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Abstract

Non-muscle myosin II (NMII)-induced multicellular contractility is essential for
development, maintenance and remodeling of tissue morphologies. Dysregulation of the
cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate
that the Matrigel patterning assay, widely used to characterize endothelial cells, is a
highly sensitive tool to evaluate cell contractility within a soft extracellular matrix
(ECM) environment. We propose a computational model to explore how cell-exerted
contractile forces can tear up the cell-Matrigel composite material and gradually
remodel it into a network structure. We identify measures that are characteristic for
cellular contractility and can be obtained from image analysis of the recorded
patterning process. The assay was calibrated by inhibition of NMII activity in A431
epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632
Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first
functional demonstration that overexpression of S100A4, a calcium-binding protein that
is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by
inducing filament disassembly, effectively reduces cell contractility.

Author summary

Sensing and exerting forces is a fundamental aspect of tissue organization. We
demonstrate that contractile cells form an intricate network structure when placed in a
pliable culture environment, a phenomenon often associated with vascular networks and
is being actively used to characterize endothelial cells in culture. We propose a
computational model that operates with mechanical stresses, plastic deformation and
material failure within the cell-extracellular matrix composite to explain the patterning
process. In addition to re-interpret a decades-old tool of experimental cell biology, our
work suggests a potentially high throughput computational assay to characterize cellular
contractility within a soft ECM environment.

1 Introduction 1

Cells use contractile forces, generated and regulated by cytoskeletal proteins, to 2

maintain a structured multicellular tissue [1]. Cell-cell adhesion and tissue surface 3
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tension are contractility-related phenomena that have key roles in providing tissue 4

integrity and driving morphogenesis [2–4]. Multicellular contractility plays a prominent 5

role in various physiological and developmental processes [5]. Some of the best 6

characterized examples come from embryonic morphogenesis events where coordinated 7

multicellular contractility is the major driver of cell movements and subsequent cell 8

differentiation. During the formation of the neural tube in vertebrates, the bending of 9

the neural plate epithelium is driven by coordinated apical constriction of cells, which is 10

regulated by Rho kinase recruitment and local activation of non-muscle myosin II 11

(NMII) at cell apexes [6–9]. Another extensively studied multicellular 12

contractility-driven process is the early embryonic development of insects. In Drosophila 13

the germ band develops into the segmented trunk of the embryo. This convergent 14

extension process involves cell intercalation, mediated by NMII-dependent cortical 15

tension of germ band cells [10–12]. In cell culture wound healing experiments cell 16

contractility exhibits a non-uniform spatial distribution, suggested to coordinate 17

two-dimensional collective cell migration [13]. Contractility also has substantial roles in 18

cancer progression and metastasis [14,15]. 19

At the molecular level cell contractility is driven by the activity of non-muscle 20

myosin II (NMII), organized into bipolar minifilaments sliding along actin filaments of 21

the cytoskeleton [16]. Myosins are actin-binding motor proteins that use the energy of 22

ATP to produce forces required not only in muscle contraction, but also in processes like 23

cytokinesis, cell adhesion and migration. Non-muscle myosin II, in particular, is a 24

molecular motor abundant in practically all animal cell types [17]. It is composed of two 25

heavy chains, two essential and two regulatory light chains. The heavy chains fold into 26

two globular head domains containing binding sites for ATP and actin, followed by two 27

neck regions that function as lever arms during force generation, and finally into a long 28

dimeric coiled-coil tail and a nonhelical tailpiece. The neck region level arms are 29

stabilized through forming a complex with the NMII light chains. Usually, 28 NMII 30

molecules assemble into bipolar “minifilaments” through electrostatic interactions of the 31

coiled-coil tails. Single NMII molecules and even dimers cannot move actin filaments, 32

the onset of this activity requires at least a tetrameric state. NMII can exert 33

intercellular forces at cell junctions as well as traction forces transmitted to the 34

extracellular matrix substrate. 35

NMII activity is regulated by various means, including the binding of protein 36

interaction partners. One of the binding partners of NMII is the metastasis-associated 37

protein S100A4 (also called metastasin). Members of the S100 protein family are small, 38

calcium-binding proteins that exert their function mainly by forming complexes with 39

their regulatory targets. S100A4 is one of the most studied members of the family as it 40

is frequently overexpressed in metastatic tumors [18]. The molecular interaction 41

between S100A4 and a particular NMII isoform, NMIIA, is well studied [19]. S100A4 42

binds to a region that overlaps the coiled-coil assembly competence domain (responsible 43

for filament formation) and the C-terminal non-helical tailpiece [20–22]. Thus, the 44

presence of S100A4 disrupts existing myosin filaments and also prevents their 45

assembly [23]. Hence, S100A4 can control cell contractility by regulating the dynamic 46

assembly of NMIIA. 47

The current tool to assay cell contractility is traction force microscopy, which 48

characterizes cell-exerted forces by measuring deformations of an elastic 49

substrate [24–26]. Initially applied for single cells, this method has been extended to 50

monolayer cultures yielding a spatio-temporal map of traction stresses across a 51

multicellular domain extending several millimeters [27]. Traction force microscopy, 52

however, is a computationally intensive and complex measurement, which requires the 53

preparation of a suitably homogeneous and well-defined elastic substrate with known 54

constitutive equation and material parameters [28]. Preparation of such uniform, well 55
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Fig 1. Pattern formation on Matrigel substrate. Several cell types condense into progressively
denser clusters, creating thereby a network which delineates cell-free areas (“holes”).
Phase-contrast micrographs, recorded at the indicated times after seeding, show HMVEC-C
human cardiac microvascular endothelial cells (A), 3T3 fibroblasts (B), A431 human epithelial
carcinoma cells (C) and HT29 human colon adenocarcinoma cells (D). The patterning
processes are documented in Supp. Videos S1-S4. Trajectories in panel (C) depict the
movement of 4 representative features within the Matrigel ECM, marked with red asterisks (∗)
in the first panel of the time series. Trajectories are color-coded, warmer colors indicate earlier
segments. Cells were seeded at ≈ 66% confluence (1600 cells/mm2). Scale bar: 500 µm. E:
Quantitative evaluation of the Matrigel patterning assay with various cell types. Time
dependence of the mean hole size (cell-free area) of the four cell types: HMVEC-C (green), 3T3
(red), A431 (black) and HT29 cells (blue). Error stripes represent SEM, calculated from at
least n = 3 independent sets of experiments.

defined elastic substrate is also challenging for soft substrates that tend to polymerize in 56

a spatially inhomogeneous structure [29]. Indicative of the inherently low throughput 57

nature of traction force microscopy, authors of this paper were unable to find a single 58

study reporting dose-dependent traction force microscopy data – measurements 59

repeated at multiple concentrations of the tested compound. 60

Here we demonstrate that a suitable quantification of the well-known Matrigel tube 61

formation assay is highly informative about cell-exerted contractile forces, and can be 62

utilized as a much simpler bioassay than traction force microscopy. We propose a 63

computational model of the corresponding multicellular patterning process and identify 64

measures that are characteristic of cellular contractility and can be obtained by 65

time-lapse image analysis. We validated our model and calibrated the bioassay by direct 66

and indirect small molecule inhibitors of NMII. While this method does not provide 67

spatially resolved contractility maps, it is much easier to perform than traditional 68

traction force microscopy. To demonstrate its applicability we characterize how 69

overexpression of S100A4, an intrinsic regulator of NMIIA filament assembly, modulates 70

the contractility of epithelial carcinoma cells. 71

2 Results 72

2.1 Matrigel patterning assay 73

When contractile cells are seeded on the surface of a suitably thick Matrigel 74

extracellular matrix (ECM) layer at a subconfluent density, an interconnected network 75

pattern develops within a few hours (Fig. 1 and Supp. Videos S1-S5). The pattern is 76

similar irrespective whether the cells are endothelial (Fig. 1A), mesenchymal (Fig. 1B), 77

or epithelial (Fig. 1C, D). The network structure contains both cells and ECM, and 78

delimits “holes”, which are polygonal patches devoid of cells. The seeding cell density is 79

an important experimental parameter: isolated cell clusters form if the seeding density 80

is below the percolation threshold, while cultures maintain a confluent monolayer when 81

seeded at identical conditions but at higher cell density (Video S6). 82

As the pattern forms in a few hours, cell proliferation has only a limited role in the 83

process. Similarly, cell death is hardly detectable in our recordings. Thus, we mainly 84

witness the rearrangement of the seeded cells and their Matrigel ECM environment. 85

More detailed analyses of videomicroscopic observations indicate a complete lack of 86

expansion in any part of the structure – hence under these experimental conditions cells 87

do not engage in multicellular sprout formation. Instead, long and narrow clusters 88

eventually break and retract, letting the adjacent holes merge. These rearrangements, 89

as well as the enlargement of holes involve the co-movement of cells and the local ECM 90
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Fig 2. Computational model of contractility-driven plastic patterning. A: Schematic
representation of the model. The contractile links (blue) between adjacent particles exert
elastic forces Fl and Fm on particle i. Adhesion to the substrate is represented by a Mawell
element: a dashpot and spring in series (black). The element generates an elastic force F0

i ,
which is determined by the relative positions of the particle, ri, and of the dashpot, r0i . This
latter variable characterizes the ECM microenvironment and can move arbitrary large
distances relative to the underlying rigid substrate – our system of reference. B: Time
development of a simulated system. Particles are visualized as spheres with a radius of d0,
hence particles touching can establish a mechanical connection according to Eq. (11).
Mechanical interaction between adjacent particles is transmitted through elastic beams, visible
only when the distance between the particles is sufficiently large. N = 300 particles were
placed within an area of 20d0 × 20d0 (500 µm× 500 µm), corresponding to a coverage at 75%
confluency. The configuration of particles is shown at the onset of simulation, at 0.5 h, 1 h and
1.5 h as indicated by the labels. The scale bar indicates 100 µm. See also Video S7.

Fig 3. The size of particle free areas (holes) characterize the simulated patterning process. A:
Time-dependent cumulative distribution of hole sizes: the ordinate indicates the fraction of
holes that are smaller than the value at the abscissa. Initial cell coverage was ρ = 75%,
distribution functions were compiled from n = 4 independent simulation runs. B: Expansion
rate of individual holes, as a function of their size. We identified areas that did not merge with
adjacent holes during a 30 minute time interval, and determined the change in their size. Error
bars represent SEM, binned data is pooled from four independent simulations. The line
indicates a linear fit, with a correlation coefficient 0.94. C: Time-dependent increase in the
average hole size Ā(t), compared to the initial condition Ā(t = 0). Blue, green and red lines
correspond to simulations started with initial coverages at 50%, 75% and 100% confluency,
respectively. The growth rate of holes decreases with increasing initial confluency. Error bars
represent SEM, calculated from four independent simulations. D: Schematic representation of
particles at a boundary of a circular hole of radius R, and the contractile forces acting on a
particle in mechanical equilibrium. The contractile force between adjacent particles at the
boundary is F , while the net contractile force pulling from the bulk is Fbulk.

as evidenced by tracking recognizable features within the ECM throughout the image 91

sequence (Fig. 1C). 92

Cell-exerted intercellular forces and cell-substrate traction forces are well known to 93

contract the ECM environment [30,31]. Therefore, we hypothesize that in our 94

experiments holes represent areas where the mechanical integrity of the cell-Matrigel 95

composite material is compromised, and the observed movement around the several 96

“holes” or wound sites is best described as an elastoplastic creep driven by cellular 97

contractile forces. Specifically, for short time scales (minutes) the cell-Matrigel assembly 98

behaves as an elastic (or viscoelastic) solid, but sufficiently large mechanical stress can 99

induce irreversible plastic deformations and breakage over longer time scales (hours). 100

2.2 Computational model 101

While several theories have been proposed to describe the patterning process in terms of 102

cellular contractility and mechanical deformation of the substrate [32–35], the role of 103

mechanical failure and the development of discontinuities have not been addressed. 104

Thus, to understand the particular patterning process in the Matrigel assay, we 105

represented our cell contractility-driven plastic flow hypothesis in a computational 106

model. A previously calibrated particle-and-beam model [36] that explicitly represents 107

intercellular connections and their mechanical load-mediated failure was especially 108

suitable to adapt. Thus, as we describe in detail in the Methods and Models section, we 109
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Fig 4. The effect of target contractility F ∗ on simulated pattern formation. A: Time
dependence of the average cell-free area size Ā(t). Blue, green orange and red lines correspond
to simulations performed with F ∗/F0 values of 4, 2, 1 and 1/2, respectively. Simulations were
started from a confluent state (the red curve in Fig. 3 matches the orange curve in this figure),
thus ρ = 1 and Ā(t = 0) = 0. Error bars represent SEM calculated from n = 4 independent
simulations. B: The data in panel A collapse to a single curve after scaling the time by an
appropriate factor t0 as Ā(t/t0). The characteristic time t0 decreases with F ∗ as t0 ∼ 1/F ∗

(inset).

considered cells that are adherent both to the substrate and to each other, and load 110

their adhesion sites with a steady contractile force. Specifically, particles in the model 111

represent cells with their ECM microenvironment, and contractility was modeled by 112

gradually reducing the tension-free length of the beams connecting particles in such a 113

way that particles maintained a pre-determined tension in each link. This particular 114

contractile behavior is selected based on its simplicity, further regulatory mechanisms of 115

cellular contractility can be introduced in future studies. Finally, as a soft Matrigel 116

layer mediates adhesion between the cells and an underlying rigid substrate, we 117

implemented visco-elastic Maxwell-elements to resist movement driven by intercelluluar 118

mechanical forces (Fig. 2A). 119

Model simulations provide a sequence of stochastic alterations in cell-cell connectivity 120

and the corresponding movements by which the configuration restores mechanical 121

equilibrium. Simulations were started from a subconfluent or confluent monolayer state, 122

and for a broad range of parameters the computational rules readily reproduced the 123

multicellular patterning process seen in vitro (Fig. 2B). Specifically, fluctuations in 124

particle density were amplified and led to the formation of mechanical discontinuities 125

which grow and coalesce into increasingly larger particle free areas (“holes”). The 126

constant contractility rule does not lead to a steady state and thus the simulation looses 127

its relevance when hole sizes become comparable to the size of the simulated system. 128

We characterized the patterning process by calculating the time-dependent 129

distribution of hole sizes (Fig. 3A). The distribution shifts to larger values in time, but 130

a population of small holes remains reflecting the ongoing nucleation process. The 131

majority (80%) of holes maintain an approximately lognormal distribution as larger 132

holes grow faster than small ones (Fig. 3B). Accordingly, pre-existing larger holes grow 133

more than the smaller ones arising spontaneously within confluent monolayers – and 134

thus patterning becomes faster in cultures with smaller cell density (Fig. 3C). In 135

particular, a 50% confluent initial condition yields an expansion twice as fast as the 136

expansion in a simulation with 75% initial confluency – indicated by the 137

time-dependence of the average hole sizes, Ā(t). 138

The positive correlation between hole size and expansion rate can be understood by 139

a simplified analysis of model assumptions. Within the model, the force driving hole 140

expansion is determined by the specific balance of tensile forces acting at the boundary 141

(Fig. 3D). As there are no forces pulling from an empty area, the contractility of the 142

bulk is balanced by an increased elastic tension F along the boundary. If the angle 143

between two links defining the boundary is 2α, then the normal component of the forces 144

exerted by boundary links – balancing the net pulling force Fbulk from the bulk – is 145

