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Abstract: 

 

  The adsorption of methylamine at the surface of amorphous ice is studied at various 

temperatures, ranging from 20 K to 200 K, by grand canonical Monte Carlo simulations under 

conditions that are characteristic to the interstellar medium (ISM). The results are also 

compared with those obtained earlier on crystalline (Ih) ice. We found that methylamine has a 

strong ability of being adsorbed on amorphous ice, involving also multilayer adsorption. The 

decrease of the temperature leads to a substantial increase of this adsorption ability, thus, 

considerable adsorption is seen at 20-50 K even at bulk gas phase concentrations that are 

comparable with that of the ISM. Further, methylamine molecules can also be dissolved in the 

bulk amorphous ice phase. Both the adsorption capacity of amorphous ice and the strength of 

the adsorption on it are found to be clearly larger than those corresponding to crystalline (Ih) 

ice, due to the molecular scale roughness of the amorphous ice surface as well as to the lack of 

clear orientational preferences of the water molecules at this surface. Thus, the surface density 

of the saturated adsorption monolayer is estimated to be 12.6 ± 0.4 mol/m2, 20% larger than 

the value of 10.35 mol/m2, obtained earlier for Ih ice, and at low enough surface coverages the 

adsorbed methylamine molecules are found to easily form up to three hydrogen bonds with the 

surface water molecules. The estimated heat of adsorption at infinitely low surface coverage is 

calculated to be -69 ± 5 kJ/mol, being rather close to the estimated heat of solvation in the bulk 

amorphous ice phase of -74 ± 7 kJ/mol, indicating that there are at least a few positions at the 

surface where the adsorbed methylamine molecules experience a bulk-like local environment. 
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1. Introduction 

 

 The origin and formation of amino acids are of particular interest in astrochemical 

research, because their presence in the interstellar medium (ISM) may provide clues to the 

delivery of prebiotic molecules to the early Earth, the possible origins of life on Earth,1-3 and 

the possibility of Earth-like life elsewhere in the Universe.4 Glycine and methylamine 

(CH3NH2) are not just simple structural analogs (related to each other by the presence or 

absence of the carboxyl group), but methylamine is also proposed to be a precursor of glycine. 

In the interstellar medium, CH3NH2 can be formed either by CH4 and NH3, well known to be 

abundant in the ISM, under cosmic ray irradiation,5,6 or by the hydrogenation reaction of HCN 

on icy dust surfaces. CH3NH2 molecules that are trapped at solid surfaces can then thermally 

react with CO2 to form carbamate, which can be converted to a glycine salt under vacuum 

ultraviolet irradiation.7 Alternative pathways of this reaction, occurring through the CH2NH2 

radical8,9 or acetic acid10 were also proposed in the literature. 

 Both glycine and methylamine compounds are common in the terrestrial biosphere,1 

and both have also been detected in comet-exposed material from the Stardust sample return 

mission to comet Wild 2,11 by the Cometary Sampling and Composition (COSAC) instrument 

onboard the Rosetta Philae mission,12 as well as in multiple extraterrestrial samples, including 

carbonaceous chondrites.13-15 Carbonaceous chondrites, notably the CI (e.g. Orgueil) and CM 

(e.g. Murchinson) groups, contain high percentages (3% to 22%) of water,16 and also 

methylamine in the concentration of  331 nmol/g (Orgueil) and 85 nmol/g (Murchison).17 

Generally, interstellar18 and cometary19 dust grains are frequently covered by amorphous solid 

water, this mantle also traps volatile reactants, and the water molecule can act both as a catalyst 

and as a chemical reactant.20 In order to characterize methylamine astrochemistry, Vinogradoff 

et al. reported a laboratory experiment, in which methylamine and formaldehyde were found to 

quickly react at interstellar or cometary ice analogues at astronomically relevant temperatures 

with a measured activation energy of 1.1 ± 0.05 kJ/mol.21 However, in the absence of relevant 

experiments, desorption behavior of methylamine from the ice surface was estimated to be 

identical with that of ammonia (with a value of 3×1012 s as the pre-exponential factor, and 

25 kJ/mol as the activation energy).21 As this example also shows, a major stumbling-block in 

our understanding of prebiotic chemistry in the ISM is the lack of a standardized and 

comprehensive approach to simulate grain-surface chemistry.22 Furthermore, improved gas-
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grain astrochemical models need to be developed in order to interpret the high-resolution data 

provided by Atacama Large Millimeter Array (ALMA).  

 Besides laboratory experiments, molecular details of the adsorption of methylamine at 

icy surfaces can also be investigated by computer simulation methods, in order to improve the 

current adsorption models used in astrochemistry. Such methods can well complement 

experiments, as they can provide a full, three-dimensional insight of atomistic resolution into 

the system of interest.23 Among the various computer simulation techniques, the grand 

canonical Monte Carlo (GCMC) method23,24 is particularly suitable for studying adsorption, 

since here the chemical potential rather than the number of the adsorbate molecules in the basic 

box is fixed, and thus, by systematically varying the chemical potential and determining the 

number of adsorbate molecules in a set of simulations, the adsorption isotherm can be 

determined, and simulation results can be analyzed in detail at surface coverage values that are 

relevant for the given adsorption process. The GCMC method has been successfully applied in 

the past two decades for a set of systems, such as for the adsorption of various small molecules 

at carbonaceous surfaces,25-31 metal oxides,32-35 covalent organic frameworks,36-38 crystalline 

ice,39-48 water clathrates,49 kaolinite,50,51 zeolites,52-58 self-assembled monolayers,59,60 and 

protein crystals.61  

 Since icy surfaces in the interstellar medium are predominantly covered by low density 

amorphous ice (LDA),18,19 here we study the adsorption of methylamine at the surface of LDA 

ice by GCMC simulations at temperatures that are relevant to the interstellar medium (i.e., a 

few tens of K). Besides its potential role in prebiotic evolution, methylamine, released 

primarily by decaying bodies,62 is also an abundant atmospheric pollutant, being involved in 

the catalytic ozone destruction process occurring at the polar stratospheres63 as well as 

increasing aerosol nucleation rates in the lower troposphere.64 For this purpose, recently we 

performed a detailed GCMC analysis of the adsorption of methylamine at the surface of 

crystalline, Ih ice at the tropospheric temperature of 200 K. Thus, the present study provides 

also an excellent opportunity to investigate in detail the role of the state of the adsorbing phase 

