-score/
http://dx.doi.org/10.1111/j.1476-5381.2010.00872.x
http://dx.doi.org/10.1111/j.1476-5381.2010.00873.x
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1371/journal.pone.0194164
http://www.ncbi.nlm.nih.gov/pubmed/29596499
http://dx.doi.org/10.1152/physrev.00029.2006
http://www.ncbi.nlm.nih.gov/pubmed/17237348
http://dx.doi.org/10.1038/nrd2222
http://www.ncbi.nlm.nih.gov/pubmed/17667957
http://dx.doi.org/10.1158/0008-5472.CAN-19-1698
http://www.ncbi.nlm.nih.gov/pubmed/31308136
http://dx.doi.org/10.1158/0008-5472.CAN-18-3464
http://www.ncbi.nlm.nih.gov/pubmed/31064848
http://dx.doi.org/10.1158/1078-0432.CCR-19-0094
http://www.ncbi.nlm.nih.gov/pubmed/31296531
https://www.ncbi.nlm.nih.gov/geoprofiles/70190573
https://www.ncbi.nlm.nih.gov/geoprofiles/70190573
http://dx.doi.org/10.1016/j.biocel.2017.12.016
http://dx.doi.org/10.1038/onc.2016.435
http://dx.doi.org/10.1080/23723556.2016.1217967
http://dx.doi.org/10.1016/j.cmet.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/29972798
http://dx.doi.org/10.1016/j.redox.2018.01.015
http://www.ncbi.nlm.nih.gov/pubmed/29477046
http://dx.doi.org/10.18632/oncotarget.19631
http://www.ncbi.nlm.nih.gov/pubmed/29113326
http://dx.doi.org/10.1007/s11010-015-2606-9
http://www.ncbi.nlm.nih.gov/pubmed/26590086
http://dx.doi.org/10.1002/lsm.22807
http://www.ncbi.nlm.nih.gov/pubmed/29504635


Cancers 2019, 11, 1255 30 of 31

71. Davila, A.; Liu, L.; Chellappa, K.; Redpath, P.; Nakamaru-Ogiso, E.; Paolella, L.M.; Zhang, Z.; Migaud, M.E.;
Rabinowitz, J.D.; Baur, J.A. Nicotinamide Adenine Dinucleotide Is Transported into Mammalian Mitochondria.
Elife 2018, 7, 33246. [CrossRef] [PubMed]

72. Walsh, E.M.; Keane, M.M.; Wink, D.A.; Callagy, G.; Glynn, S.A. Review of Triple Negative Breast Cancer and
the Impact of Inducible Nitric Oxide Synthase on Tumor Biology and Patient Outcomes. Crit. Rev. Oncog.
2016, 21, 333–351. [CrossRef]

73. Davila-Gonzalez, D.; Choi, D.S.; Rosato, R.R.; Granados-Principal, S.M.; Kuhn, J.G.; Li, W.F.; Qian, W.;
Chen, W.; Kozielski, A.J.; Wong, H.; et al. “Pharmacological Inhibition of Nos Activates Ask1/Jnk Pathway
Augmenting Docetaxel-Mediated Apoptosis in Triple-Negative Breast Cancer”. Clin. Cancer Res. 2018, 24,
21152–21162. [CrossRef]

74. Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Valle, A.; Oliver, J.; Roca, P. Ucp2 Inhibition Sensitizes
Breast Cancer Cells to Therapeutic Agents by Increasing Oxidative Stress. Free Radic. Biol. Med. 2015, 86,
67–77. [CrossRef]

75. Onodera, Y.; Motohashi, H.; Takagi, K.; Miki, Y.; Shibahara, Y.; Watanabe, M.; Ishida, T.; Hirakawa, H.;
Sasano, H.; Yamamoto, M.; et al. Nrf2 Immunolocalization in Human Breast Cancer Patients as a Prognostic
Factor. Endocr Relat. Cancer. 2014, 21, 241–252. [CrossRef]

76. Hartikainen, J.M.; Tengstrom, M.; Winqvist, R.; Jukkola-Vuorinen, A.; Pylkas, K.; Kosma, V.M.; Soini, Y.;
Mannermaa, A. Keap1 Genetic Polymorphisms Associate with Breast Cancer Risk and Survival Outcomes.
Clin. Cancer Res. 2015, 21, 1591–1601. [CrossRef]

77. Hartikainen, J.M.; Tengstrom, M.; Kosma, V.M.; Kinnula, V.L.; Mannermaa, A.; Soini, Y. Genetic
Polymorphisms and Protein Expression of Nrf2 and Sulfiredoxin Predict Survival Outcomes in Breast
Cancer. Cancer Res. 2012, 72, 5537–5546. [CrossRef]

78. Al Azhary, N.M.; Kamel, M.M.; Ismail, Y.M.; Mahmoud, A.A.; Radwan, E.M. The Role of Genetic
Polymorphisms in Nrf2 and P73 in Egyptian Women with Breast Cancer. Asian Pac. J. Cancer Prev.
2016, 17, 4945–4949.