2F cosα. From geometric considerations the angle α, the radius R of the hole and the 146

typical distance between particles, d are related as 2R cosα = d. Hence, the condition 147

for mechanical equilibrium is 148

F = FbulkR/d. (1)

As a crude approximation, we can consider Fbulk as a constant value set by the 149

contractility homeostasis rule. The model exhibits plastic behavior like creep flow and 150
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necking under mechanical load above the yield stress [36], hence large enough tensile 151

forces F will gradually increase the length of the boundary by recruiting particles from 152

the bulk. This mechanism also limits the variability of the interparticle distance d. As 153

in the case of a bubble its radius grows with its surface tension for a given internal 154

pressure, steady d and Fbulk values in Eq. (1) indicate a proportionality between the 155

elastic tensile forces at the boundary, F , and the hole size R. Furthermore, for the rate 156

of perimeter expansion we expect a linear creep response as 157

dR/dt ∼

{
F − Fmin ∼ R−Rmin for F > Fmin

0 otherwise,
(2)

where Fmin is the yield stress – the minimal tensile force transmitted by the links that 158

can still induce plastic rearrangement of the particles. The forces F and Fmin can be 159

translated to radii R and Rmin using relation (1). Similarly, for the area of the hole, A, 160

in the R & Rmin regime we obtain dA/dt ∼ RdR/dt ∼ R2 −RRmin ∼ A−Amin, 161

qualitatively matching the approximate exponential growth seen in Fig. 3B. 162

Simulations also allow to explore how the targeted magnitude of cell-generated 163

tension, F ∗, affects the patterning dynamics (Fig. 4). As intercellular tension increases 164

the frequency of link removal events, it speeds up the patterning process. Conversely, 165

according to the model, the rate of hole size expansion is indicative of intercellular 166

contractility. As Fig. 4B indicates, the Ā(t) curves, each characteristic for a distinct 167

value of parameter F ∗, collapse after scaling the time by an appropriate factor t0 as 168

Ā(t/t0). Thus, we identify t0 as the characteristic timescale of the pattern formation 169

and find 170

t0 ∼ 1/F ∗, (3)

as shown in the inset of Fig. 4B. 171

The time course of patterning, as characterized by Ā(t) in Figs. 3 and 4, is 172

approximately an exponential and thus exhibits a lag time when no macroscopic holes 173

are present. The emergence of a lag time or a stable confluent monolayer (Video S6) is 174

consistent with the presence of a threshold (yield) stress (2) in the sense that the 175

relation (2) predicts no expansion for holes smaller than a critical size. In confluent 176

monolayers discontinuities arise by stochastic events, not described by the plastic creep 177

response (2). 178

2.3 Validating model predictions by quantitative analysis of 179

experiments 180

To better characterize the Matrigel patterning bioassay and to validate the 181

computational model, we analyzed time-lapse microscopic images of the patterning 182

process for a variety of cell types including HMVEC-C endothelial cells, A431 epithelial 183

carcinoma cells as well as 3T3 fibroblast cells and HT29 colon adenocarcinoma cells. 184

Image series were segmented into cell-covered and cell-free areas. As patterning 185

proceeds there is an increase in the size of cell-free areas (holes), and the rate of increase 186

is characteristic for each cell type (Fig. 1E). The patterning process is rapid for highly 187

contractile cells (endothelial cells and fibroblasts exert 1000-2000 Pa traction 188

stress [25,37,38]), and slow for weakly contractile colon carcinoma cells (which exert 189

200 Pa traction stress [39]). 190

In the following we focus our analysis on A431 epithelial carcinoma cells. This cell 191

line was chosen due to its epithelial morphology and low two-dimensional motility when 192

grown on tissue culture plastic surface – hence the patterning process is not 193

compounded with substantial cell mixing within the monolayer. After segmenting the 194

images into cell-covered and cell-free areas, we established the time-dependent 195
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Fig 5. Quantitative evaluation of the gel patterning assay with A431 cells. A:
Time-dependent cumulative distribution of cell-free area (hole) sizes: the fraction of holes that
are smaller than the x-axis value. Initial cell coverage was 66%, distribution functions were
compiled from n = 3 independent recordings and a total of 9 microscopic fields. The dotted
line shows a lognormal distribution, serving as a guide to the eye. B: Expansion rate of cell-free
areas, binned according to size. We identified areas that did not merge with adjacent holes
during a 30 minute time interval, and determined the change in their area. Larger areas grow
faster as the linear regression fit indicates (correlation coefficient: 0.94). Error bars indicate
SEM. Data was pooled and binned from n = 3 independent sets of experiments. C:
Comparison of patterning started at various initial cell densities. Time dependence of the mean
hole size Ā, compared to the initial value as Ā(t) − Ā(t = 0). Blue, green and red lines
correspond to cultures seeded with initial cell coverage at 40%, 64% and 80% confluency,
respectively. The growth rate of holes r decreases with increasing the initial cell density. Error
stripes represent SEM, calculated from n=3 independent sets of microscopic fields. D: Cell
density-dependence of the hole size growth rate r, calculated from the curves depicted in panel
C by linear fitting. Error bars indicate SEM.

Fig 6. Tensile stresses within the cell-populated Matrigel expand a punctured wound. A:
Typical kymogram depicting the expansion of a 0.2 mm2 punctured area (see also Video S8).
A431-GFP cells were seeded at a density of 1690 cells/mm2, corresponding to 66% confluency.
Green arrowhead indicates the time of the injury, yellow lines mark the boundary of the
expanding wound during the subsequent 2 hours. Scale bar: 100 µm. B: Velocity of the
expanding wound boundary, obtained from cultures seeded with two distinct cell densities.
Error bars indicate SEM (n=8). C: Cumulative change in wound area, determined by image
segmentation, in two cultures seeded with distinct cell densities. Green arrowhead indicates the
time of injury. D: Contribution of a single cell to the enlargement of the wound. Data shown in
panel C were normalized with the corresponding initial cell densities.
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distribution of cell-free areas (holes) as a measure to characterize the pattern (Fig. 5A). 196

Over the course of a day the mean pattern size increased ten-fold from 0.01 mm2 to 197

0.1 mm2. The coarsening process involves the expansion of individual cell-free areas as 198

well as the merger of adjacent holes, and retain an approximately lognormal distribution 199

of hole sizes – in good agreement with model predictions (Fig. 3A). 200

As in model simulations (Fig. 3B), larger holes grow faster (Fig. 5B). The initial lag 201

phase is often difficult to observe due to the time needed to set up the recording 202

equipment after seeding the cells. The emergence of large enough holes is followed by a 203

rapid expansion phase when the average hole size Ā increases with an approximately 204

steady rate r: 205

Ā(t) =

{
r(t− τ) for t ≥ τ

0 for t < τ .
(4)

Comparison of the approximate functional form (4) and the scaling relation (3) for 206

t > τ yields 207

F ∗ ∼ r =
dĀ

dt
, (5)

a convenient way to characterize cell contractility with the easily measurable rate of 208

hole expansion r after the onset of patterning. The slower than exponential increase in 209

Ā could reflect non-stationary experimental conditions: the contractility of cells 210

decreases in older cultures as cells consume the growth factors and nutrients within the 211

medium. Alternatively, an important difference between the model and real cells is 212

volume exclusion: while in simulations particles can achieve an arbitrary high density, 213

the volume of real cells would set a lower limit for equilibrium link lengths, and hence 214

slow down the patterning process when this limit is approached and cells cannot 215

contract further. 216

Our initial observations as well as model simulations indicate that the seeding cell 217

density ρ is a sensitive parameter that determines the pace of patterning r. Thus, we 218

performed experiments with three distinct seeding densities (Fig. 5C). The overall 219

expansion rate increased 3-fold when we compared a culture seeded at ρ = 80% 220

confluency to one seeded at ρ = 50% confluency (Fig. 5D). A linear ansatz 221

r

r0
= 1− c(ρ− ρ0) (6)

is fitted to the data in Fig. 5D, indicating that at ρ0 = 64% seeding confluency a 1% 222

increase in cell density yields a c=3.22% decrease in the hole size growth rate r. While 223

local cell density is difficult to set precisely in the experiments, it is readily measurable 224

after seeding. The calibration data in Fig. 5C then offers the possibility to offset the 225

effect of seeding density and derive standardized hole size growth rates r0, i.e., rates that 226

are expected under the same experimental conditions at ρ0 = 64% seeding confluency. 227

Using the linear ansatz (6), the standardized hole size growth rate r0 is given as 228

r0 =
r

1− c(ρ− ρ0)
, (7)

where ρ is the actual seeding density, r is the observed hole size growth rate and the 229

normalization factor is c = 3.22%/%. 230

We explain the Matrigel patterning assay by assuming that cells maintain a steady 231

contractile state, which reorganizes the highly pliable ECM culture environment in a 232

spatially inhomogeneous, non-linear manner. In particular, we assume that contractile 233

stresses within the cell-ECM composite are proportional to the local cell density, and 234

the speed of patterning is set by the creep rate of plastic deformations within the 235

cell-ECM composite material. To verify this latter assumption, we evaluated patterning 236

assays with more pliable, diluted Matrigel coatings. As expected, the patterning process 237
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Fig 7. Non-muscle myosin II (NMII) is a key factor in multicellular contractility and pattern
formation. Untreated A431-GFP cultures (A) exhibit larger structures than cultures in which
NMII-based contractility was perturbed by 10 µM blebbistatin (B). Initial cell density was
1600 cells/mm2 (66% confluency) in all conditions, images shown were recorded after 12 h in
culture (see also Video S9). Scale bar: 500 µm.

Fig 8. The patterning process slows down in the absence of normal NMII function. A, C:
Time-dependent average hole sizes, Ā(t), indicate a concentration-dependent inhibition by
blebbistatin (A) or by Y27632 Rho kinase inhibitor (C). B,D: Standardized hole expansion
rates r0, extracted by linear fitting, characterize patterning speed and hence contractility. Cells
were seeded at 66% confluency. Error stripes and bars correspond to SEM values, each
obtained from data in n=3 independent sets of microscopic fields.

was faster on diluted Matrigel (Supplementary Fig. S1). To probe the presence of 238

mechanical stresses directly, we performed mechanical puncture experiments. Such 239

assays evaluate the initial movement around a suddenly imposed discontinuity. 240

Expansion or shrinkage of the wound is expected to indicate the presence of tensile or 241

compressile stresses within the material, respectively [40–42]. By using a plastic pipette 242

tip we thus punctured the cell-Matrigel composite material, and recorded the wound 243

area in every 5 minutes. Consistent with the presence of a contractile tension in the 244

material, the wounds expanded immediately after the injury. We identified the 245

movement of the boundary on kymograms and calculated the initial expansion speed of 246

the wound. A comparison of cultures seeded with distinct cell densities indicates that 247

the expansion speed is proportional to cell density and thus suggests that each cell is an 248

active generator of tensile stress (Fig. 6). 249

2.4 NMII inhibitors perturb multicellular contractility 250

To further calibrate the Matrigel patterning process as an assay for cellular contractility, 251

we used two inhibitors to interfere with NMII activity. Blebbistatin is a specific 252

allosteric inhibitor of all type II myosins, including NMII [43]. Blebbistatin stabilizes 253

type II myosins in the low-affinity actin binding conformation and also inhibits their 254

ATPase activity. The compound Y27632 is a cell permeable inhibitor of Rho kinase 255

(ROCK), which activates NMII by two distinct mechanisms [44]. ROCK directly 256

activates NMII by phosphorylating the NMII regulatory light chain. An indirect 257

activation involves the inhibition of the myosin light-chain phosphatase and thereby 258

further shifting the equilibrium towards the active form of NMII. Both of these 259

activation pathways are blocked by Y27632. The other activator of NMII, myosin light 260

chain kinase, remains unaffected by Y27632. 261

As expected, dose-dependent inhibition of NMII activity by blebbistatin or Y27632 262

Rho kinase inhibitor yields a concentration-dependent reduction in the rate of hole 263

expansion by A431-GFP cells, seeded at 66% confluency (Fig. 7, Video S9). Accordingly, 264

after 24 h in culture the cell-free areas were substantially smaller in NMII-inhibited 265

cultures (Fig. 8). In particular, areas larger than 1 mm2 were completely eliminated 266

(Supp. Fig. S2). According to Figs. 8 and 4, we estimate that 10 µM blebbistatin or 267

30 µM Y27632 reduces contractility of A431 cells by 3- and 6-fold, respectively. 268

2.5 Role of S100A4 in multicellular contractility 269

Tensile cytoskeletal stresses arise when actin filaments, oriented in various directions, 270

are stretched and pulled by NMII minifilaments. Multimerization of NMIIA, an isoform 271
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Fig 9. Western blot of S100A4 isoforms in A431 human epithelial carcinoma clones. Upper
panel: S100A4 protein was detected in immunoblots of A431 clones. Lysates from A431 cells
(lane 2), GFP-expressing A431 cells (lane 3) or clones overexpressing either wild type S100A4
(lanes 4 and 6), or truncated non-functional mutS100A4 (lanes 5 and 7) are shown with a
standard recombinant wild type S100A4 protein sample for comparison (lane 1). Wild type
S100A4 has a relative molecular mass of 12 kDa whereas truncated mutS100A4 is 10.5 kDa.
Lower panel: For loading control, the upper part of the blot was immunolabeled for β-tubulin
(50 kDa).