(i.e., crystalline vs. amorphous ice) as well as that of the temperature in the details of the 

adsorption process. For this purpose, here we determine the adsorption isotherm of 

methylamine at the surface of LDA ice, and analyze in detail the properties of the adsorption 

layer at the temperatures of 200 K, 150 K, 100 K, 50 K, and 20 K, corresponding to the 

adsorption in the colder parts of the interstellar medium. Further, the comparison of the results 



 5 

obtained at 200 K with our earlier data obtained at the surface of Ih ice47 provides information 

on how the properties of the adsorption layer depends on the structure of the adsorbing phase, 

whereas the comparison of the results obtained at different temperatures can shed light on the 

temperature dependence of the adsorption process, and even allows us to extrapolate to lower 

temperatures, at which computer simulation studies cannot be done within reasonable time. 

 The paper is organized as follows. In sec. 2 details of the performed calculations, 

including GCMC simulations and ITIM analysis, are given. The results concerning the 

adsorption isotherm, the building up of the subsequent molecular layers of the adsorbate as 

well as the orientation and energetics of the adsorbed methylamine molecules that are in direct 

contact with the ice phase are discussed in detail in sec. 3. Finally, in sec. 4 the main 

conclusions of this study are summarized.  

 

2. Computational Details 

 

 2.1. Grand Canonical Monte Carlo Simulations. The adsorption of methylamine at 

the surface of low density amorphous ice has been simulated, using the Monte Carlo method, 

on the grand canonical (,V,T) ensemble at the temperatures (T) of 200 K, 150 K, 100 K, 50 K, 

and 20 K. The X, Y, and Z edges of the rectangular basic simulation box have been 100 Å, 

35.926 Å, and 38.891 Å, respectively, X being the axis perpendicular to the ice surface. The 

basic box has consisted of 2880 water molecules. At each temperature, simulations have been 

performed at several chemical potentials of methylamine, ranging from values corresponding 

to practically no methylamine molecules in the basic box to those corresponding to the 

condensed phase of methylamine. The chemical potential values at which the simulations have 

been performed at the various temperatures, as well as the mean number of the methylamine 

molecules present in the basic box, resulted from these simulations, are summarized in Tables 

S1-S5 of the supporting information.  

 To be consistent with our previous study concerning Ih ice,47 water and methylamine 

molecules have been described by the TIP5P model65 and the potential model proposed by 

Impey et al.,66 respectively. TIP5P is known to be one of the best water models in describing 

low temperature aqueous phases,67 as it reproduce very well, among others, the temperature of 

maximum density65,67 as well as the melting point67 of water. Further, TIP5P reproduces the 

LDA/HDA liquid-liquid phase transition of water in the temperature range considered here.68 
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Both of these models used are rigid and pairwise additive, i.e., the total potential energy of the 

system is assumed to be the sum of the contributions of all molecule pairs. The interaction 

energy of a molecule pair consists of the Lennard-Jones and charge-charge Coulomb 

contributions of all the respective pairs of interaction sites. The CH3 group of the methylamine 

molecule is treated as a single interaction site (united atom), whereas the water model has two 

non-atomic interaction sites, marked by L, located at the positions of the two lone pairs of the 

O atom. The interaction of a molecule pair is truncated to zero beyond the center-center cut-off 

distance of 12.5 Å. The interaction and geometry parameters of the potential models used are 

collected in Tables 2 and 3 of Ref. 47, respectively.  

 The simulations have been performed using the program MMC69 in the same way as 

described in our earlier paper.47 Thus, in every Monte Carlo step either, by 50% probability, a 

randomly chosen molecule has been randomly translated by no more than 0.25 Å and randomly 

rotated by no more than 15o, or by 50% probability, the number of the methylamine molecules 

in the basic box has been attempted to be changed by inserting or removing a molecule. Water 

and methylamine molecules have been selected for particle displacement steps with equal 

probabilities, and methylamine insertions and deletions have also been performed with 50%-

50% probabilities. The insertion/deletion attempts have been made using the cavity biased 

scheme of Mezei,70,71 thus, insertions have only been attempted into centers of empty cavities 

of the radius of at least 2.6 Å. Suitable cavities have been searched for along a 100×100×100 

grid, which has been regenerated after every 106 Monte Carlo steps. Particle displacement and 

insertion/deletion attempts have been accepted or rejected according to the standard Metropolis 

algorithm,23,72 and according to the acceptance criterion of the cavity biased scheme,70,71 

respectively. 