79. Syu, J.P.; Chi, J.T.; Kung, H.N. Nrf2 Is the Key to Chemotherapy Resistance in Mcf7 Breast Cancer Cells under
Hypoxia. Oncotarget 2016, 7, 14659–14672. [CrossRef]

80. Ryoo, I.G.; Choi, B.H.; Ku, S.K.; Kwak, M.K. High Cd44 Expression Mediates P62-Associated Nfe2l2/Nrf2
Activation in Breast Cancer Stem Cell-Like Cells: Implications for Cancer Stem Cell Resistance. Redox Biol.
2018, 17, 246–258. [CrossRef]

81. Hsu, W.T.; Huang, C.Y.; Yen, C.Y.T.; Cheng, A.L.; Hsieh, P.C.H. The Her2 Inhibitor Lapatinib Potentiates
Doxorubicin-Induced Cardiotoxicity through Inos Signaling. Theranostics 2018, 8, 3176–3188. [CrossRef]

82. Velicer, C.M.; Heckbert, S.R.; Lampe, J.W.; Potter, J.D.; Robertson, C.A.; Taplin, S.H. Antibiotic Use in Relation
to the Risk of Breast Cancer. JAMA 2004, 291, 827–835. [CrossRef]

83. Velicer, C.M.; Heckbert, S.R.; Rutter, C.; Lampe, J.W.; Malone, K. Association between Antibiotic Use Prior to
Breast Cancer Diagnosis and Breast Tumour Characteristics (United States). Cancer Causes Control. 2006, 17,
307–313. [CrossRef]

84. Wirtz, H.S.; Buist, D.S.; Gralow, J.R.; Barlow, W.E.; Gray, S.; Chubak, J.; Yu, O.; Bowles, E.J.; Fujii, M.;
Boudreau, D.M. Frequent Antibiotic Use and Second Breast Cancer Events. Cancer Epidemiol. Biomark. Prev.
2013, 22, 1588–1599. [CrossRef]

85. Tamim, H.M.; Hanley, J.A.; Hajeer, A.H.; Boivin, J.F.; Collet, J.P. Risk of Breast Cancer in Relation to Antibiotic
Use. Pharmacoepidemiol. Drug Saf. 2008, 17, 144–150. [CrossRef]

86. Satram-Hoang, S.; Moran, E.M.; Anton-Culver, H.; Burras, R.W.; Heimann, T.M.; Boggio, I.;
Dykstra-Long, G.R.; Wood, P.A.; Zulka, R.; Hufnagel, G.; et al. A Pilot Study of Male Breast Cancer
in the Veterans Affairs Healthcare System. J. Environ. Pathol. Toxicol. Oncol. 2010, 29, 235–244. [CrossRef]

http://dx.doi.org/10.7554/eLife.33246
http://www.ncbi.nlm.nih.gov/pubmed/29893687
http://dx.doi.org/10.1615/CritRevOncog.2017021307
http://dx.doi.org/10.1158/1078-0432.CCR-17-1437
http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.032
http://dx.doi.org/10.1530/ERC-13-0234
http://dx.doi.org/10.1158/1078-0432.CCR-14-1887
http://dx.doi.org/10.1158/0008-5472.CAN-12-1474
http://dx.doi.org/10.18632/oncotarget.7406
http://dx.doi.org/10.1016/j.redox.2018.04.015
http://dx.doi.org/10.7150/thno.23207
http://dx.doi.org/10.1001/jama.291.7.827
http://dx.doi.org/10.1007/s10552-005-0445-9
http://dx.doi.org/10.1158/1055-9965.EPI-13-0454
http://dx.doi.org/10.1002/pds.1512
http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v29.i3.60


Cancers 2019, 11, 1255 31 of 31

87. Kirkup, B.; McKee, A.; Makin, K.; Paveley, J.; Caim, S.; Alcon-Giner, C.; Leclaire, C.; Dalby, M.; le Gall, G.;
Andrusaite, A.; et al. Perturbation of the Gut Microbiota by Antibiotics Results in Accelerated Breast Tumour
Growth and Metabolic Dysregulation. bioRxiv 2019. [CrossRef]

88. Chen, M.C.; Chen, Y.L.; Wang, T.W.; Hsu, H.P.; Lai, M.D. Membrane Bile Acid Receptor Tgr5 Predicts Good
Prognosis in Ampullary Adenocarcinoma Patients with Hyperbilirubinemia. Oncol Rep. 2016, 36, 1997–2008.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1101/553602
http://dx.doi.org/10.3892/or.2016.5011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Chemicals 
	Cell Lines 
	Proliferation Assay 
	Real-Time Quantitative PCR (RT-qPCR) 
	SDS-PAGE and Western Blotting 
	Determination of Lipid Peroxidation 
	Transfections 
	ABTS Decoloration Assay 
	Database Screening 
	Tissue Microarray, Immunohistochemistry, and Analysis 
	Animal Study 
	Statistical Analysis 

	Results 
	Lithocholic Acid Inhibited NRF2 Activation 
	LCA Treatment Induced Oxidative Stress by Reducing NRF2 Expression 
	LCA-Elicited Oxidative Stress Was Mediated by TGR5 and Partially by CAR Receptor 
	LCA Supplementation Suppressed Antioxidant Defense in an Animal Model of Breast Cancer 
	Elements of the LCA-Elicited Anticancer Pathway Correlated with Stage, Grade, and Receptor Status of the Disease 

	Discussion 
	Conclusions 
	References