Fig 10. The cytoskeleton of A431 clones overexpressing wild type or mutant S100A4. Normal
A431 cells (A) and A431 clones overexpressing either non-functional mutS100A4 (B) or wild
type S100A4 (C) were immunolabeled for NMIIA (red) while actin filaments were visualized by
fluorescein-labeled phalloidin (green). NMIIA is ubiquitous in each clone, while actin filaments
and filopodia are less abundant in the clone expressing wild type S100A4 (C). White
arrowheads point to filopodia. Scale bar: 20 µm, 40X objective. Insets in A-C show
characteristic F-actin structures within 10 µm wide areas. D) Filopodia count, averaged from
n = 6 representative cells for each group. Error bars represent SEM and asterisks indicate
statistically significant difference with p < 0.05.

of NMII, can be regulated by binding of S100A4 protein [23]. S100A4 can bind and 272

mask the assembly competence domain of NMIIA preventing its assembly into 273

functional multimers or facilitating the disassembly of existing filaments, thereby 274

controlling cell contractility. To study this fundamental aspect of NMII function, we 275

overexpressed two S100A4 variants in A431 human epithelial carcinoma cells. Earlier 276

works already established several aspects of the S100A4-myosin IIA interactions in A431 277

cells [45], offering a molecular context to the results of our functional assay. 278

Wild type S100A4 is capable of binding to the assembly competence domain of 279

NMIIA and thus prevents the assembly of NMIIA dimers and tetramers. The mutant 280

S100A4 isoform (mutS100A4) does not prevent NMIIA filament assembly as it contains 281

a point mutation (Cys81Ser) in the hydrophobic binding pocket responsible for binding 282

to NMIIA. Additionally, mutS100A4 lacks 13 C-terminal amino acid residues, which 283

further decreases its affinity to binding partners. Thus, as negative controls in S100A4 284

functional assays we used A431 clones stably transfected with the mutS100A4 construct, 285

a clone transfected with GFP only as well as non-transfected A431 cells. Western blots 286

indicate stable expression of both the wild type and mutant S100A4 variants in A431 287

clones (Fig. 9). 288

Western blots from cell lysates were also used to verify that the myosin variant 289

NMIIA is indeed present in A431 human epithelial carcinoma cells (Supp. Fig. S3). 290

Double labeling of NMIIA and F-actin in normal A431 cells shows that NMIIA is 291

present in cytoplasmic speckles with structures that tend to colocalize with F-actin 292

where actin stress filaments are present (Supp. Fig. S4). NMIIA remains ubiquitously 293

present in the cytoplasm of A431 clones overexpressing different S100A4 variants 294

Fig 11. Effect of S100A4 protein on Matrigel patterning of A431 cells. A-B: representative
images taken at 12 h in culture (see Video S10) of A431 cells overexpressing either the
non-functional mutant form (A431-mutS100A4, clone6) or the wild type S100A4
(A431-S100A4, clone2). Initial cell density was 1600 cells/mm2 (66% confluency). Scale bar:
500 µm. C: Time-dependent average hole sizes, Ā(t), obtained for 5 distinct A431 clones. D:
Standard hole size growth rates r0 were extracted from the data shown in C by linear fitting.
Error stripes and bars are SEM values, each calculated from n=4 independent experiments.
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(Fig. 10). However, the overexpression of wild type S100A4 alters the organization of 295

the cytoskeleton. The most conspicuous difference is in filopodium density: F-actin rich 296

filopodia are abundant in both normal A431 cells and in the clone expressing the 297

non-functional mutS100A4 protein, whereas filopodia become shorter and fewer with 298

less stress filaments when wild type S100A4 is overexpressed. 299

To test the effect of S100A4 on multicellular contractility-driven patterning of A431 300

cells we employed the clones overexpressing either wild type S100A4 or the 301

non-functional mutant isoform of S100A4 as well as a GFP-expressing clone for 302

comparison. When seeded on Matrigel, the overexpressed wild type S100A4 reduced the 303

rate of hole expansion by ≈75% (Fig. 11). Accordingly, after 15 hours the size 304

distribution of cell free areas indicates the absence of large holes (Supp. Fig. S5). 305

Comparing these effects with the experiments utilizing small molecule inhibitors of NMII 306

(Fig. 8), the overexpression of S100A4 reduces cell contractility to an extent comparable 307

with blebbistatin or Y27632 at 10 µM concentrations. Based on our numerical model, 308

the observed behavior is consistent with a 75% reduction in cell contractility. 309

3 Discussion 310

3.1 Contractility assay 311

To study NMII-dependent multicellular contractility, we developed and calibrated a 312

bioassay utilizing the ability of contractile cells to pattern a soft Matrigel substrate into 313

network structures. The imaging-based assay was interpreted by a computational model 314

that keeps track of intercellular connections and allows the relaxation of mechanical 315

stresses by rearranging the connectivity of particles. The model does not distinguish 316

between the cell and ECM component of the composite material: as both components 317

move together and form a composite material, model particles represent both a cell and 318

a surrounding ECM microenvironment. While our model incorporates the essential 319

biomechanical aspects of the patterning process, simplification during the modeling 320

approach – like assuming an environment in steady state and not considering volume 321

exclusion effects – limits the quantitative applicability of our model to the onset of 322

pattern formation. 323

In our experiments we utilized Matrigel [46], a uniquely pliable biological hydrogel. 324

The 200 Pa yield stress of Matrigel [47] is thirty times lower than the 6 kPa yield stress 325

of a type I collegen gel at 2 mg/ml concentration [48]. In comparison, typical traction 326

stresses are 1500 Pa for endothelial cells [37], 400-2000 Pa for fibroblasts [25,38], 327

1000 Pa for A431 epithelial carcinoma cells [49] and 200 Pa for colon carcinoma cells [39]. 328

Thus, the yield stress of Matrigel is well within the range of cell-exerted stresses, while 329

the yield stress of collagen I is not. Accordingly, we did not expect to observe and were 330

unable to elicit similarly quick pattern formation on collagen I or fibrin gel substrates. 331

Cell contractility-driven patterning of collagen gels takes several days to weeks and yield 332

different patterns [30,31] with an important contribution of cell motility [32–35]. 333

The unique mechanical properties of Matrigel could be mimicked by the synthetic 334

polymer hydrogel PMEDSAH (poly[2-(methacryloyloxy)ethyl 335

dimethyl-(3-sulfopropyl)ammonium hydroxide]). PMEDSAH is a suitable substrate for 336

cell adhesion [50], and exhibits an elastic modulus of 380 Pa [51], a value similar to 450 337

Pa, the elastic modulus of Matrigel [52]. The yield stress of PMEDSAH is likely to be 338

higher than that of Matrigel. The best estimate for the yield stress of PMEDSAH 339

comes from a recent report [53] where a yield stress of 1500 Pa was measured for a 340

composite material of 75% PMEDSAH and 25% pellethan fibermat. Based on this 341

report the yield stress of PMEDSAH is expected to fall in the upper range of 342

cell-exerted stresses. Therefore, PMEDSAH is a promising synthetic substrate 343
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candidate to measure multicellular contractility. 344

While the patterning assay does not allow absolute determination of cell-exerted 345

forces, it readily provides relative comparison between parallel cultures after differences 346

in initial seeding density are properly factored into the evaluation. Importantly, we 347

found that A431 epithelial carcinoma cells in the gel patterning assay responded to 348

inhibitors of NMII activity at concentrations that overlapped with the range used 349

previously in cell traction force microscopy studies (50 µM for blebbistatin and 350

10-25 µM for Y27632 [54–57]). All internal control (untreated) cultures in n > 10 351

experiments, performed over the time span of several years, yielded consistent numerical 352

values for the standardized patterning speed r0. This consistency allows to measure 353

dose-dependent responses in parallel cultures and thus allows future development of 354

medium- to high-throughput applications to evaluate the effects of pharmacological 355

compounds on cell contractility. 356

3.2 Endothelial tube formation assay 357

Multicellular contractility-based pattern formation is not limited to epithelial or 358

endothelial cells that exhibited very similar dynamics in our experiments. Various cell 359

types including fibroblasts and smooth muscle cells have been reported to generate 360

network patterns when cultured on sufficiently malleable substrates [58]. Still, the 361

endothelial tube formation assay on Matrigel substrate [59,60] is widely used as a 362

functional assay not only for endothelial cells but also for tumor cells exhibiting 363

vasculogenic mimicry [61–63]. Currently a wide range of commercially available 364

angiogenesis assays employ cells seeded on Matrigel or other basal membrane extract 365

substrates, and angiogenic tube formation potential is evaluated by characterizing the 366

emerging network pattern. 367

We, however, argue that these assays are primarily sensitive to multicellular 368

contraction, and the characteristic network patterns are distinct from – and formed by a 369

different mechanism than – lumenized endothelial tubes [64]. The fundamental 370

difference in the patterning mechanism of the Matrigel assay and of angiogenesis is also 371

reflected in the computational models describing the two phenomena. The primary 372

process of angiogenesis is multicellular sprouting, which likely involves chemotactic 373

guidance [65–69], contact guidance by ECM structure [70–72], or by cell-cell 374

contacts [73,74]. In contrast, cells in the Matrigel patterning assay are repositioned by a 375

contractility-driven convective plastic flow. Thus, appropriate care should be taken 376

when interpreting tube formation assay results, especially taking into consideration the 377

ubiquitous ability of contractile cells to form network-like structures by deforming the 378

elastoplastic cell-ECM composite material. 379

3.3 Biomedical role of S100A4-mediated multicellular 380

contractility 381

Decreased contractility in vivo can lead to altered tissue integrity such as in various 382

tumors and it can be a step towards a metastatic phenotype. Increased levels of S100A4 383

were reported for several tumors [75–77] and it also correlates with worse prognosis in 384

cancer patients [78]. By binding to extracellular partners like annexin A2 and 385

transglutaminase-2 [79,80], S100A4 can also hinder cell-ECM adhesion of cancer 386

cells [81]. The observed change in stress filament abundance (Fig. 10) is in agreement 387

with findings in MDA-MB-231 breast carcinoma cells, which exhibited an increase in 388

cytoskeletal stress filament formation in the absence of S100A4 [82]. Although several 389

aspects of the relationship of S100A4 with NMII and the cytoskeleton have been 390

elucidated, the direct impact of S100A4 on cell contractility using a functional assay has 391

not yet been reported to our knowledge. In this paper we have demonstrated that 392
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S100A4 expression can indeed modulate tissue-level contractility of epithelial carcinoma 393

cells in vitro. 394

3.4 Conclusions and outlook 395

In this work we utilized cell-resolved simulations, but we expect that the same 396

mechanism can be also captured by a fluid dynamics approach [83–85]. We trust that 397

the presented bioassay will be helpful as a relatively simple tool to further elucidate the 398

roles of cell contractility and its molecular regulators. We identified key experimental 399

variables such as cell density and ECM pliability which must be tightly controlled in 400

experiments or taken into account when analyzing results. While we used a time-lapse 401

approach, hole size distribution functions obtained from end-point micrographs are also 402

likely to reveal contracile activity (see Supp. Figs. S2 and S5). 403

4 Methods and Models 404

4.1 Cell culture 405

The human A431 epithelial carcinoma cell line, 3T3 mouse fibroblast cell line and HT29 406

human colon carcinoma cell line were obtained from ATCC. Cells were maintained in 407

Dulbecco’s Modified Eagle Medium (DMEM, Lonza) containing L-glutamine, 408

supplemented with 10% Fetal Bovine Serum (Invitrogen) and 409

Penicillin-Streptomycin-Amphotericin B (Lonza). Primary human umbilical vein 410

endothelial cells (HUVEC) and primary human cardiac microvascular endothelial cells 411

(HMVEC-C) were purchased from Lonza and cultured in EGM2 medium (Lonza) 412

containing Penicillin-Streptomycin-Amphotericin B (Lonza). 413

4.2 S100A4 constructs 414

The gene of human S100A4 (Uniprot code: P26447) was obtained from Dr. Jörg 415

Klingelhöfer. We derived a mutant isoform, herein referred to as mutS100A4, containing 416

a point mutation in position 81 that replaces a cysteine by serine and lacking 13 amino 417

acids at the C-terminal, by the Megaprimer method [86]. Both the wild type S100A4 418

and the mutS100A4 genes were subcloned into pIRES2-eGFP plasmid (Clontech), 419

containing an internal ribosome entry site using restriction sites XhoI and BamHI. Cells 420

were transfected with linearized plasmids (using BsaI restriction site for linearization) 421

using FuGene HD transfection reagent (Promega), according to the manufacturer’s 422

instructions. Stable transfectants were selected with 0.4 mg/ml G418 antibiotics (Merck 423

Millipore). After two weeks of selection, stably transfected cells were further selected by 424

their GFP signal using FACSAria Cell Sorter (BD Biosciences). After selection, cells 425

were maintained in 0.2 mg/ml G418. Six S100A4-overexpressing and five 426

mutS100A4-overexpressing cell clones were eventually established, of which two from 427

each group were used for detailed studies. 428

4.3 Recombinant proteins 429

The gene of human S100A4 was cloned into a modified pBH4 expression vector, 430

expressed and purified as described earlier [21]. 431

4.4 Inhibitors 432

Y27632, the cell permeable inhibitor of Rho kinase was purchased from Merck Millipore, 433

dissolved in water to make 10 mM stock solutions and used in final concentrations up to 434
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30 µM. Blebbistatin, the inhibitor of non-muscle myosin II, was purchased from Merck 435

Millipore, dissolved in DMSO to make 50 mM stock solutions and used in final 436

concentrations up to 30 µM, as indicated in the corresponding text. For negative 437

control treatments identical amount of water or DMSO was used. 438

4.5 Immunocytochemistry 439

To detect the NMIIA isoform in A431 cell line, cells were seeded into glass 440

coverslip-containing 24-well plates. Cells were fixed with 4% paraformaldehyde and 441

permeabilized using 0.1% Triton X-100. Samples were blocked with 2% w/v Bovine 442

Serum Albumine solution, endogenous NMIIA was detected using anti-NMIIA antibody 443

(rabbit, polyclonal, 1:300, Biolegend) and Alexa Fluor-546-conjugated anti-rabbit 444

secondary antibody (Life Technologies). Actin filaments were stained by 445

phalloidin-FITC conjugate (Sigma-Aldrich). Immunofluorescence was imaged using a 446

Zeiss Axio Observer Z1 microscope equipped with 40x EC Plan-Neofluar objective, 447

Colibri illumination system and AxioCam MRm camera. 448

4.6 Western blot 449

A431 stable transfectants were lysed in lysis buffer (25 mM Tris pH 7.4, 150 mM NaCl, 450

2 mM EDTA, 1% v/v Triton X-100, 2.5 mM DTT and 1% v/v protease inhibitor 451

cocktail). Protein concentration was measured by Bradford method, and 20 µg total 452

protein samples were run by SDS-PAGE using 10% Tris-Tricine gel. Samples were 453

blotted to PVDF membrane and S100A4 was detected by anti-S100A4 antibody (mouse, 454

monoclonal, PR006.21.3, 1:1000 dilution, a kind gift of Dr. Jörg Klingelhöfer) and 455

horseradish peroxidase-conjugated anti-mouse secondary antibody (1:5000, Santa Cruz). 456

For loading control, tubulin was detected by anti-tubulin monoclonal antibody, (1:5000, 457

Sigma) and horseradish peroxidase-conjugated anti-mouse antibody. Chemiluminescence 458

was detected by using ECL Western Blotting Substrate (Pierce). NMIIA was detected 459

from 20 µg A431 cell lysate using 8% Tris-glycine gel and anti-NMIIA antibody (1:2000, 460

BioLegend) and horseradish peroxidase-conjugated anti-rabbit secondary antibody 461

(1:2000, Santa Cruz). 462

4.7 Live cell imaging 463

Time-lapse recordings were performed on a Zeiss Axio Observer Z1 inverted microscope 464

with 10x Plan Neofluar objective. The microscope was equipped with a Zeiss AxioCam 465

MRm CCD camera and a Marzhauser SCAN-IM powered stage. Cultures within tissue 466

culture Petri dishes (Greiner) were kept in a stage-mounted incubator providing 37oC 467

and a humidified 5% CO2 atmosphere. Stage positioning, focusing, image collection and 468

stitching of images into mosaics (2x2, 3x3 or 9x12) were controlled by Zeiss Axiovision 469

4.8 software and a custom experiment manager software module. Phase contrast images 470

were collected every 10 minutes from each microscopic field for durations ranging from 471

24 to 48 hours. 472

4.8 Matrigel patterning assay 473

Matrigel substrates were prepared by pouring 20 µl ice cold Matrigel solution (ECM gel, 474

E1270, Sigma) into 6 mm diameter circular wells. Three of such polylactic acid (PLA) 475

well walls were previously filament-deposition (“3D”) printed (Ultimaker) into tissue 476

culture Petri dishes (Greiner) using the method described earlier by our group [87]. 477

After gelation, cell suspension was added to the wells at an average density of 478

1600 cells/mm2. Following an initial adhesion phase, cells covered approximately 2/3 of 479
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Fig 12. Mechanical model. Rectangular shapes indicate cell membranes. Beams represent
mechanically connected cytoskeletal structures of adherent cells. A: Mechanical stress-free
configuration of two particles, i and j. Unit vectors, ti and tj co-rotate with the particles. B:
Compressed cells. Interaction of the two cells raise spatially distributed forces (red arrows),
replaced by the repulsive net forces Fi and Fj . C: Symmetric rotation of both particles yields
torques Mi and Mj acting on particles i and j. Torque vectors are perpendicular to the plane
of the figure. D: Shear of the tissue creates torques Mi, Mj and also shear forces Fi, Fj acting
at the particles.