 To create the LDA ice phase and surface, we started from the crystalline Ih ice phase 

used in our previous work. This phase was melted by thermalizing it, on the canonical (N,V,T) 

ensemble, at 350 K by performing 3×108 Monte Carlo steps, followed by another 108 Monte 

Carlo steps at 300 K. The melted system was then quenched by setting the temperature to 

200 K, and performing another 108 Monte Carlo steps. Then two methylamine molecules were 

added to the vapor phase of the system, and this configuration has been used as the starting 

point of all grand canonical ensemble simulations. The system has then been equilibrated at 

every temperature and chemical potential by performing 109 – 3×109 Monte Carlo steps, until 

neither the average total energy of the system nor the mean number of methylamine molecules 
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have shown even traces of a systematic drift. The mean number of the methylamine molecules 

has then been determined in every case by generating a 2×108 Monte Carlo steps long 

equilibrium trajectory. Equilibrium snapshots of the 20 K system are shown in Figure 1, both 

in top and side views, as obtained at four different chemical potential values of methylamine.  

 To investigate the properties of the adsorption layer in detail, at selected chemical 

potential values, 5000 equilibrium sample configurations, separated by 4×105 Monte Carlo 

steps long runs each, have been saved from the 2×109 Monte Carlo steps long production runs 

for further evaluation. At each temperature four such chemical potential values have been 

chosen. The first of these values always corresponds to the presence of only very few, isolated 

methylamine molecules at the ice surface, the second one to a partly unsaturated monolayer, in 

which the methylamine molecules are no longer isolated from each other, the third one to a 

more or less saturated monolayer, while the fourth one to multilayer adsorption. For 

comparison with our earlier results, at 200 K dumping of configurations has also been done at 

two more chemical potential values, at which detailed analysis of the adsorption layer on Ih ice 

was earlier performed.47 Finally, for reference purposes, configurations have also been saved 

for analyses at a  value corresponding to the condensed phase of methylamine at 200 K. 

These  values, together with the mean number of methylamine molecules resulted from the 

corresponding simulations, are collected in Table 1, and are also indicated in Tables S1-S5 of 

the supporting information. 

 

 2.2. Identification of the Dissolved and First Layer Methylamine Molecules. It has 

turned out from the simulations that, unlike in the case of crystalline Ih ice, methylamine 

molecules are not only adsorbed at the surface of the amorphous LDA ice, but they are also 

incorporated in the bulk ice phase, as seen also in some of the snapshots of Fig. 1. This finding 

is in a clear accordance with the results of the experiments of Vinogradoff et al., performed on 

methylamine/water mixtures under astrochemical conditions.21 Further, the surface of the 

amorphous ice phase, unlike that of the crystalline ice phase used in our previous simulation, 47 

is corrugated on the molecular length scale. Therefore, the first molecular layer of the adsorbed 

phase of methylamine (i.e., the methylamine molecules that are in a direct contact with the ice 

phase) cannot simply be identified in the conventional way, with the first peak of the 

methylamine density profile. Instead, first layer methylamine molecules have to be identified 
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with an intrinsic surface analyzing method.73 Further, the methylamine molecules forming the 

first layer are needed to be distinguished not only from those belonging to one of the 

subsequent molecular layers in the adsorbed phase, but also from the ones that are dissolved 

into the bulk amorphous ice phase.  

 To perform the identification of the methylamine molecules forming the first adsorbed 

molecular layer as well as those inserted into the amorphous ice phase, we have applied a 

modified version of the Identification of Truly Interfacial Molecules (ITIM) method, 

developed originally to identify the instantaneous surface of fluid phases in computer 

simulations.74 This complex goal has been achieved in two major steps. In the first one, the 

ITIM algorithm has been performed solely on the ice phase, to identify the molecularly 

corrugated boundaries of the adsorbent. As a result, every methylamine molecule residing 

between these boundaries can be considered as being dissolved in the ice phase, and hence can 

be excluded from further analyses. This first round of the ITIM analysis has been followed by a 

second one, this time performed “inside-out” on the remaining methylamine molecules, to 

identify the innermost adsorbates in the immediate vicinity of the ice surface. This set of 

interface methylamine molecules has been considered as the first adsorbed layer in all 

subsequent analyses. In the ITIM procedure, probe spheres of a radius of 2 Å have been moved 

perpendicular to the plane of the macroscopic interface until they “touched” the outmost atom 

of the phase to be analyzed. Probes were “launched” from a grid set up above the surface. The 

spacing of the grid was set to 0.5 Å. The choice of these parameters was previously found to 

ensure an optimal sampling for molecularly corrugated surfaces.73,74 This method is illustrated 

in Fig. 1, where methylamine molecules belonging to the first molecular layer of the adsorbed 

phase are shown by yellow, those being in the outer part of the adsorption layer by cyan, while 

those inserted into the ice phase by dark blue color. 

 

3. Results and Discussion 

 

 3.1. Adsorption Isotherm and Density Profiles. The average number of methylamine 

molecules present in the basic simulation box, <N>, is shown as a function of the chemical 

potential in Figure 2 as obtained from our GCMC simulations at the five temperatures 

considered. The chemical potential values at which sample configurations have been saved for 

detailed analyses are also indicated in the figure. It should be noted that the value of <N> has 
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been calculated on-the-fly, whereas, due to its computational cost, the ITIM procedure 

described in sec. 2 can only be performed, and hence also the distinction between the adsorbed 

and dissolved methylamine molecules can only be made on saved sample configurations. 

Therefore, the isotherms shown in Fig. 2 include both the adsorbed and dissolved methylamine 

molecules. The isotherms corresponding to different temperatures are rather similar to each 

other in shape: they all rise sharply and continuously up to the sudden jump corresponding to 

the point of condensation, without exhibiting any marked plateau. The very steep rise of the 

isotherms, occurring immediately before condensation, suggests that the adsorption of 

methylamine is not limited to one single molecular layer. As expected, the isotherms are 

shifted to higher chemical potential values with decreasing temperature. The  values 

corresponding to the point of condensation, denoted here as 0, are estimated from the position 

of the steepest rising part of the isotherms to be -26.26, -27.76, -30.20, -32.34, and 

-33.66 kJ/mol at 20, 50, 100, 150, and 200 K, respectively. As is seen from Figure 3, the value 

of 0 increases practically linearly with decreasing temperature. Considering that, for one 

component,  is simply the molar free energy, and hence the molar entropy, Sm, is related to its 

temperature derivative as Sm = -(∂/∂T), the observed linear temperature dependence of 0 

implies that the corresponding molar entropy is constant (i.e., 41.9 ± 2.7 J/mol K). 

 The comparison of the isotherms obtained at 200 K at the surfaces of crystalline, Ih
47 

and amorphous ice is shown in the inset of Fig. 2. As is seen, there are several important 

differences between the two isotherms. First, at low  values, i.e., below about -40 kJ/mol, the 

isotherm corresponding to amorphous ice goes consistently above that of the Ih ice. Since in 

this chemical potential range even the first molecular layer of methylamine is far from being 

saturated, this difference indicates stronger interaction of the methylamine molecules with the 

corrugated surface of amorphous ice, containing several troughs on the molecular length scale 

within which an adsorbed molecule can have more contact with the surrounding waters, than 

with the flat surface of Ih ice. Second, the clear plateau of the isotherm corresponding to Ih ice 

in the  range between about -40 and -35 kJ/mol, corresponding to the saturated monolayer, is 

completely missing in the case of amorphous ice. Instead, this latter isotherm rises 

continuously even in this  range, indicating the building up of outer molecular layers of 

methylamine here. The lack of particular stability of the saturated monolayer at the amorphous 

ice surface is probably due to the fact that the adsorbed monolayer reflects the corrugation of 
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the ice surface, and hence it also has several pockets of negative local curvature, in which the 

building up of the second molecular layer can start earlier than on a relatively flat monolayer, 

present at the surface of Ih ice. Finally, above the point of condensation the isotherm 

corresponding to amorphous ice goes again above that of Ih ice. However, in this  range this 

difference simply reflects the higher density of the somewhat disordered amorphous ice than 

that of the Ih ice, which leaves more space for the methylamine molecules in the basic 

simulation box.  

 It should be emphasized, however, that the isotherm obtained at amorphous ice contains 

also the methylamine molecules that are dissolved in the ice phase, while no such dissolved 

molecules were found in the case of Ih ice.47 Hence, all the observed differences of the two 

isotherms in all the three above discussed ranges of  can, at least partly, be accounted for 

simply by the methylamine molecules dissolved in the bulk amorphous phase. 

 We have also converted the obtained <N> vs.  isotherms to the more conventional  

vs. prel form, where  is the surface density of methylamine, calculated simply as 

 

YZ

N
Γ
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= ,      (1) 

and prel is the relative pressure, i.e., the ratio of the pressure of the system, p, and the pressure 

corresponding to the point of condensation of methylamine at the given temperature, p0. prel 

can be calculated using the value of 0 as34 
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where kB is the Boltzmann constant. It should be noted that since p0 is the pressure of the 

saturated vapor of methylamine, isotherms can only be converted to the (prel) form up to the 

point of condensation, i.e., when methylamine is still in its vapor phase.  

 The obtained isotherms are shown in the  vs. prel form in Figure 4 as obtained at the 

five temperatures considered; the corresponding values are also included in Tables S1-S5 of 

the supporting information. It should be emphasized again that these isotherms still contain the 

molecules that are dissolved in the bulk amorphous ice phase. As is seen, at a given prel value 

the amount of adsorbed methylamine increases with decreasing temperature, and hence at 
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lower temperatures multilayer adsorption occurs at lower prel values. It is also evident that the 

low pressure rising part of the isotherm becomes progressively steeper as the temperature 

decreases, due to the explicit dependence of prel on the temperature (see eq. 2). This steep rise 

of the (prel) isotherm at low temperatures results in considerable surface densities of 

methylamine already around the relative pressure value of 10-30 at 20 K and 10-20 at 50 K. To 

estimate the corresponding absolute pressure range, one needs the value of p0 at these 

temperatures, the value of which is clearly inaccessible from the simulations. The temperature 

dependence of the experimental value of p0 is described by the Antoine equation:75  

 

CT

B
Ap

+
−=0ln ,       (3) 

(p0 and T being in units of Pa and K, respectively), with the Antoine parameter values of 

A = 21.92, B = 2383.1 K, and C = -37.574 K, at least in the temperature range between 190 and 

267 K.76,77 On the other hand, upon going to lower temperatures, eq. 3 is expected to provide 

progressively worse estimate of p0, this estimate being 1.4103 Pa at 200 K, 2 Pa at 150 K, and 

about 10-7 Pa at 100 K. Using the very conservative estimate of 1 Pa for p0 both at 20 K and 

50 K, the gas phase concentration of methylamine corresponding to the above relative pressure 

values (i.e., 10-30 at 20 K and 10-20 at 50 K) can be estimated through c = p/RT as about 

10-35 mol/dm3 (20 K) and 5  10-25 mol/dm3 (50 K), respectively. Considering that the typical 

molecular number density of methylamine in the ISM is about in the order of 

10-2 molecule/dm3, i.e., 10-26 mol/dm3,78 our results reveal that considerable adsorption of 

methylamine at icy surfaces can be expected at the density and temperature characteristic of 

the cold part of the ISM. 

 The (prel) isotherms obtained at 200 K at the surfaces of Ih and amorphous ice are 

compared in the inset of Fig. 4. This comparison corroborates the conclusion drawn from the 

comparison of the <N> vs.  isotherms that the saturated monolayer of methylamine consists 

of more molecules at the surface of amorphous than at Ih ice.  