the Matrigel surface. Cells remodeled the Matrigel within a few hours, and the process 480

was recorded by phase contrast time-lapse microscopy. 481

4.9 Image analysis 482

Images recorded by time-lapse microscopy were analyzed using the NIH ImageJ software 483

with plugins of our design, available at 484

https://github.com/gulyasmarton/ContractilityAnalyzer. In the Matrigel contraction 485

assay cell-free areas (holes) develop within the cell layer that was seeded on a Matrigel 486

substrate. The images were filtered by a Gaussian blur (the width was adjusted to the 487

sample) and were segmented by the default ImageJ thresholder (IsoData [88]). We 488

identified each hole as a cluster of connected pixels and determined their areas. From 489

this data we calculated the mean hole size and the cumulative distribution function of 490

the hole areas as a function of time. We also determined the expansion rate of holes by 491

identifying overlapping clusters on consecutive images. Hole merging and splitting 492

events were excluded by selecting clusters that overlap with only a single cluster in the 493

second image. 494

4.10 Computational model describing an elastoplastic 495

multicellular mechanics 496

We used a computational model [36] that represents the elastoplastic mechanics of 497

multicellular assemblies by a network of particles and interconnecting elastic beams 498

(Fig. 12), available at https://github.com/donnagreta/cellmech. Briefly, each particle i 499

is characterized by its position ri and orientation φi. Since we consider a two 500

dimensional system on the x-y plane, φi has a single component, describing rotation 501

around the orthogonal (z) direction. The beams transmit torques and non-central forces 502

(i.e., forces with shear components) that arise due to the relative movement of adjacent 503

cells. 504

Hooke’s law determines the force F ‖ that arises when a pair of cells is stretched or 505

compressed (Fig. 12b). For a link l interconnecting particles i and j, the Hooke force 506

component is given as 507

F
‖
l = k(|rj − ri| − `l), (8)

where `l is the mechanically neutral distance of the two cells and k > 0 is a model 508

parameter representing cytoskeletal stiffness. 509

A torque and shear forces are exerted by a link if its mechanically neutral 510

(“preferred”) direction at particle i, ti,l, is distinct from its current direction ui,j 511

(Figs. 12c,d). For small differences the exerted torque is proportional to the angle 512

between the preferred and actual directions: 513

Mi,l = g(ti,l × ui,j), (9)
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where the microscopic bending rigidity g is a model parameter setting the macroscopic 514

shear modulus [36]. Shear forces transmitted by the link are calculated from the 515

requirement of the link being in mechanical equilibrium. 516

Multicellular plasticity can be modeled with rules rearranging the network of 517

intercellular adhesions. The probability of removing a link l during a short time interval 518

∆t increases with the tensile Hookean force (8) transferred by the link, F t
l , as defined by 519

Bell’s rule [89]: 520

pl∆t = AeF
t
l /F0∆t, (10)

where F0 is a threshold value and A is a scaling factor defining stability of connections. 521

Mechanical connections can be established between two Voronoi neighbor particles, i 522

and j. During a short time interval ∆t the probability of inserting a new link is a 523

decreasing function of the distance di,j between the particles: 524

qi,j∆t = B

(
1− di,j

dmax

)
∆t, (11)

where the scaling factor B defines the intensity of cellular protrusive activity and dmax 525

denotes the maximal distance for new connections. 526

Using the probability distributions (10) and (11), the next event µ and waiting time 527

τ is calculated according to the stochastic Gillespie algorithm [90]. The waiting time 528

until the next event is chosen from the distribution 529

logP (τ) = −τ

∑
l

pl +
∑
i,j

qi,j

 , (12)

where the sums are calculated by iterating over each link l and over all possible Voronoi 530

neighbor particle pairs i, j that are not connected by a link. 531

4.11 Computational model of contractile cells on a Matrigel 532

substrate 533

To interpret the results of the ECM contractility assay, we augmented the above model 534

with rules that specifically control the equilibrium distance between adjacent cells and 535

represent adhesion between cells and the culture substrate (Fig. 2A.) 536

Assuming that cells actively maintain a specific contractile environment, we set the 537

equilibrium link length `l in Eq. (8) as 538

d`l
dt

= Cd0
F t
l − F ∗

F0
. (13)

Thus, the change in the equilibrium link length is proportional to the difference between 539

a target contractility value, F ∗, and F t
l , the tensile component of the actual Hookean 540

force (8). Parameter C sets the temporal scale of the regulation. In expression (13) link 541

lengths are compared to the average cell size, d0 ≈ 25 µm, and contractile forces are 542

compared to the Bell threshold force F0. 543

Adhesion between the cells and the rigid substrate is mediated trough the 544

elastoplastic Matrigel. The elastic component of the adhesion force is proportional to 545

the displacement relative to an equilibrium position r0i as 546

Fi,0 = g0(ri − r0i ). (14)

Over a longer time scale the Matrigel dissipates elastic stresses by adjusting the 547

equilibrium position as 548

dr0i
dt

=
αd0
F0

Fi,0, (15)
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where parameter α sets the speed of Matrigel creep between the rigid substrate and the 549

cell. The suite of simulation tools is accessible at 550

https://github.com/aczirok/cellmech-contractilityAssay 551

4.12 Model parameters 552

The unit distance of the simulations was set to the average size of an A431 cell adhering 553

to a rigid substrate, d0 = 25 µm. (On the soft Matrigel, however, cells are smaller and 554

the corresponding cell density of 1600 cells/mm2 yields only 2/3 initial confluence.) The 555

maximal distance, dmax, that still allows two cells to establish mechanical contact by 556

extending protrusions was chosen as dmax = 50 µm. 557

Our force unit – and the typical magnitude of the forces acting in the simulation – is 558

the threshold force F0 ≈ 100 nN [36] which is needed to separate two adherent cells 559

according to Eq. (10). For elastic parameters we used values calibrated in [36]. A431 560

cells, like metastatic epithelial carcinoma cells, were assumed to be soft [91], thus for the 561

elastic parameters of the cell-ECM composite we used E = 500 Pa, and the Poisson 562

number ν = 0.1. These values translate to dimensionless microscopic parameters k = 1.5 563

and g = 1. We set the elastic modulus associated with substrate adhesion to the same 564

magnitude: g0 = 1.5. 565

Waiting times between simulation events are set by parameters A and B. We choose 566

our time unit as 1/B ≈ 1 min, the time needed for two adjacent cells to build up 567

molecular complexes that mechanically link their cytoskeletons. We set the lifetime of 568

an unloaded link to 1/A ≈ 3 h. Thus, according to these values, two cells pulled away 569

by the threshold force F0 separate in ≈ 1 h, a value consistent with the time scale 570

observed in our cell culture experiments (Fig. 5). Similar time scales were set for 571

contractility regulation (1/C ≈ 20 min), and for the speed of Matrigel creep αd0/F0= 572

1.5 µm/h / nN. According to the latter choice, the force unit F0 induces a creep flow at 573

the speed of ≈ 150 µm/h – a value consistent with the observed speeds in our culture 574

system. While we report simulation results with these parameters, parameter sensitivity 575

analysis indicates that none of these values are crucial to obtain the reported patterns. 576

5 Supporting information 577

Fig. S1 Effect of Matrigel dilution on patterning. Time dependence of the mean hole 578

size (cell-free area), Ā) of the developing pattern. A431-GFP cells were seeded at 579

1600 cells/mm2 initial density on Matrigel or Matrigel diluted to 90% v/v with PBS. 580

Error stripes represent SEM, calculated from n=3 independent sets of experiments. 581

Fig. S2 Inhibition of NMII function. Either blebbistatin (A) or Y27632 Rho kinase 582

inhibitor (B) effectively blocks the formation of large holes in a concentration dependent 583

manner within the Matrigel patterning assay. Cumulative distribution functions of 584

particle free area (hole) sizes indicate the fraction of holes that are larger than the value 585

at the abscissa. Each distribution was pooled from n=3 sets of microscopic fields, 586

imaged 15 h after seeding A431 epithelial carcinoma cells on Matrigel substrate. 587

Fig. S3 NMIIA western blot of A431 human epithelial carcinoma cell clones. Upper 588

panel: Lysates of A431 cells (lane 1), GFP-expressing A431 cells (lane 2) and clones 589

overexpressing either wild type S100A4 (lanes 3 and 5), or truncated non-functional 590

mutS100A4 (lanes 4 and 6) were immunoblotted for non-muscle myosin II A isoform. 591

NMIIA is present in all clones with a relative molecular mass of around 200 kDa. Lower 592

panel: For loading control, the lower part of the blot was immunolabeled for β-tubulin 593

(50 kDa). 594
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Fig. S4 Colocalization of F-actin and NMIIA in A431 cells. F-actin was visualized by 595

fluorescein-labeled phalloidin (panel A, green in panel B), while NMIIA was 596

immunolabeled (panel C, red in panel B). Colocalization is seen as structures of yellow 597

color (panel B) and pointed to by yellow arrowheads in the insets of panels A and C. 598

Scale bar: 20 µm, 40X objective. 599

Fig. S5 Effect of S100A4 on the contractility of A431 cells, characterized by the 600

distribution of hole sizes. Cumulative distribution functions of particle free area (hole) 601

sizes indicate the fraction of holes that are larger than the value at the abscissa. Each 602

data set was pooled from n=4 independent sets of microscopic fields, imaged 15 h after 603

seeding A431 epithelial carcinoma cells on Matrigel substrate. A431 clones were either 604

overexpressing a non-functional mutant S100A4 (clone6: red and clone4: blue), the wild 605

type S100A4 (clone2: orange and clone3: green) or GFP alone (black). 606

Video S1 HMVEC-C cardiac microvascular endothelial cells pattern the Matrigel 607

substrate. Note the co-movement of cells and the gel substrate during the process. 608

Phase contrast time lapse microscopy with 10x objective and 12 h duration. Seeding 609

density was 1600 cells/mm2. 610

Video S2 3T3 fibroblast cells pattern the Matrigel substrate. Note the co-movement 611

of cells and the gel substrate during the process. Phase contrast time lapse microscopy 612

with 10x objective and 8 h duration. Seeding density was 1600 cells/mm2. 613

Video S3 A431 epithelial carcinoma cells pattern the Matrigel substrate. Note the 614

co-movement of cells and the gel substrate during the process. Phase contrast time lapse 615

microscopy with 10x objective and 22 h duration. Seeding density was 1600 cells/mm2. 616

Video S4 HT29 colon carcinoma cells pattern the Matrigel substrate. Note the 617

co-movement of cells and the gel substrate during the process. Phase contrast time lapse 618

microscopy with 10x objective and 22 h duration. Seeding density was 2400 cells/mm2. 619

Video S5 HUVEC cells remodel the Matrigel substrate into a network of 620

interconnected vertices and polygonal cell-free areas. Note the co-movement of cells and 621

the gel substrate during the process. Phase contrast time lapse microscopy with 10x 622

objective and 24 h duration. Seeding density was 140 cells/mm2. 623

Video S6 A431 epithelial carcinoma cells maintain a monolayer when seeded at 624

100Phase contrast time lapse microscopy with 10x objective and 20 h duration. Seeding 625

density was 2680 cells/mm2. 626

Video S7 Time development of pattern formation in a simulated system of 627

contractile cells and their ECM microenvironment, represented by spheres, interacting 628

through elastic beams visualized as rods. Note the formation of dense cell nodes and 629

cell-free areas from the initial homogeneous cell layer. Simulation with N = 300 630

particles, L = 20d0 = 500 µm, k = 1.5, F ∗/F0 = 1. 631

Video S8 A431 epithelial carcinoma cell monolayer on Matrigel substrate expands a 632

wound. The wound was punctured, shown by white circle, at 1 h after cell attachment. 633

Note the co-movement of gel substrate with cells. Phase contrast time lapse microscopy 634

with 10x objective and 8 h duration. Seeding density was 1690 cells/mm2. 635
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Video S9 Pattern formation of A431 epithelial carcinoma cell cultures on Matrigel 636

substrate in the presence of 10 µM blebbistatin (top right panel), 30 µM Y27632 637

(bottom right panel), or in the absence of inhibitors (left panel). Note the smaller 638

pattern size in the right panels. Phase contrast time lapse microscopy with 10x 639

objective and 21 h duration. Seeding density was 1600 cells/mm2. 640

Video S10 Pattern formation of s100A4 overexpressing A431 epithelial carcinoma 641

cell lines on Matrigel substrate. A431 clones overexpress either the non-functional 642

mutant S100A4 form (A431-mutS100A4, left panel) or the wild type S100A4 643

(A431-S100A4, right panel). Note the formation of smaller structures in the right panel. 644

Phase contrast time lapse microscopy with 10x objective and 24 h duration. Seeding 645

density was 1600 cells/mm2. 646
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21. Kiss B, Duelli A, Radnai L, Kékesi KA, Katona G, Nyitray L. Crystal structure
of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an
asymmetric target binding mechanism. Proc Natl Acad Sci U S A.
2012;109(16):6048–6053. doi:10.1073/pnas.1114732109.

22. Elliott PR, Irvine AF, Jung HS, Tozawa K, Pastok MW, Picone R, et al.
Asymmetric mode of Ca2+-S100A4 interaction with nonmuscle myosin IIA
generates nanomolar affinity required for filament remodeling. Structure.
2012;20(4):654–666. doi:10.1016/j.str.2012.02.002.

23. Dulyaninova NG, Malashkevich VN, Almo SC, Bresnick AR. Regulation of
myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation.
Biochemistry. 2005;44(18):6867–6876. doi:10.1021/bi0500776.

24. Dembo M, Wang YL. Stresses at the cell-to-substrate interface during locomotion
of fibroblasts. Biophys J. 1999;76(4):2307–16. doi:10.1016/S0006-3495(99)77386-8.

25. Munevar S, Wang Y, Dembo M. Traction force microscopy of migrating normal
and H-ras transformed 3T3 fibroblasts. Biophys J. 2001;80(4):1744–57.
doi:10.1016/s0006-3495(01)76145-0.

September 17, 2019 20/25



26. Ambrosi D, Duperray A, Peschetola V, Verdier C. Traction patterns of tumor
cells. J Math Biol. 2009;58(1-2):163–81. doi:10.1007/s00285-008-0167-1.

27. Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X,
et al. Collective cell guidance by cooperative intercellular forces. Nat Mater.
2011;10(6):469–75. doi:10.1038/nmat3025.
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56. Fabry B, Klemm AH, Kienle S, Schäffer TE, Goldmann WH. Focal adhesion
kinase stabilizes the cytoskeleton. Biophys J. 2011;101(9):2131–2138.
doi:10.1016/j.bpj.2011.09.043.

57. Biondini M, Duclos G, Meyer-Schaller N, Silberzan P, Camonis J, Parrini MC.
RalB regulates contractility-driven cancer dissemination upon TGFβ stimulation
via the RhoGEF GEF-H1. Sci Rep. 2015;5:11759. doi:10.1038/srep11759.

58. Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH. Reorganization of
basement membrane matrices by cellular traction promotes the formation of
cellular networks in vitro. Lab Invest. 1992;66(5):536–47.

59. Francescone RA, Faibish M, Shao R. A Matrigel-based tube formation assay to
assess the vasculogenic activity of tumor cells. J Vis Exp. 2011;(55).
doi:10.3791/3040.

60. DeCicco-Skinner KL, Henry GH, Cataisson C, Tabib T, Gwilliam JC, Watson NJ,
et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis.
J Vis Exp. 2014;(91):e51312. doi:10.3791/51312.