 To better understand the nature of the adsorption, we have fitted the Langmuir 

isotherm:79,80  
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to the obtained  vs. prel data at 200 K, 150 K, and 100 K. In eq. 4, the Langmuir parameters 

max and K are the surface density of the saturated monolayer, and the Langmuir partition 

coefficient, measuring the affinity of the adsorbate to the surface, respectively.79,80 The 

Langmuir curves fitted to the simulated data points are indicated by dashed lines in Fig. 4. As 

is seen, the obtained data can be reasonably well fitted up to a certain relative pressure value. 

This fit is never perfect, since the relatively strong lateral interaction acting between the 

adsorbed methylamine molecules introduces some slight deviation of the adsorption isotherms 

from the Langmuir form, as it was already noted in our previous study concerning Ih ice.47 

Nevertheless, the fitted curve does not deviate strongly from the data points up to the prel value 

of about 0.2, 0.05, and 0.02 at 200 K, 150 K, and 100 K, respectively, and this agreement also 

involves the beginning of the plateau part in every case. It should be emphasized, however, 

that, apart from the two points above prel = 0.8 at 200 K, all data points have always been 

involved in the fitting procedure, not only the ones being in the prel range of reasonably good 

fit. Clearly, at 200 K and 150 K the last two, while at 100 K the last three points that are used 

in the fitting procedure correspond to much larger  values than what is predicted from the fit, 

in spite of the fact that these points at intermediate prel values seemingly form a plateau of the 

isotherm. This plateau clearly could not be fitted in any case. Instead, the fitted functions, and 

thus also the values of the max parameter are determined predominantly by the low prel data 

points, where the assumptions underlying the Langmuir isotherm are well satisfied. This fact 

suggests that the difference between the plateau value of the data points and that of the fitted 

Langmuir isotherm reflects primarily the effect of the methylamine molecules dissolved in the 

bulk amorphous ice phase (and, possibly, also partly the effect of the molecules that are located 

at the negative local curvature troughs of the saturated first molecular layer, forming already 

traces of the second molecular layer). The max values obtained from the Langmuir fit resulted 

in 12.4, 12.2, and 13.0 mol/m2 at 200 K, 150 K, and 100 K, respectively, suggesting that the 

surface density of the saturated monolayer of methylamine at the surface of amorphous ice is 

12.6 ± 0.4 mol/m2. This value is considerably higher than that corresponding to the surface of 

Ih ice of 10.35 mol/m2,47 reflecting the fact that the corrugated surface of amorphous ice can 

host more adsorbed molecules in the first monolayer than the flat surface of Ih ice (This 

difference is also seen from the Langmuir functions fitted to the two 200 K data sets in the 

inset of Fig. 4.). 



 13 

 To check whether our above approach is correct, we have calculated the mass density 

profile of all methylamine molecules as well as of only those forming the first molecular layer 

at selected chemical potential values, using the saved sample configurations, at the five 

temperatures considered. The obtained profiles are shown in Figure 5. As is seen, at least at the 

highest chemical potential value considered at every temperature, the two profiles are markedly 

different from each other, indicating that at these state points the adsorption extends well 

beyond the first molecular layer. Assuming that the first molecular layer is already saturated in 

these cases, the number of molecules forming this layer can be estimated. Further, this 

assumption can be confirmed considering the case of condensed methylamine at 200 K (see the 

upper panel of Fig. 5), where this layer must be saturated. The number of methylamine 

molecules belonging to this saturated first molecular layer turns out to be 210 ± 20 in every 

case, which corresponds to the  value of 12.5 ± 1 mol/m2, being in excellent agreement with 

the value estimated from the Langmuir fit of 12.6 ± 0.4 mol/m2. The  values corresponding 

to the first molecular layer of methylamine at the selected chemical potential values, first, 

along with the corresponding prel values, are also included in Table 1.  

 Having the adsorbed and dissolved methylamine molecules distinguished from each 

other, at least at the chemical potential values at which sample configurations have been 

collected, the dissolution (solubility) isotherms can also be, at least, estimated. The average 

number of the dissolved methylamine molecules, <Nsol>, is shown as a function of the 

chemical potential at the five temperatures considered in Figure 6, while the inset of the figure 

shows these data in the c vs prel form, where c is the bulk ice phase concentration of 

methylamine: 

 

YZX

N
c

ice

sol 
= ,      (5) 

where the value of Xice, i.e., the X range of extension of the amorphous ice phase, has been 

estimated to be 60 Å from the density profile of the water molecules (see Fig. 5). The c values 

obtained at different chemical potentials and temperatures are also included in Table 1. In 

interpreting the c(prel) solubility isotherms it should be recalled that, by performing particle 

insertion and deletion steps, the GCMC method efficiently removes any barrier corresponding 

to the direct transport of the molecules between markedly different environments (e.g., the bulk 
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vapor phase, ice surface, and bulk ice phase), and simply results in configurations 

corresponding to the thermodynamic equilibrium. Therefore, our results show that in 

thermodynamic equilibrium a non-negligible amount of methylamine molecules are dissolved 

in the bulk LDA phase, but cannot say anything about the possible kinetic hindrance of 

reaching this equilibrium situation. 