61. Hendrix MJC, Seftor EA, Hess AR, Seftor REB. Vasculogenic mimicry and
tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer.
2003;3(6):411–21. doi:10.1038/nrc1092.

62. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular
channel formation by human melanoma cells in vivo and in vitro: vasculogenic
mimicry. Am J Pathol. 1999;155(3):739–52. doi:10.1016/S0002-9440(10)65173-5.

63. Hallani SE, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, et al. A new
alternative mechanism in glioblastoma vascularization: tubular vasculogenic
mimicry. Brain. 2010;133(Pt 4):973–82. doi:10.1093/brain/awq044.

64. Davis GE, Black SM, Bayless KJ. Capillary morphogenesis during human
endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev
Biol Anim. 2000;36(8):513–9.
doi:10.1290/1071-2690(2000)036¡0513:CMDHEC¿2.0.CO;2.

65. Gamba A, Ambrosi D, Coniglio A, de Candia A, Di Talia S, Giraudo E, et al.
Percolation, morphogenesis, and burgers dynamics in blood vessels formation.
Phys Rev Lett. 2003;90(11):118101.

66. Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F. Modeling
the early stages of vascular network assembly. EMBO J. 2003;22:1771–9.

67. Ambrosi D, Bussolino F, Preziosi L. A Review of Vasculogenesis Models. Journal
of Theoretical Medicine. 2005;6(1):1–19. doi:10.1080/1027366042000327098.

68. Merks RMH, Perryn ED, Shirinifard A, Glazier JA. Contact-inhibited
chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput Biol.
2008;4(9):e1000163. doi:10.1371/journal.pcbi.1000163.
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Abstract

Non-muscle myosin II (NMII)-induced multicellular contractility is essential for
development, maintenance and remodeling of tissue morphologies. Dysregulation of the
cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate
that the Matrigel patterning assay, widely used to characterize endothelial cells, is a
highly sensitive tool to evaluate cell contractility within a soft extracellular matrix
(ECM) environment. We propose a computational model to explore how cell-exerted
contractile forces can tear up the cell-Matrigel composite material and gradually
remodel it into a network structure. We identify measures that are characteristic for
cellular contractility and can be obtained from image analysis of the recorded
patterning process. The assay was calibrated by inhibition of NMII activity in A431
epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632
Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first
functional demonstration that overexpression of S100A4, a calcium-binding protein that
is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by
inducing filament disassembly, effectively reduces cell contractility.

Author summary

Sensing and exerting forces is a fundamental aspect of tissue organization. We
demonstrate that contractile cells form an intricate network structure when placed in a
pliable culture environment, a phenomenon often associated with vascular networks and
is being actively used to characterize endothelial cells in culture. We propose a
computational model that operates with mechanical stresses, plastic deformation and
material failure within the cell-extracellular matrix composite to explain the patterning
process. In addition to re-interpret a decades-old tool of experimental cell biology, our
work suggests a potentially high throughput computational assay to characterize cellular
contractility within a soft ECM environment.

1 Introduction 1

Cells use contractile forces, generated and regulated by cytoskeletal proteins, to 2

maintain a structured multicellular tissue [1]. Cell-cell adhesion and tissue surface 3
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tension are contractility-related phenomena that have key roles in providing tissue 4

integrity and driving morphogenesis [2–4]. Multicellular contractility plays a prominent 5

role in various physiological and developmental processes [5]. Some of the best 6

characterized examples come from embryonic morphogenesis events where coordinated 7

multicellular contractility is the major driver of cell movements and subsequent cell 8

differentiation. During the formation of the neural tube in vertebrates, the bending of 9

the neural plate epithelium is driven by coordinated apical constriction of cells, which is 10

regulated by Rho kinase recruitment and local activation of non-muscle myosin II 11

(NMII) at cell apexes [6–9]. Another extensively studied multicellular 12

contractility-driven process is the early embryonic development of insects. In Drosophila 13

the germ band develops into the segmented trunk of the embryo. This convergent 14

extension process involves cell intercalation, mediated by NMII-dependent cortical 15

tension of germ band cells [10–12]. In cell culture wound healing experiments cell 16

contractility exhibits a non-uniform spatial distribution, suggested to coordinate 17

two-dimensional collective cell migration [13]. Contractility also has substantial roles in 18

cancer progression and metastasis [14,15]. 19

At the molecular level cell contractility is driven by the activity of non-muscle 20

myosin II (NMII), organized into bipolar minifilaments sliding along actin filaments of 21

the cytoskeleton [16]. Myosins are actin-binding motor proteins that use the energy of 22

ATP to produce forces required not only in muscle contraction, but also in processes like 23

cytokinesis, cell adhesion and migration. Non-muscle myosin II, in particular, is a 24

molecular motor abundant in practically all animal cell types [17]. It is composed of two 25

heavy chains, two essential and two regulatory light chains. The heavy chains fold into 26

two globular head domains containing binding sites for ATP and actin, followed by two 27

neck regions that function as lever arms during force generation, and finally into a long 28

dimeric coiled-coil tail and a nonhelical tailpiece. The neck region level arms are 29

stabilized through forming a complex with the NMII light chains. Usually, 28 NMII 30

molecules assemble into bipolar “minifilaments” through electrostatic interactions of the 31

coiled-coil tails. Single NMII molecules and even dimers cannot move actin filaments, 32

the onset of this activity requires at least a tetrameric state. NMII can exert 33

intercellular forces at cell junctions as well as traction forces transmitted to the 34

extracellular matrix substrate. 35

NMII activity is regulated by various means, including the binding of protein 36

interaction partners. One of the binding partners of NMII is the metastasis-associated 37

protein S100A4 (also called metastasin). Members of the S100 protein family are small, 38

calcium-binding proteins that exert their function mainly by forming complexes with 39

their regulatory targets. S100A4 is one of the most studied members of the family as it 40

is frequently overexpressed in metastatic tumors [18]. The molecular interaction 41

between S100A4 and a particular NMII isoform, NMIIA, is well studied [19]. S100A4 42

binds to a region that overlaps the coiled-coil assembly competence domain (responsible 43

for filament formation) and the C-terminal non-helical tailpiece [20–22]. Thus, the 44

presence of S100A4 disrupts existing myosin filaments and also prevents their 45

assembly [23]. Hence, S100A4 can control cell contractility by regulating the dynamic 46

assembly of NMIIA. 47

The current tool to assay cell contractility is traction force microscopy, which 48

characterizes cell-exerted forces by measuring deformations of an elastic 49

substrate [24–26]. Initially applied for single cells, this method has been extended to 50

monolayer cultures yielding a spatio-temporal map of traction stresses across a 51

multicellular domain extending several millimeters [27]. Traction force microscopy, 52

however, is a computationally intensive and complex measurement, which requires the 53

preparation of a suitably homogeneous and well-defined elastic substrate with known 54

constitutive equation and material parameters [28]. Preparation of such uniform, well 55
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Fig 1. Pattern formation on Matrigel substrate. Several cell types condense into progressively
denser clusters, creating thereby a network which delineates cell-free areas (“holes”).
Phase-contrast micrographs, recorded at the indicated times after seeding, show HMVEC-C
human cardiac microvascular endothelial cells (A), 3T3 fibroblasts (B), A431 human epithelial
carcinoma cells (C) and HT29 human colon adenocarcinoma cells (D). The patterning
processes are documented in Supp. Videos S1-S4. Trajectories in panel (C) depict the
movement of 4 representative features within the Matrigel ECM, marked with red asterisks (∗)
in the first panel of the time series. Trajectories are color-coded, warmer colors indicate earlier
segments. Cells were seeded at ≈ 66% confluence (1600 cells/mm2). Scale bar: 500 µm. E:
Quantitative evaluation of the Matrigel patterning assay with various cell types. Time
dependence of the mean hole size (cell-free area) of the four cell types: HMVEC-C (green), 3T3
(red), A431 (black) and HT29 cells (blue). Error stripes represent SEM, calculated from at
least n = 3 independent sets of experiments.

defined elastic substrate is also challenging for soft substrates that tend to polymerize in 56

a spatially inhomogeneous structure [29]. Indicative of the inherently low throughput 57

nature of traction force microscopy, authors of this paper were unable to find a single 58

study reporting dose-dependent traction force microscopy data – measurements 59

repeated at multiple concentrations of the tested compound. 60

Here we demonstrate that a suitable quantification of the well-known Matrigel tube 61

formation assay is highly informative about cell-exerted contractile forces, and can be 62

utilized as a much simpler bioassay than traction force microscopy. We propose a 63

computational model of the corresponding multicellular patterning process and identify 64

measures that are characteristic of cellular contractility and can be obtained by 65

time-lapse image analysis. We validated our model and calibrated the bioassay by direct 66

and indirect small molecule inhibitors of NMII. While this method does not provide 67

spatially resolved contractility maps, it is much easier to perform than traditional 68

traction force microscopy. To demonstrate its applicability we characterize how 69

overexpression of S100A4, an intrinsic regulator of NMIIA filament assembly, modulates 70

the contractility of epithelial carcinoma cells. 71

2 Results 72

2.1 Matrigel patterning assay 73

When contractile cells are seeded on the surface of a suitably thick Matrigel 74

extracellular matrix (ECM) layer at a subconfluent density, an interconnected network 75

pattern develops within a few hours (Fig. 1 and Supp. Videos S1-S5). The pattern is 76

similar irrespective whether the cells are endothelial (Fig. 1A), mesenchymal (Fig. 1B), 77

or epithelial (Fig. 1C, D). The network structure contains both cells and ECM, and 78

delimits “holes”, which are polygonal patches devoid of cells. The seeding cell density is 79

an important experimental parameter: isolated cell clusters form if the seeding density 80

is below the percolation threshold, while cultures maintain a confluent monolayer when 81

seeded at identical conditions but at higher cell density (Video S6). 82

As the pattern forms in a few hours, cell proliferation has only a limited role in the 83

process. Similarly, cell death is hardly detectable in our recordings. Thus, we mainly 84

witness the rearrangement of the seeded cells and their Matrigel ECM environment. 85

More detailed analyses of videomicroscopic observations indicate a complete lack of 86

expansion in any part of the structure – hence under these experimental conditions cells 87

do not engage in multicellular sprout formation. Instead, long and narrow clusters 88

eventually break and retract, letting the adjacent holes merge. These rearrangements, 89

as well as the enlargement of holes involve the co-movement of cells and the local ECM 90
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Fig 2. Computational model of contractility-driven plastic patterning. A: Schematic
representation of the model. The contractile links (blue) between adjacent particles exert
elastic forces Fl and Fm on particle i. Adhesion to the substrate is represented by a Mawell
element: a dashpot and spring in series (black). The element generates an elastic force F0

i ,
which is determined by the relative positions of the particle, ri, and of the dashpot, r0i . This
latter variable characterizes the ECM microenvironment and can move arbitrary large
distances relative to the underlying rigid substrate – our system of reference. B: Time
development of a simulated system. Particles are visualized as spheres with a radius of d0,
hence particles touching can establish a mechanical connection according to Eq. (11).
Mechanical interaction between adjacent particles is transmitted through elastic beams, visible
only when the distance between the particles is sufficiently large. N = 300 particles were
placed within an area of 20d0 × 20d0 (500 µm× 500 µm), corresponding to a coverage at 75%
confluency. The configuration of particles is shown at the onset of simulation, at 0.5 h, 1 h and
1.5 h as indicated by the labels. The scale bar indicates 100 µm. See also Video S7.

Fig 3. The size of particle free areas (holes) characterize the simulated patterning process. A:
Time-dependent cumulative distribution of hole sizes: the ordinate indicates the fraction of
holes that are smaller than the value at the abscissa. Initial cell coverage was ρ = 75%,
distribution functions were compiled from n = 4 independent simulation runs. B: Expansion
rate of individual holes, as a function of their size. We identified areas that did not merge with
adjacent holes during a 30 minute time interval, and determined the change in their size. Error
bars represent SEM, binned data is pooled from four independent simulations. The line
indicates a linear fit, with a correlation coefficient 0.94. C: Time-dependent increase in the
average hole size Ā(t), compared to the initial condition Ā(t = 0). Blue, green and red lines
correspond to simulations started with initial coverages at 50%, 75% and 100% confluency,
respectively. The growth rate of holes decreases with increasing initial confluency. Error bars
represent SEM, calculated from four independent simulations. D: Schematic representation of
particles at a boundary of a circular hole of radius R, and the contractile forces acting on a
particle in mechanical equilibrium. The contractile force between adjacent particles at the
boundary is F , while the net contractile force pulling from the bulk is Fbulk.

as evidenced by tracking recognizable features within the ECM throughout the image 91

sequence (Fig. 1C). 92

Cell-exerted intercellular forces and cell-substrate traction forces are well known to 93

contract the ECM environment [30,31]. Therefore, we hypothesize that in our 94

experiments holes represent areas where the mechanical integrity of the cell-Matrigel 95

composite material is compromised, and the observed movement around the several 96

“holes” or wound sites is best described as an elastoplastic creep driven by cellular 97

contractile forces. Specifically, for short time scales (minutes) the cell-Matrigel assembly 98

behaves as an elastic (or viscoelastic) solid, but sufficiently large mechanical stress can 99

induce irreversible plastic deformations and breakage over longer time scales (hours). 100

2.2 Computational model 101

While several theories have been proposed to describe the patterning process in terms of 102

cellular contractility and mechanical deformation of the substrate [32–35], the role of 103

mechanical failure and the development of discontinuities have not been addressed. 104

Thus, to understand the particular patterning process in the Matrigel assay, we 105

represented our cell contractility-driven plastic flow hypothesis in a computational 106

model. A previously calibrated particle-and-beam model [36] that explicitly represents 107

intercellular connections and their mechanical load-mediated failure was especially 108

suitable to adapt. Thus, as we describe in detail in the Methods and Models section, we 109
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Fig 4. The effect of target contractility F ∗ on simulated pattern formation. A: Time
dependence of the average cell-free area size Ā(t). Blue, green orange and red lines correspond
to simulations performed with F ∗/F0 values of 4, 2, 1 and 1/2, respectively. Simulations were
started from a confluent state (the red curve in Fig. 3 matches the orange curve in this figure),
thus ρ = 1 and Ā(t = 0) = 0. Error bars represent SEM calculated from n = 4 independent
simulations. B: The data in panel A collapse to a single curve after scaling the time by an
appropriate factor t0 as Ā(t/t0). The characteristic time t0 decreases with F ∗ as t0 ∼ 1/F ∗

(inset).

considered cells that are adherent both to the substrate and to each other, and load 110

their adhesion sites with a steady contractile force. Specifically, particles in the model 111

represent cells with their ECM microenvironment, and contractility was modeled by 112

gradually reducing the tension-free length of the beams connecting particles in such a 113

way that particles maintained a pre-determined tension in each link. This particular 114

contractile behavior is selected based on its simplicity, further regulatory mechanisms of 115

cellular contractility can be introduced in future studies. Finally, as a soft Matrigel 116

layer mediates adhesion between the cells and an underlying rigid substrate, we 117

implemented visco-elastic Maxwell-elements to resist movement driven by intercelluluar 118

mechanical forces (Fig. 2A). 119

Model simulations provide a sequence of stochastic alterations in cell-cell connectivity 120

and the corresponding movements by which the configuration restores mechanical 121

equilibrium. Simulations were started from a subconfluent or confluent monolayer state, 122

and for a broad range of parameters the computational rules readily reproduced the 123

multicellular patterning process seen in vitro (Fig. 2B). Specifically, fluctuations in 124

particle density were amplified and led to the formation of mechanical discontinuities 125

which grow and coalesce into increasingly larger particle free areas (“holes”). The 126

constant contractility rule does not lead to a steady state and thus the simulation looses 127

its relevance when hole sizes become comparable to the size of the simulated system. 128