 

 3.2. Orientation of the First Layer Methylamine Molecules. The full description of 

the relative orientation of a rigid body relative to an external direction requires the use of two 

independent orientational variables, such as the two polar angles of the external vector in a 

suitably chosen coordinate frame fixed to the rigid body. Therefore, the orientational statistics 

of such rigid bodies, such as rigid molecules in a computer simulation, relative to an external 

direction can only be fully described by the bivariate joint distribution of these variables.81,82 In 

analyzing the orientational preferences of the first layer methylamine molecules relative to the 

ice surface (or, equivalently, to the surface normal), we have chosen these variables in the 

following way. The frame is fixed to the individual methylamine molecules; its origin is the N 

atom, axis z points along the N-CH3 bond from the N atom to the CH3 group, axis y is parallel 

with the segment that joins the two hydrogen atoms of the NH2 group, while axis x is 

perpendicular to the above two axes, and it is oriented in such a way that the x coordinates of 

the amine H atoms are positive. The orientational variables  and  are then the polar angles of 

the surface normal axis, X, pointing, by our convention, away from the ice phase (see Figure 

7). To analyze the orientation of the surface water molecules, we have defined the local frame, 

fixed to the individual water molecules, in such a way that its origin is the O atom, axis x is the 

molecule normal, axis y is parallel with the line connecting the two H atoms, and axis z points 

along the bisector of the H-O-H angle, while  and  are again the polar angles of X in this 

frame (see Fig. 7). Due to the symmetry of the methylamine and water molecules, the above 

frames are always chosen such that the inequalities   180o, and   90o, respectively are also 

satisfied. It should also be noted that while  is the angle between two spatial vectors,  is that 

of two planar ones (i.e., two vectors that both lay, by definition, in the xy plane of the local 

frame), and hence random surface orientation results in a uniform bivariate distribution only if 

cos and  are chosen to be the orientational variables.81,82 
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 The P(cos,) orientational maps of the first layer methylamine molecules are shown 

in Figure 8 as obtained at selected chemical potentials at the five temperatures considered. For 

comparisons, orientational maps, obtained previously on Ih ice at 200 K at the same chemical 

potential values that are also considered here, are also shown (top row). As is seen, the 

obtained maps are rather noisy, especially at low temperatures and low surface coverages, due 

to the extremely slow exploration of the configurational space at these very low temperatures. 

This fact limits the range of conclusions concerning the surface orientation of the adsorbed 

molecules that we can reliably draw from these orientational maps. Nevertheless, it is still clear 

that methylamine molecules prefer orientations corresponding to the cos value of 0, i.e., to 

the situation where the N-CH3 bond lays parallel with the macroscopic plane of the ice surface, 

YZ. This preference is stronger at lower surface coverages, and smoother distributions are 

obtained at higher temperatures, when the larger thermal motion of the molecules results in 

better statistics. Among the various orientations corresponding to cos = 0, no alignment is 

found to be clearly preferred at every temperature and surface coverage; the maps 

corresponding to various state points often exhibit preferences around the  values of 0o, 60o, 

90o, 120o, and 180o. The alignments of the methylamine molecules corresponding to cos = 0 

and these particular  values are illustrated in Fig. 7. In these orientations, the methylamine 

molecule always turns one or two of its three hydrogen bonding directions (i.e., the two N-H 

bonds and the lone pair direction of the N atom) towards the ice surface. However, due to the 

molecular scale roughness of the surface of amorphous ice, and to the corresponding presence 

of pockets of locally negative curvature at the surface, the adsorbed methylamine molecules 

located in such pockets can easily form even three hydrogen bonds with the surface waters, 

especially at low surface coverages. The extensive H-bond formation between the first layer 

methylamine and surface water molecules is also facilitated by the fact that surface waters on 

amorphous ice have very weak orientational preferences, as compared to those at the surface of 

Ih ice, as demonstrated in Fig. 7. The orientational flexibility of the surface water molecules 

enables them to adopt orientations by which they can maximize the number of methylamine-

water hydrogen bonds. Further, as it was discussed in detail in our previous paper,47 the 

parallel alignment of the N-CH3 bond with the ice surface promotes various relative 

alignments, corresponding to strong dipolar interaction, of the neighboring adsorbed 

methylamine molecules.  
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 3.3. Energetics of the Adsorption. To further analyze the interaction of the adsorbed 

methylamine molecules both with each other and with the surface waters, and to characterize 

the energetic background of the adsorption, we have calculated the binding energy of the 

methylamine molecules belonging to the first molecular layer at the selected chemical potential 

values at all the five temperatures considered. The binding energy of an adsorbed molecule, Ub, 

is defined as its interaction energy with the rest of the system (i.e., the energy cost of bringing 

this molecule to infinite distance). Besides Ub, its contributions coming from the interaction 

with the ice phase, and with the other methylamine molecules present in the system, denoted 

here as ice
b

U  and lat
b

U , respectively, have also been calculated. 

 Some of the P(Ub), P( ice
b

U ), and P( lat
b

U ) distributions obtained at 200 K are shown 

and compared with the corresponding results on Ih ice47 in Figure 9, while those obtained at 

150 K, 100 K, and 50 K are shown in Figures 10.a, 10.b, and 10.c, respectively. (Similar, but 

considerably more noisy distributions have been obtained at 20 K.) As is expected, the lateral 

contribution to the total binding energy does not depend on the state of the ice phase. At low 

surface coverages, the main peak of the P( lat
b

U ) distribution occurs at zero energy, reflecting 

the large fraction of isolated methylamine molecules in the adsorption layer. Besides this trivial 

peak, another peak can be seen around -20 kJ/mol. This peak can be attributed to neighboring 

methylamine dimers interacting with each other by strong dipolar interaction.47 With 

increasing surface coverages, both of these peaks shift to lower energies due to the increasing 

background of the adsorbed methylamines, and also the relative weight of the latter, lower 

energy peak gradually increases. The only difference seen between the P( lat
b

U ) distributions 

obtained on amorphous and Ih ices is that the relative weight of the lower energy peak is 

slightly larger in the former case. This difference can, however, simply be explained by the 

somewhat higher surface coverage observed on amorphous than on crystalline ice at every 

chemical potential (see Fig. 2).  