We characterized the patterning process by calculating the time-dependent 129

distribution of hole sizes (Fig. 3A). The distribution shifts to larger values in time, but 130

a population of small holes remains reflecting the ongoing nucleation process. The 131

majority (80%) of holes maintain an approximately lognormal distribution as larger 132

holes grow faster than small ones (Fig. 3B). Accordingly, pre-existing larger holes grow 133

more than the smaller ones arising spontaneously within confluent monolayers – and 134

thus patterning becomes faster in cultures with smaller cell density (Fig. 3C). In 135

particular, a 50% confluent initial condition yields an expansion twice as fast as the 136

expansion in a simulation with 75% initial confluency – indicated by the 137

time-dependence of the average hole sizes, Ā(t). 138

The positive correlation between hole size and expansion rate can be understood by 139

a simplified analysis of model assumptions. Within the model, the force driving hole 140

expansion is determined by the specific balance of tensile forces acting at the boundary 141

(Fig. 3D). As there are no forces pulling from an empty area, the contractility of the 142

bulk is balanced by an increased elastic tension F along the boundary. If the angle 143

between two links defining the boundary is 2α, then the normal component of the forces 144

exerted by boundary links – balancing the net pulling force Fbulk from the bulk – is 145

2F cosα. From geometric considerations the angle α, the radius R of the hole and the 146

typical distance between particles, d are related as 2R cosα = d. Hence, the condition 147

for mechanical equilibrium is 148

F = FbulkR/d. (1)

As a crude approximation, we can consider Fbulk as a constant value set by the 149

contractility homeostasis rule. The model exhibits plastic behavior like creep flow and 150
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necking under mechanical load above the yield stress [36], hence large enough tensile 151

forces F will gradually increase the length of the boundary by recruiting particles from 152

the bulk. This mechanism also limits the variability of the interparticle distance d. As 153

in the case of a bubble its radius grows with its surface tension for a given internal 154

pressure, steady d and Fbulk values in Eq. (1) indicate a proportionality between the 155

elastic tensile forces at the boundary, F , and the hole size R. Furthermore, for the rate 156

of perimeter expansion we expect a linear creep response as 157

dR/dt ∼

{
F − Fmin ∼ R−Rmin for F > Fmin

0 otherwise,
(2)

where Fmin is the yield stress – the minimal tensile force transmitted by the links that 158

can still induce plastic rearrangement of the particles. The forces F and Fmin can be 159

translated to radii R and Rmin using relation (1). Similarly, for the area of the hole, A, 160

in the R & Rmin regime we obtain dA/dt ∼ RdR/dt ∼ R2 −RRmin ∼ A−Amin, 161

qualitatively matching the approximate exponential growth seen in Fig. 3B. 162

Simulations also allow to explore how the targeted magnitude of cell-generated 163

tension, F ∗, affects the patterning dynamics (Fig. 4). As intercellular tension increases 164

the frequency of link removal events, it speeds up the patterning process. Conversely, 165

according to the model, the rate of hole size expansion is indicative of intercellular 166

contractility. As Fig. 4B indicates, the Ā(t) curves, each characteristic for a distinct 167

value of parameter F ∗, collapse after scaling the time by an appropriate factor t0 as 168

Ā(t/t0). Thus, we identify t0 as the characteristic timescale of the pattern formation 169

and find 170

t0 ∼ 1/F ∗, (3)

as shown in the inset of Fig. 4B. 171

The time course of patterning, as characterized by Ā(t) in Figs. 3 and 4, is 172

approximately an exponential and thus exhibits a lag time when no macroscopic holes 173

are present. The emergence of a lag time or a stable confluent monolayer (Video S6) is 174

consistent with the presence of a threshold (yield) stress (2) in the sense that the 175

relation (2) predicts no expansion for holes smaller than a critical size. In confluent 176

monolayers discontinuities arise by stochastic events, not described by the plastic creep 177

response (2). 178

2.3 Validating model predictions by quantitative analysis of 179

experiments 180

To better characterize the Matrigel patterning bioassay and to validate the 181

computational model, we analyzed time-lapse microscopic images of the patterning 182

process for a variety of cell types including HMVEC-C endothelial cells, A431 epithelial 183

carcinoma cells as well as 3T3 fibroblast cells and HT29 colon adenocarcinoma cells. 184

Image series were segmented into cell-covered and cell-free areas. As patterning 185

proceeds there is an increase in the size of cell-free areas (holes), and the rate of increase 186

is characteristic for each cell type (Fig. 1E). The patterning process is rapid for highly 187

contractile cells (endothelial cells and fibroblasts exert 1000-2000 Pa traction 188

stress [25,37,38]), and slow for weakly contractile colon carcinoma cells (which exert 189

200 Pa traction stress [39]). 190

In the following we focus our analysis on A431 epithelial carcinoma cells. This cell 191

line was chosen due to its epithelial morphology and low two-dimensional motility when 192

grown on tissue culture plastic surface – hence the patterning process is not 193

compounded with substantial cell mixing within the monolayer. After segmenting the 194

images into cell-covered and cell-free areas, we established the time-dependent 195
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Fig 5. Quantitative evaluation of the gel patterning assay with A431 cells. A:
Time-dependent cumulative distribution of cell-free area (hole) sizes: the fraction of holes that
are smaller than the x-axis value. Initial cell coverage was 66%, distribution functions were
compiled from n = 3 independent recordings and a total of 9 microscopic fields. The dotted
line shows a lognormal distribution, serving as a guide to the eye. B: Expansion rate of cell-free
areas, binned according to size. We identified areas that did not merge with adjacent holes
during a 30 minute time interval, and determined the change in their area. Larger areas grow
faster as the linear regression fit indicates (correlation coefficient: 0.94). Error bars indicate
SEM. Data was pooled and binned from n = 3 independent sets of experiments. C:
Comparison of patterning started at various initial cell densities. Time dependence of the mean
hole size Ā, compared to the initial value as Ā(t) − Ā(t = 0). Blue, green and red lines
correspond to cultures seeded with initial cell coverage at 40%, 64% and 80% confluency,
respectively. The growth rate of holes r decreases with increasing the initial cell density. Error
stripes represent SEM, calculated from n=3 independent sets of microscopic fields. D: Cell
density-dependence of the hole size growth rate r, calculated from the curves depicted in panel
C by linear fitting. Error bars indicate SEM.

Fig 6. Tensile stresses within the cell-populated Matrigel expand a punctured wound. A:
Typical kymogram depicting the expansion of a 0.2 mm2 punctured area (see also Video S8).
A431-GFP cells were seeded at a density of 1690 cells/mm2, corresponding to 66% confluency.
Green arrowhead indicates the time of the injury, yellow lines mark the boundary of the
expanding wound during the subsequent 2 hours. Scale bar: 100 µm. B: Velocity of the
expanding wound boundary, obtained from cultures seeded with two distinct cell densities.
Error bars indicate SEM (n=8). C: Cumulative change in wound area, determined by image
segmentation, in two cultures seeded with distinct cell densities. Green arrowhead indicates the
time of injury. D: Contribution of a single cell to the enlargement of the wound. Data shown in
panel C were normalized with the corresponding initial cell densities.
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distribution of cell-free areas (holes) as a measure to characterize the pattern (Fig. 5A). 196

Over the course of a day the mean pattern size increased ten-fold from 0.01 mm2 to 197

0.1 mm2. The coarsening process involves the expansion of individual cell-free areas as 198

well as the merger of adjacent holes, and retain an approximately lognormal distribution 199

of hole sizes – in good agreement with model predictions (Fig. 3A). 200

As in model simulations (Fig. 3B), larger holes grow faster (Fig. 5B). The initial lag 201

phase is often difficult to observe due to the time needed to set up the recording 202

equipment after seeding the cells. The emergence of large enough holes is followed by a 203

rapid expansion phase when the average hole size Ā increases with an approximately 204

steady rate r: 205

Ā(t) =

{
r(t− τ) for t ≥ τ

0 for t < τ .
(4)

Comparison of the approximate functional form (4) and the scaling relation (3) for 206

t > τ yields 207

F ∗ ∼ r =
dĀ

dt
, (5)

a convenient way to characterize cell contractility with the easily measurable rate of 208

hole expansion r after the onset of patterning. The slower than exponential increase in 209

Ā could reflect non-stationary experimental conditions: the contractility of cells 210

decreases in older cultures as cells consume the growth factors and nutrients within the 211

medium.
::::::::::::
Alternatively,

:::
an

::::::::::
important

:::::::::
difference

:::::::
between

::::
the

::::::
model

::::
and

:::
real

:::::
cells

::
is 212

::::::
volume

:::::::::
exclusion:

::::::
while

::
in

:::::::::::
simulations

::::::::
particles

:::
can

:::::::
achieve

:::
an

:::::::::
arbitrary

::::
high

:::::::
density, 213

:::
the

:::::::
volume

::
of

::::
real

::::
cells

::::::
would

:::
set

::
a
:::::
lower

:::::
limit

:::
for

::::::::::
equilibrium

::::
link

::::::::
lengths,

::::
and

:::::
hence 214

::::
slow

:::::
down

:::
the

::::::::::
patterning

:::::::
process

:::::
when

::::
this

:::::
limit

::
is

:::::::::::
approached

::::
and

::::
cells

:::::::
cannot 215

:::::::
contract

:::::::
further.

:
216

Our initial observations as well as model simulations indicate that the seeding cell 217

density ρ is a sensitive parameter that determines the pace of patterning r. Thus, we 218

performed experiments with three distinct seeding densities (Fig. 5C). The overall 219

expansion rate increased 3-fold when we compared a culture seeded at ρ = 80% 220

confluency to one seeded at ρ = 50% confluency (Fig. 5D). A linear ansatz 221

r

r0
= 1− c(ρ− ρ0) (6)

is fitted to the data in Fig. 5D, indicating that at ρ0 = 64% seeding confluency a 1% 222

increase in cell density yields a c=3.22% decrease in the hole size growth rate r. While 223

local cell density is difficult to set precisely in the experiments, it is readily measurable 224

after seeding. The calibration data in Fig. 5C then offers the possibility to offset the 225

effect of seeding density and derive standardized hole size growth rates r0, i.e., rates that 226

are expected under the same experimental conditions at ρ0 = 64% seeding confluency. 227

Using the linear ansatz (6), the standardized hole size growth rate r0 is given as 228

r0 =
r

1− c(ρ− ρ0)
, (7)

where ρ is the actual seeding density, r is the observed hole size growth rate and the 229

normalization factor is c = 3.22%/%. 230

We explain the Matrigel patterning assay by assuming that cells maintain a steady 231

contractile state, which reorganizes the highly pliable ECM culture environment in a 232

spatially inhomogeneous, non-linear manner. In particular, we assume that contractile 233

stresses within the cell-ECM composite are proportional to the local cell density, and 234

the speed of patterning is set by the creep rate of plastic deformations within the 235

cell-ECM composite material. To verify this latter assumption, we evaluated patterning 236

assays with more pliable, diluted Matrigel coatings. As expected, the patterning process 237
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Fig 7. Non-muscle myosin II (NMII) is a key factor in multicellular contractility and pattern
formation. Untreated A431-GFP cultures (A) exhibit larger structures than cultures in which
NMII-based contractility was perturbed by 10 µM blebbistatin (B). Initial cell density was
1600 cells/mm2 (66% confluency) in all conditions, images shown were recorded after 12 h in
culture (see also Video S9). Scale bar: 500 µm.

Fig 8. The patterning process slows down in the absence of normal NMII function. A, C:
Time-dependent average hole sizes, Ā(t), indicate a concentration-dependent inhibition by
blebbistatin (A) or by Y27632 Rho kinase inhibitor (C). B,D: Standardized hole expansion
rates r0, extracted by linear fitting, characterize patterning speed and hence contractility. Cells
were seeded at 66% confluency. Error stripes and bars correspond to SEM values, each
obtained from data in n=3 independent sets of microscopic fields.

was faster on diluted Matrigel (Supplementary Fig. S1). To probe the presence of 238

mechanical stresses directly, we performed mechanical puncture experiments. Such 239

assays evaluate the initial movement around a suddenly imposed discontinuity. 240

Expansion or shrinkage of the wound is expected to indicate the presence of tensile or 241

compressile stresses within the material, respectively [40–42]. By using a plastic pipette 242

tip we thus punctured the cell-Matrigel composite material, and recorded the wound 243

area in every 5 minutes. Consistent with the presence of a contractile tension in the 244

material, the wounds expanded immediately after the injury. We identified the 245

movement of the boundary on kymograms and calculated the initial expansion speed of 246

the wound. A comparison of cultures seeded with distinct cell densities indicates that 247

the expansion speed is proportional to cell density and thus suggests that each cell is an 248

active generator of tensile stress (Fig. 6). 249

2.4 NMII inhibitors perturb multicellular contractility 250

To further calibrate the Matrigel patterning process as an assay for cellular contractility, 251

we used two inhibitors to interfere with NMII activity. Blebbistatin is a specific 252

allosteric inhibitor of all type II myosins, including NMII [43]. Blebbistatin stabilizes 253

type II myosins in the low-affinity actin binding conformation and also inhibits their 254

ATPase activity. The compound Y27632 is a cell permeable inhibitor of Rho kinase 255

(ROCK), which activates NMII by two distinct mechanisms [44]. ROCK directly 256

activates NMII by phosphorylating the NMII regulatory light chain. An indirect 257

activation involves the inhibition of the myosin light-chain phosphatase and thereby 258

further shifting the equilibrium towards the active form of NMII. Both of these 259

activation pathways are blocked by Y27632. The other activator of NMII, myosin light 260

chain kinase, remains unaffected by Y27632. 261

As expected, dose-dependent inhibition of NMII activity by blebbistatin or Y27632 262

Rho kinase inhibitor yields a concentration-dependent reduction in the rate of hole 263

expansion by A431-GFP cells, seeded at 66% confluency (Fig. 7, Video S9). Accordingly, 264

after 24 h in culture the cell-free areas were substantially smaller in NMII-inhibited 265

cultures (Fig. 8). In particular, areas larger than 1 mm2 were completely eliminated 266

(Supp. Fig. S2). According to Figs. 8 and 4, we estimate that 10 µM blebbistatin or 267

30 µM Y27632 reduces contractility of A431 cells by 3- and 6-fold, respectively. 268

2.5 Role of S100A4 in multicellular contractility 269

Tensile cytoskeletal stresses arise when actin filaments, oriented in various directions, 270

are stretched and pulled by NMII minifilaments. Multimerization of NMIIA, an isoform 271
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Fig 9. Western blot of S100A4 isoforms in A431 human epithelial carcinoma clones. Upper
panel: S100A4 protein was detected in immunoblots of A431 clones. Lysates from A431 cells
(lane 2), GFP-expressing A431 cells (lane 3) or clones overexpressing either wild type S100A4
(lanes 4 and 6), or truncated non-functional mutS100A4 (lanes 5 and 7) are shown with a
standard recombinant wild type S100A4 protein sample for comparison (lane 1). Wild type
S100A4 has a relative molecular mass of 12 kDa whereas truncated mutS100A4 is 10.5 kDa.
Lower panel: For loading control, the upper part of the blot was immunolabeled for β-tubulin
(50 kDa).

Fig 10. The cytoskeleton of A431 clones overexpressing wild type or mutant S100A4. Normal
A431 cells (A) and A431 clones overexpressing either non-functional mutS100A4 (B) or wild
type S100A4 (C) were immunolabeled for NMIIA (red) while actin filaments were visualized by
fluorescein-labeled phalloidin (green). NMIIA is ubiquitous in each clone, while actin filaments
and filopodia are less abundant in the clone expressing wild type S100A4 (C). White
arrowheads point to filopodia. Scale bar: 20 µm, 40X objective. Insets in A-C show
characteristic F-actin structures within 10 µm wide areas. D) Filopodia count, averaged from
n = 6 representative cells for each group. Error bars represent SEM and asterisks indicate
statistically significant difference with p < 0.05.

of NMII, can be regulated by binding of S100A4 protein [23]. S100A4 can bind and 272

mask the assembly competence domain of NMIIA preventing its assembly into 273

functional multimers or facilitating the disassembly of existing filaments, thereby 274

controlling cell contractility. To study this fundamental aspect of NMII function, we 275

overexpressed two S100A4 variants in A431 human epithelial carcinoma cells. Earlier 276

works already established several aspects of the S100A4-myosin IIA interactions in A431 277

cells [45], offering a molecular context to the results of our functional assay. 278

Wild type S100A4 is capable of binding to the assembly competence domain of 279

NMIIA and thus prevents the assembly of NMIIA dimers and tetramers. The mutant 280

S100A4 isoform (mutS100A4) does not prevent NMIIA filament assembly as it contains 281

a point mutation (Cys81Ser) in the hydrophobic binding pocket responsible for binding 282

to NMIIA. Additionally, mutS100A4 lacks 13 C-terminal amino acid residues, which 283

further decreases its affinity to binding partners. Thus, as negative controls in S100A4 284

functional assays we used A431 clones stably transfected with the mutS100A4 construct, 285

a clone transfected with GFP only as well as non-transfected A431 cells. Western blots 286

indicate stable expression of both the wild type and mutant S100A4 variants in A431 287

clones (Fig. 9). 288

Western blots from cell lysates were also used to verify that the myosin variant 289

NMIIA is indeed present in A431 human epithelial carcinoma cells (Supp. Fig. S3). 290

Double labeling of NMIIA and F-actin in normal A431 cells shows that NMIIA is 291

present in cytoplasmic speckles with structures that tend to colocalize with F-actin 292

where actin stress filaments are present (Supp. Fig. S4). NMIIA remains ubiquitously 293

present in the cytoplasm of A431 clones overexpressing different S100A4 variants 294

Fig 11. Effect of S100A4 protein on Matrigel patterning of A431 cells. A-B: representative
images taken at 12 h in culture (see Video S10) of A431 cells overexpressing either the
non-functional mutant form (A431-mutS100A4, clone6) or the wild type S100A4
(A431-S100A4, clone2). Initial cell density was 1600 cells/mm2 (66% confluency). Scale bar:
500 µm. C: Time-dependent average hole sizes, Ā(t), obtained for 5 distinct A431 clones. D:
Standard hole size growth rates r0 were extracted from the data shown in C by linear fitting.
Error stripes and bars are SEM values, each calculated from n=4 independent experiments.
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(Fig. 10). However, the overexpression of wild type S100A4 alters the organization of 295

the cytoskeleton. The most conspicuous difference is in filopodium density: F-actin rich 296

filopodia are abundant in both normal A431 cells and in the clone expressing the 297

non-functional mutS100A4 protein, whereas filopodia become shorter and fewer with 298

less stress filaments when wild type S100A4 is overexpressed. 299

To test the effect of S100A4 on multicellular contractility-driven patterning of A431 300

cells we employed the clones overexpressing either wild type S100A4 or the 301

non-functional mutant isoform of S100A4 as well as a GFP-expressing clone for 302

comparison. When seeded on Matrigel, the overexpressed wild type S100A4 reduced the 303

rate of hole expansion by ≈75% (Fig. 11). Accordingly, after 15 hours the size 304

distribution of cell free areas indicates the absence of large holes (Supp. Fig. S5). 305

Comparing these effects with the experiments utilizing small molecule inhibitors of NMII 306

(Fig. 8), the overexpression of S100A4 reduces cell contractility to an extent comparable 307

with blebbistatin or Y27632 at 10 µM concentrations. Based on our numerical model, 308

the observed behavior is consistent with a 75% reduction in cell contractility. 309

3 Discussion 310

3.1 Contractility assay 311

To study NMII-dependent multicellular contractility, we developed and calibrated a 312

bioassay utilizing the ability of contractile cells to pattern a soft Matrigel substrate into 313

network structures. The imaging-based assay was interpreted by a computational model 314

that keeps track of intercellular connections and allows the relaxation of mechanical 315

stresses by rearranging the connectivity of particles. The model does not distinguish 316

between the cell and ECM component of the composite material: as both components 317

move together and form a composite material, model particles represent both a cell and 318

a surrounding ECM microenvironment.
:::::::

While
:::
our

::::::
model

:::::::::::
incorporates

::::
the

::::::::
essential 319

::::::::::::
biomechanical

:::::::
aspects

:::
of

:::
the

::::::::::
patterning

:::::::
process,

:::::::::::::
simplification

::::::
during

:::
the

:::::::::
modeling 320

::::::::
approach

::
–

:::
like

:::::::::
assuming

:::
an

:::::::::::
environment

:::
in

::::::
steady

:::::
state

::::
and

:::
not

:::::::::::
considering

:::::::
volume 321

::::::::
exclusion

::::::
effects

::
–

:::::
limits

::::
the

:::::::::::
quantitative

:::::::::::
applicability

:::
of

:::
our

::::::
model

:::
to

:::
the

:::::
onset

:::
of 322

::::::
pattern

::::::::::
formation. 323

In our experiments we utilized Matrigel [46], a uniquely pliable biological hydrogel. 324

The 200 Pa yield stress of Matrigel [47] is thirty times lower than the 6 kPa yield stress 325

of a type I collegen gel at 2 mg/ml concentration [48]. In comparison, typical traction 326

stresses are 1500 Pa for endothelial cells [37], 400-2000 Pa for fibroblasts [25,38], 327

1000 Pa for A431 epithelial carcinoma cells [49] and 200 Pa for colon carcinoma cells [39]. 328

Thus, the yield stress of Matrigel is well within the range of cell-exerted stresses, while 329

the yield stress of collagen I is not. Accordingly, we did not expect to observe and were 330

unable to elicit similarly quick pattern formation on collagen I or fibrin gel substrates. 331

Cell contractility-driven patterning of collagen gels takes several days to weeks and yield 332

different patterns [30,31] with an important contribution of cell motility [32–35]. 333

The unique mechanical properties of Matrigel could be mimicked by the synthetic 334

polymer hydrogel PMEDSAH (poly[2-(methacryloyloxy)ethyl 335

dimethyl-(3-sulfopropyl)ammonium hydroxide]). PMEDSAH is a suitable substrate for 336

cell adhesion [50], and exhibits an elastic modulus of 380 Pa [51], a value similar to 450 337

Pa, the elastic modulus of Matrigel [52]. The yield stress of PMEDSAH is likely to be 338

higher than that of Matrigel. The best estimate for the yield stress of PMEDSAH 339

comes from a recent report [53] where a yield stress of 1500 Pa was measured for a 340

composite material of 75% PMEDSAH and 25% pellethan fibermat. Based on this 341

report the yield stress of PMEDSAH is expected to fall in the upper range of 342

cell-exerted stresses. Therefore, PMEDSAH is a promising synthetic substrate 343

September 17, 2019 11/25



candidate to measure multicellular contractility. 344

While the patterning assay does not allow absolute determination of cell-exerted 345

forces, it readily provides relative comparison between parallel cultures after differences 346

in initial seeding density are properly factored into the evaluation. Importantly, we 347

found that A431 epithelial carcinoma cells in the gel patterning assay responded to 348

inhibitors of NMII activity at concentrations that overlapped with the range used 349

previously in cell traction force microscopy studies (50 µM for blebbistatin and 350

10-25 µM for Y27632 [54–57]). All internal control (untreated) cultures in n > 10 351

experiments, performed over the time span of several years, yielded consistent numerical 352

values for the standardized patterning speed r0. This consistency allows to measure 353

dose-dependent responses in parallel cultures and thus allows future development of 354

medium- to high-throughput applications to evaluate the effects of pharmacological 355

compounds on cell contractility. 356

3.2 Endothelial tube formation assay 357

Multicellular contractility-based pattern formation is not limited to epithelial or 358

endothelial cells that exhibited very similar dynamics in our experiments. Various cell 359

types including fibroblasts and smooth muscle cells have been reported to generate 360

network patterns when cultured on sufficiently malleable substrates [58]. Still, the 361

endothelial tube formation assay on Matrigel substrate [59,60] is widely used as a 362

functional assay not only for endothelial cells but also for tumor cells exhibiting 363

vasculogenic mimicry [61–63]. Currently a wide range of commercially available 364

angiogenesis assays employ cells seeded on Matrigel or other basal membrane extract 365

substrates, and angiogenic tube formation potential is evaluated by characterizing the 366

emerging network pattern. 367

We, however, argue that these assays are primarily sensitive to multicellular 368

contraction, and the characteristic network patterns are distinct from – and formed by a 369

different mechanism than – lumenized endothelial tubes [64]. The fundamental 370

difference in the patterning mechanism of the Matrigel assay and of angiogenesis is also 371

reflected in the computational models describing the two phenomena. The primary 372

process of angiogenesis is multicellular sprouting, which likely involves chemotactic 373

guidance [65–69], contact guidance by ECM structure [70–72], or by cell-cell 374

contacts [73,74]. In contrast, cells in the Matrigel patterning assay are repositioned by a 375

contractility-driven convective plastic flow. Thus, appropriate care should be taken 376

when interpreting tube formation assay results, especially taking into consideration the 377

ubiquitous ability of contractile cells to form network-like structures by deforming the 378

elastoplastic cell-ECM composite material. 379

3.3 Biomedical role of S100A4-mediated multicellular 380

contractility 381

Decreased contractility in vivo can lead to altered tissue integrity such as in various 382

tumors and it can be a step towards a metastatic phenotype. Increased levels of S100A4 383

were reported for several tumors [75–77] and it also correlates with worse prognosis in 384

cancer patients [78]. By binding to extracellular partners like annexin A2 and 385

transglutaminase-2 [79,80], S100A4 can also hinder cell-ECM adhesion of cancer 386

cells [81]. The observed change in stress filament abundance (Fig. 10) is in agreement 387

with findings in MDA-MB-231 breast carcinoma cells, which exhibited an increase in 388

cytoskeletal stress filament formation in the absence of S100A4 [82]. Although several 389

aspects of the relationship of S100A4 with NMII and the cytoskeleton have been 390

elucidated, the direct impact of S100A4 on cell contractility using a functional assay has 391

not yet been reported to our knowledge. In this paper we have demonstrated that 392
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S100A4 expression can indeed modulate tissue-level contractility of epithelial carcinoma 393

cells in vitro. 394

3.4 Conclusions and outlook 395

In this work we utilized cell-resolved simulations, but we expect that the same 396

mechanism can be also captured by a fluid dynamics approach [83–85]. We trust that 397

the presented bioassay will be helpful as a relatively simple tool to further elucidate the 398

roles of cell contractility and its molecular regulators. We identified key experimental 399

variables such as cell density and ECM pliability which must be tightly controlled in 400

experiments or taken into account when analyzing results. While we used a time-lapse 401

approach, hole size distribution functions obtained from end-point micrographs are also 402

likely to reveal contracile activity (see Supp. Figs. S2 and S5). 403

4 Methods and Models 404

4.1 Cell culture 405

The human A431 epithelial carcinoma cell line, 3T3 mouse fibroblast cell line and HT29 406

human colon carcinoma cell line were obtained from ATCC. Cells were maintained in 407

Dulbecco’s Modified Eagle Medium (DMEM, Lonza) containing L-glutamine, 408

supplemented with 10% Fetal Bovine Serum (Invitrogen) and 409

Penicillin-Streptomycin-Amphotericin B (Lonza). Primary human umbilical vein 410

endothelial cells (HUVEC) and primary human cardiac microvascular endothelial cells 411

(HMVEC-C) were purchased from Lonza and cultured in EGM2 medium (Lonza) 412

containing Penicillin-Streptomycin-Amphotericin B (Lonza). 413

4.2 S100A4 constructs 414

The gene of human S100A4 (Uniprot code: P26447) was obtained from Dr. Jörg 415

Klingelhöfer. We derived a mutant isoform, herein referred to as mutS100A4, containing 416

a point mutation in position 81 that replaces a cysteine by serine and lacking 13 amino 417

acids at the C-terminal, by the Megaprimer method [86]. Both the wild type S100A4 418

and the mutS100A4 genes were subcloned into pIRES2-eGFP plasmid (Clontech), 419

containing an internal ribosome entry site using restriction sites XhoI and BamHI. Cells 420

were transfected with linearized plasmids (using BsaI restriction site for linearization) 421

using FuGene HD transfection reagent (Promega), according to the manufacturer’s 422

instructions. Stable transfectants were selected with 0.4 mg/ml G418 antibiotics (Merck 423

Millipore). After two weeks of selection, stably transfected cells were further selected by 424

their GFP signal using FACSAria Cell Sorter (BD Biosciences). After selection, cells 425

were maintained in 0.2 mg/ml G418. Six S100A4-overexpressing and five 426

mutS100A4-overexpressing cell clones were eventually established, of which two from 427

each group were used for detailed studies. 428

4.3 Recombinant proteins 429

The gene of human S100A4 was cloned into a modified pBH4 expression vector, 430

expressed and purified as described earlier [21]. 431

4.4 Inhibitors 432

Y27632, the cell permeable inhibitor of Rho kinase was purchased from Merck Millipore, 433

dissolved in water to make 10 mM stock solutions and used in final concentrations up to 434

September 17, 2019 13/25



30 µM. Blebbistatin, the inhibitor of non-muscle myosin II, was purchased from Merck 435

Millipore, dissolved in DMSO to make 50 mM stock solutions and used in final 436

concentrations up to 30 µM, as indicated in the corresponding text. For negative 437

control treatments identical amount of water or DMSO was used. 438

4.5 Immunocytochemistry 439

To detect the NMIIA isoform in A431 cell line, cells were seeded into glass 440

coverslip-containing 24-well plates. Cells were fixed with 4% paraformaldehyde and 441

permeabilized using 0.1% Triton X-100. Samples were blocked with 2% w/v Bovine 442

Serum Albumine solution, endogenous NMIIA was detected using anti-NMIIA antibody 443

(rabbit, polyclonal, 1:300, Biolegend) and Alexa Fluor-546-conjugated anti-rabbit 444

secondary antibody (Life Technologies). Actin filaments were stained by 445

phalloidin-FITC conjugate (Sigma-Aldrich). Immunofluorescence was imaged using a 446

Zeiss Axio Observer Z1 microscope equipped with 40x EC Plan-Neofluar objective, 447

Colibri illumination system and AxioCam MRm camera. 448

4.6 Western blot 449

A431 stable transfectants were lysed in lysis buffer (25 mM Tris pH 7.4, 150 mM NaCl, 450