 On the other hand, the type of the ice phase has a great impact on the ice contribution of 

the binding energy, ice
b

U . At the surface of Ih ice, the P( ice
b

U ) distribution exhibits a peak 

around -55 – -50 kJ/mol, and another one between -35 and -30 kJ/mol, attributed to the 
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methylamine molecules forming two and one hydrogen bonds with the ice phase, respectively, 

and with increasing surface coverage the relative weight of this latter peak increases 

gradually.47 At the surface of amorphous ice, this distribution is markedly shifted to lower 

energies. Further, besides the above two positions, another peak of the distribution emerges 

between -75 and -70 kJ/mol. This peak can be attributed to methylamine molecules forming 

three hydrogen bonds with the ice surface. In principle, a methylamine molecule can form up 

to three hydrogen bonds, and could orient in such a way (i.e., turning the CH3 group straight 

away from the ice surface) that all the three of its potential H-bonding directions (i.e., the two 

N-H bonds and the lone pair of the N atom) points towards the ice phase. However, this 

orientation (corresponding to the cos = 1 line of the orientational maps of Fig. 8) was found 

not to be preferred at all both on crystalline,47 and on amorphous ice. The reason of the lack of 

preference for this orientation is probably that it hinders the formation of strong dipolar pairs 

by the neighboring adsorbed methylamine molecules (or, more precisely, the formation of such 

a dipolar pair in the first molecular layer would imply very weak interaction of the other 

methylamine molecule with the ice phase).47 On the other hand, the molecular level 

corrugation of the surface of amorphous ice offers certain positions of locally negative 

curvature (i.e., molecular size troughs), within which the adsorbed methylamine molecule can 

still maintain all of its three possible hydrogen bonds. It is also seen from Fig. 9 that the 

increase of the surface density leads both to the slight shift of the position of the P( ice
b

U ) peaks 

to higher energies, and to the increase of the relative weights of the peaks corresponding to 

smaller number of hydrogen bonds. Both effects can be explained by the increasing 

competition of the methylamine molecules at the surface.  

 The heat of the adsorption at infinitely low surface coverage, an experimentally 

accessible quantity, can be estimated by the mean value of the P( ice
b

U ) distribution at low 

enough surface coverages, where the lateral interaction is small enough with respect to the 

adsorbate-adsorbent interaction. Using the lowest sampled chemical potential in every case, 

this value turns out to be -72 kJ/mol at 200 K, and scatters between -65 and -75 kJ/mol at the 

other temperatures considered, showing no apparent temperature dependence; its temperature 

independent value is estimated here to be -69 ± 5 kJ/mol. By contrast, at the surface of Ih ice 

this value was found to be only -51.3 kJ/mol,47 emphasizing again the higher affinity of 

methylamine to the surface of amorphous than to that of crystalline ice. Unfortunately, we are 
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not aware of any experiment in which this value is accessed at infinitely low surface coverage. 

The binding energy of methylamine on amorphous ice was, however, estimated in the very 

recent paper of Chaabouni et al.83 at higher surface coverages. In a clear accordance with our 

results, they obtained a trimodal distribution at the surface coverage corresponding to 32% of 

the saturated monolayer, with the mean values of the peaks corresponding roughly to -35, -45, 

and -61 kJ/mol (see Fig. 7 of Ref. 83). Similar, although somewhat lower values are obtained 

here when considering chemical potential values corresponding to similar surface coverages 

(e.g., -34, -52, and -71 kJ/mol at 100 K). At the lowest surface coverage considered, 

corresponding to 15% of the saturated monolayer, Chaabouni et al. estimated the binding 

energy to be -50 kJ/mol,83 which is considerably smaller in magnitude than our estimate of 

-69 ± 5 kJ/mol. However, our value is derived from configurations corresponding to the 

surface coverage values of 0.18-0.36 mol/m2, which, considering our estimate of 

12.6 mol/m2 for the saturated monolayer (see sec. 3.1), corresponds to only 1.5-3% of the 

saturated monolayer. This one order of magnitude difference between the surface coverages 

can largely explain the above difference between our result and the value reported by 

Chaabouni et al. It should also be noted that Chaabouni et al. measured the surface desorption 

rate of methylamine, and derived the binding energy distribution using several model 

assumptions.83 Nevertheless, this comparison also leaves open the possibility that the potential 

model combination used in the present study somewhat overestimates the adhesion between 

the ice surface and the methylamine molecules. It should also be noted that the experimental 

value of the activation energy of the methylamine desorption reported by Chaabouni et al. as 

well as the heat of adsorption value estimated from our simulations, considering either 

amorphous or crystalline ice, are a factor of 2-3 larger than the speculative value of -25 kJ/mol, 

estimated by Vinogradoff et al., assuming that the desorption activation energy of methylamine 

is identical to that of ammonia.21 

 Due to the larger ice contribution, the total binding energy distribution, P(Ub), is also 

shifted to lower energies when going from crystalline to amorphous ice. Interestingly, the 

distributions obtained at various surface coverages are rather similar to each other, indicating 

that the weakening of the adsorbate-ice interaction is fully compensated by the increase of the 

lateral interaction upon increasing the surface coverage. At lower temperatures, the obtained 
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P(Ub) curves exhibit two distinguishable peaks, still reflecting the presence of methylamine 

molecules forming two and three hydrogen bonds with the surface waters.  