2 mM EDTA, 1% v/v Triton X-100, 2.5 mM DTT and 1% v/v protease inhibitor 451

cocktail). Protein concentration was measured by Bradford method, and 20 µg total 452

protein samples were run by SDS-PAGE using 10% Tris-Tricine gel. Samples were 453

blotted to PVDF membrane and S100A4 was detected by anti-S100A4 antibody (mouse, 454

monoclonal, PR006.21.3, 1:1000 dilution, a kind gift of Dr. Jörg Klingelhöfer) and 455

horseradish peroxidase-conjugated anti-mouse secondary antibody (1:5000, Santa Cruz). 456

For loading control, tubulin was detected by anti-tubulin monoclonal antibody, (1:5000, 457

Sigma) and horseradish peroxidase-conjugated anti-mouse antibody. Chemiluminescence 458

was detected by using ECL Western Blotting Substrate (Pierce). NMIIA was detected 459

from 20 µg A431 cell lysate using 8% Tris-glycine gel and anti-NMIIA antibody (1:2000, 460

BioLegend) and horseradish peroxidase-conjugated anti-rabbit secondary antibody 461

(1:2000, Santa Cruz). 462

4.7 Live cell imaging 463

Time-lapse recordings were performed on a Zeiss Axio Observer Z1 inverted microscope 464

with 10x Plan Neofluar objective. The microscope was equipped with a Zeiss AxioCam 465

MRm CCD camera and a Marzhauser SCAN-IM powered stage. Cultures within tissue 466

culture Petri dishes (Greiner) were kept in a stage-mounted incubator providing 37oC 467

and a humidified 5% CO2 atmosphere. Stage positioning, focusing, image collection and 468

stitching of images into mosaics (2x2, 3x3 or 9x12) were controlled by Zeiss Axiovision 469

4.8 software and a custom experiment manager software module. Phase contrast images 470

were collected every 10 minutes from each microscopic field for durations ranging from 471

24 to 48 hours. 472

4.8 Matrigel patterning assay 473

Matrigel substrates were prepared by pouring 20 µl ice cold Matrigel solution (ECM gel, 474

E1270, Sigma) into 6 mm diameter circular wells. Three of such polylactic acid (PLA) 475

well walls were previously filament-deposition (“3D”) printed (Ultimaker) into tissue 476

culture Petri dishes (Greiner) using the method described earlier by our group [87]. 477

After gelation, cell suspension was added to the wells at an average density of 478

1600 cells/mm2. Following an initial adhesion phase, cells covered approximately 2/3 of 479
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Fig 12. Mechanical model. Rectangular shapes indicate cell membranes. Beams represent
mechanically connected cytoskeletal structures of adherent cells. A: Mechanical stress-free
configuration of two particles, i and j. Unit vectors, ti and tj co-rotate with the particles. B:
Compressed cells. Interaction of the two cells raise spatially distributed forces (red arrows),
replaced by the repulsive net forces Fi and Fj . C: Symmetric rotation of both particles yields
torques Mi and Mj acting on particles i and j. Torque vectors are perpendicular to the plane
of the figure. D: Shear of the tissue creates torques Mi, Mj and also shear forces Fi, Fj acting
at the particles.

the Matrigel surface. Cells remodeled the Matrigel within a few hours, and the process 480

was recorded by phase contrast time-lapse microscopy. 481

4.9 Image analysis 482

Images recorded by time-lapse microscopy were analyzed using the NIH ImageJ software 483

with plugins of our design, available at 484

https://github.com/gulyasmarton/ContractilityAnalyzer. In the Matrigel contraction 485

assay cell-free areas (holes) develop within the cell layer that was seeded on a Matrigel 486

substrate. The images were filtered by a Gaussian blur (the width was adjusted to the 487

sample) and were segmented by the default ImageJ thresholder (IsoData [88]). We 488

identified each hole as a cluster of connected pixels and determined their areas. From 489

this data we calculated the mean hole size and the cumulative distribution function of 490

the hole areas as a function of time. We also determined the expansion rate of holes by 491

identifying overlapping clusters on consecutive images. Hole merging and splitting 492

events were excluded by selecting clusters that overlap with only a single cluster in the 493

second image. 494

4.10 Computational model describing an elastoplastic 495

multicellular mechanics 496

We used a computational model [36] that represents the elastoplastic mechanics of 497

multicellular assemblies by a network of particles and interconnecting elastic beams 498

(Fig. 12), available at https://github.com/donnagreta/cellmech. Briefly, each particle i 499

is characterized by its position ri and orientation φi. Since we consider a two 500

dimensional system on the x-y plane, φi has a single component, describing rotation 501

around the orthogonal (z) direction. The beams transmit torques and non-central forces 502

(i.e., forces with shear components) that arise due to the relative movement of adjacent 503

cells. 504

Hooke’s law determines the force F ‖ that arises when a pair of cells is stretched or 505

compressed (Fig. 12b). For a link l interconnecting particles i and j, the Hooke force 506

component is given as 507

F
‖
l = k(|rj − ri| − `l), (8)

where `l is the mechanically neutral distance of the two cells and k > 0 is a model 508

parameter representing cytoskeletal stiffness. 509

A torque and shear forces are exerted by a link if its mechanically neutral 510

(“preferred”) direction at particle i, ti,l, is distinct from its current direction ui,j 511

(Figs. 12c,d). For small differences the exerted torque is proportional to the angle 512

between the preferred and actual directions: 513

Mi,l = g(ti,l × ui,j), (9)
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where the microscopic bending rigidity g is a model parameter setting the macroscopic 514

shear modulus [36]. Shear forces transmitted by the link are calculated from the 515

requirement of the link being in mechanical equilibrium. 516

Multicellular plasticity can be modeled with rules rearranging the network of 517

intercellular adhesions. The probability of removing a link l during a short time interval 518

∆t increases with the tensile Hookean force (8) transferred by the link, F t
l , as defined by 519

Bell’s rule [89]: 520

pl∆t = AeF
t
l /F0∆t, (10)

where F0 is a threshold value and A is a scaling factor defining stability of connections. 521

Mechanical connections can be established between two Voronoi neighbor particles, i 522

and j. During a short time interval ∆t the probability of inserting a new link is a 523

decreasing function of the distance di,j between the particles: 524

qi,j∆t = B

(
1− di,j

dmax

)
∆t, (11)

where the scaling factor B defines the intensity of cellular protrusive activity and dmax 525

denotes the maximal distance for new connections. 526

Using the probability distributions (10) and (11), the next event µ and waiting time 527

τ is calculated according to the stochastic Gillespie algorithm [90]. The waiting time 528

until the next event is chosen from the distribution 529

logP (τ) = −τ

∑
l

pl +
∑
i,j

qi,j

 , (12)

where the sums are calculated by iterating over each link l and over all possible Voronoi 530

neighbor particle pairs i, j that are not connected by a link. 531

4.11 Computational model of contractile cells on a Matrigel 532

substrate 533

To interpret the results of the ECM contractility assay, we augmented the above model 534

with rules that specifically control the equilibrium distance between adjacent cells and 535

represent adhesion between cells and the culture substrate (Fig. 2A.) 536

Assuming that cells actively maintain a specific contractile environment, we set the 537

equilibrium link length `l in Eq. (8) as 538

d`l
dt

= Cd0
F t
l − F ∗

F0
. (13)

Thus, the change in the equilibrium link length is proportional to the difference between 539

a target contractility value, F ∗, and F t
l , the tensile component of the actual Hookean 540

force (8). Parameter C sets the temporal scale of the regulation. In expression (13) link 541

lengths are compared to the average cell size, d0 ≈ 25 µm, and contractile forces are 542

compared to the Bell threshold force F0. 543

Adhesion between the cells and the rigid substrate is mediated trough the 544

elastoplastic Matrigel. The elastic component of the adhesion force is proportional to 545

the displacement relative to an equilibrium position r0i as 546

Fi,0 = g0(ri − r0i ). (14)

Over a longer time scale the Matrigel dissipates elastic stresses by adjusting the 547

equilibrium position as 548

dr0i
dt

=
αd0
F0

Fi,0, (15)
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where parameter α sets the speed of Matrigel creep between the rigid substrate and the 549

cell. The suite of simulation tools is accessible at 550

https://github.com/aczirok/cellmech-contractilityAssay 551

4.12 Model parameters 552

The unit distance of the simulations was set to the average size of an A431 cell adhering 553

to a rigid substrate, d0 = 25 µm. (On the soft Matrigel, however, cells are smaller and 554

the corresponding cell density of 1600 cells/mm2 yields only 2/3 initial confluence.) The 555

maximal distance, dmax, that still allows two cells to establish mechanical contact by 556

extending protrusions was chosen as dmax = 50 µm. 557

Our force unit – and the typical magnitude of the forces acting in the simulation – is 558

the threshold force F0 ≈ 100 nN [36] which is needed to separate two adherent cells 559

according to Eq. (10). For elastic parameters we used values calibrated in [36]. A431 560

cells, like metastatic epithelial carcinoma cells, were assumed to be soft [91], thus for the 561

elastic parameters of the cell-ECM composite we used E = 500 Pa, and the Poisson 562

number ν = 0.1. These values translate to dimensionless microscopic parameters k = 1.5 563

and g = 1. We set the elastic modulus associated with substrate adhesion to the same 564

magnitude: g0 = 1.5. 565

Waiting times between simulation events are set by parameters A and B. We choose 566

our time unit as 1/B ≈ 1 min, the time needed for two adjacent cells to build up 567

molecular complexes that mechanically link their cytoskeletons. We set the lifetime of 568

an unloaded link to 1/A ≈ 3 h. Thus, according to these values, two cells pulled away 569

by the threshold force F0 separate in ≈ 1 h, a value consistent with the time scale 570

observed in our cell culture experiments (Fig. 5). Similar time scales were set for 571

contractility regulation (1/C ≈ 20 min), and for the speed of Matrigel creep αd0/F0= 572

1.5 µm/h / nN. According to the latter choice, the force unit F0 induces a creep flow at 573

the speed of ≈ 150 µm/h – a value consistent with the observed speeds in our culture 574

system. While we report simulation results with these parameters, parameter sensitivity 575

analysis indicates that none of these values are crucial to obtain the reported patterns. 576

5 Supporting information 577

Fig. S1 Effect of Matrigel dilution on patterning. Time dependence of the mean hole 578

size (cell-free area), Ā) of the developing pattern. A431-GFP cells were seeded at 579

1600 cells/mm2 initial density on Matrigel or Matrigel diluted to 90% v/v with PBS. 580

Error stripes represent SEM, calculated from n=3 independent sets of experiments. 581

Fig. S2 Inhibition of NMII function. Either blebbistatin (A) or Y27632 Rho kinase 582

inhibitor (B) effectively blocks the formation of large holes in a concentration dependent 583

manner within the Matrigel patterning assay. Cumulative distribution functions of 584

particle free area (hole) sizes indicate the fraction of holes that are larger than the value 585

at the abscissa. Each distribution was pooled from n=3 sets of microscopic fields, 586

imaged 15 h after seeding A431 epithelial carcinoma cells on Matrigel substrate. 587

Fig. S3 NMIIA western blot of A431 human epithelial carcinoma cell clones. Upper 588

panel: Lysates of A431 cells (lane 1), GFP-expressing A431 cells (lane 2) and clones 589

overexpressing either wild type S100A4 (lanes 3 and 5), or truncated non-functional 590

mutS100A4 (lanes 4 and 6) were immunoblotted for non-muscle myosin II A isoform. 591

NMIIA is present in all clones with a relative molecular mass of around 200 kDa. Lower 592

panel: For loading control, the lower part of the blot was immunolabeled for β-tubulin 593

(50 kDa). 594
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Fig. S4 Colocalization of F-actin and NMIIA in A431 cells. F-actin was visualized by 595

fluorescein-labeled phalloidin (panel A, green in panel B), while NMIIA was 596

immunolabeled (panel C, red in panel B). Colocalization is seen as structures of yellow 597

color (panel B) and pointed to by yellow arrowheads in the insets of panels A and C. 598

Scale bar: 20 µm, 40X objective. 599

Fig. S5 Effect of S100A4 on the contractility of A431 cells, characterized by the 600

distribution of hole sizes. Cumulative distribution functions of particle free area (hole) 601

sizes indicate the fraction of holes that are larger than the value at the abscissa. Each 602

data set was pooled from n=4 independent sets of microscopic fields, imaged 15 h after 603

seeding A431 epithelial carcinoma cells on Matrigel substrate. A431 clones were either 604

overexpressing a non-functional mutant S100A4 (clone6: red and clone4: blue), the wild 605

type S100A4 (clone2: orange and clone3: green) or GFP alone (black). 606

Video S1 HMVEC-C cardiac microvascular endothelial cells pattern the Matrigel 607

substrate. Note the co-movement of cells and the gel substrate during the process. 608

Phase contrast time lapse microscopy with 10x objective and 12 h duration. Seeding 609

density was 1600 cells/mm2. 610

Video S2 3T3 fibroblast cells pattern the Matrigel substrate. Note the co-movement 611

of cells and the gel substrate during the process. Phase contrast time lapse microscopy 612

with 10x objective and 8 h duration. Seeding density was 1600 cells/mm2. 613

Video S3 A431 epithelial carcinoma cells pattern the Matrigel substrate. Note the 614

co-movement of cells and the gel substrate during the process. Phase contrast time lapse 615

microscopy with 10x objective and 22 h duration. Seeding density was 1600 cells/mm2. 616

Video S4 HT29 colon carcinoma cells pattern the Matrigel substrate. Note the 617

co-movement of cells and the gel substrate during the process. Phase contrast time lapse 618

microscopy with 10x objective and 22 h duration. Seeding density was 2400 cells/mm2. 619

Video S5 HUVEC cells remodel the Matrigel substrate into a network of 620

interconnected vertices and polygonal cell-free areas. Note the co-movement of cells and 621

the gel substrate during the process. Phase contrast time lapse microscopy with 10x 622

objective and 24 h duration. Seeding density was 140 cells/mm2. 623

Video S6 A431 epithelial carcinoma cells maintain a monolayer when seeded at 624

100Phase contrast time lapse microscopy with 10x objective and 20 h duration. Seeding 625

density was 2680 cells/mm2. 626

Video S7 Time development of pattern formation in a simulated system of 627

contractile cells and their ECM microenvironment, represented by spheres, interacting 628

through elastic beams visualized as rods. Note the formation of dense cell nodes and 629

cell-free areas from the initial homogeneous cell layer. Simulation with N = 300 630

particles, L = 20d0 = 500 µm, k = 1.5, F ∗/F0 = 1. 631

Video S8 A431 epithelial carcinoma cell monolayer on Matrigel substrate expands a 632

wound. The wound was punctured, shown by white circle, at 1 h after cell attachment. 633

Note the co-movement of gel substrate with cells. Phase contrast time lapse microscopy 634

with 10x objective and 8 h duration. Seeding density was 1690 cells/mm2. 635
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Video S9 Pattern formation of A431 epithelial carcinoma cell cultures on Matrigel 636

substrate in the presence of 10 µM blebbistatin (top right panel), 30 µM Y27632 637

(bottom right panel), or in the absence of inhibitors (left panel). Note the smaller 638

pattern size in the right panels. Phase contrast time lapse microscopy with 10x 639

objective and 21 h duration. Seeding density was 1600 cells/mm2. 640

Video S10 Pattern formation of s100A4 overexpressing A431 epithelial carcinoma 641

cell lines on Matrigel substrate. A431 clones overexpress either the non-functional 642

mutant S100A4 form (A431-mutS100A4, left panel) or the wild type S100A4 643

(A431-S100A4, right panel). Note the formation of smaller structures in the right panel. 644

Phase contrast time lapse microscopy with 10x objective and 24 h duration. Seeding 645

density was 1600 cells/mm2. 646
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