 The binding energy distributions obtained at lower temperatures show the same general 

picture, with no apparent temperature dependence of their features. The only clear effect of the 

temperature decrease is that the distributions become more structured, and their peaks get 

sharper. Although this effect can be explained by the decreasing weight of the entropy term of 

the free energy of the system, it is presumably also, at least partly, due to the worsening of the 

sampling due to the decreased mobility of the molecules at lower temperatures.  

 Besides that of the adsorption layer, we have also investigated the energetics of the 

methylamine molecules that are dissolved in the bulk ice phase. The bulk phase concentration 

of these molecules is always small enough that the lateral contribution to their binding energy 

is nearly zero. Therefore, here we only discuss the distribution of the ice contribution, ice
b

U . 

The P( ice
b

U ) distribution of the dissolved molecules is shown in Figure 11 in all cases when it 

is not affected by too large statistical noise. The distributions do not show apparent dependence 

on the chemical potential (as the corresponding bulk ice concentration is always small enough); 

the observed differences can rather be attributed to the poor sampling due to the small number 

of the dissolved molecules.  

 At 200 K, the obtained P( ice
b

U ) distributions are smooth and unimodal, having their 

peak between -80 and -85 kJ/mol. At lower temperatures, peaks corresponding to 

methylamines forming two and three hydrogen bonds with the surrounding water molecules 

can, in some cases, be distinguished. The overall picture is rather similar to what has been seen 

in the first adsorbed monolayer, with a shift of the entire distributions to about -10 kJ/mol 

lower energies. The energy of solvation at infinite dilution, obtained considering the P( ice
b

U ) 

distribution in all cases when the P( lat
b

U ) distribution (not shown) does not extend below 

-5 kJ/mol, has turned out to be -74 ± 7 kJ/mol. This value is only about 5 kJ/mol deeper than 

what is obtained in the surface monolayer, emphasizing again that at low enough surface 

coverages methylamine molecules can be accommodated in pockets of locally negative 

curvature of the surface, in which their local environment can be rather similar to that inside 

the bulk ice phase.  
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4. Summary and Conclusions 

 

 In this paper, we presented a detailed computer simulation analysis of the adsorption of 

methylamine at the surface of amorphous ice at low temperatures, some of which are relevant 

in studying processes occurring in the ISM. Our results clearly showed that methylamine has a 

strong ability of being adsorbed at such surfaces, which leads even to multilayer adsorption at 

high enough relative pressures. The adsorption was found to be strongly enhanced by the 

decrease of the temperature, thus, in the temperature range of 20-50 K, characteristic of a large 

part of the space, considerable surface densities can be reached even at as low bulk gas phase 

concentrations that occur in the ISM. It should be emphasized, however, that our simulations 

access only the state of thermodynamic equilibrium, but can say nothing about the kinetics of 

the adsorption. In other words, we found that at the low temperatures and concentrations 

characteristic to the ISM icy surfaces may well contain a considerable amount of adsorbed 

methylamine in equilibrium, but have no access to the time scale within which this equilibrium 

can be reached under the extreme conditions of the ISM.  

 When comparing our present results with those obtained earlier at the surface of 

crystalline (Ih) ice under similar conditions,47 we found a considerably higher adsorption 

capacity of the amorphous ice surface than that of Ih ice, primarily due to the larger surface 

area of the amorphous phase, resulted from the corrugation of its surface. This increase of the 

surface area is estimated to be as large as 20% from the surface densities of the saturated 

monolayer, being 10.35 mol/m2 on crystalline,47 while about 12.5 mol/m2 on amorphous ice. 

Further, besides its increased adsorption capacity, it is also found that amorphous ice, unlike Ih 

ice,47 is able to dissolve a noticeable amount of methylamine. This finding is in a clear 

accordance with the experimental finding of Vinogradoff et al.21 

 When analyzing the orientation and energetics of the methylamine molecules forming 

the first molecular layer, we found that the aforementioned enhanced adsorption capacity of 

amorphous ice is coupled with its ability of binding methylamine molecules considerably 

stronger than Ih ice. Thus, due to the molecular size roughness of the surface of amorphous ice 

(i.e., the presence of troughs), and to the almost negligible orientational preference of the 

surface water molecules, the first layer methylamine molecules can easily form even three 

hydrogen bonds with the surface water molecules, at least at low enough surface coverages. 
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This behavior is in a clear contrast with our earlier finding on Ih ice, where the adsorbed 

molecules do not form more than two such H-bonds. This difference is also reflected in the 

estimated heat of adsorption values at infinitely low surface coverage of -51.3 kJ/mol (on Ih 

ice)47 and -69 ± 5 kJ/mol (on amorphous ice). This latter value is rather close to the estimated 

heat of solvation of -74 ± 7 kJ/mol in the bulk amorphous ice phase, confirming again that at 

the rough surface of amorphous ice, consisting of water molecules with no particular pre-

defined orientational preferences, methylamine molecules at low surface coverages experience 

an almost bulk-like local environment. Finally, it has to be pointed out that the heat of 

adsorption, estimated at the surface of both Ih and amorphous ice, is considerably lower than 

the speculative value of Vinogradoff et al. of -25 kJ/mol,21 revealing that the crude assumption 

of considering this value to be identical with that of NH3, made in this latter study,21 clearly 

represents a serious oversimplification of the real situation. 
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Tables 

Table 1. Properties of the System at the Thermodynamic State Points Where Sample 

Configurations Have Been Collected for Detailed Analyses.  

T/K /kJ mol-1 <N> prel firstmol m-2 c/mol dm-3 

20 

-47.87 6.010 3.48×10-57 0.445 0 

-39.56 48.55 1.80×10-35 2.94 3.96×10-2 

-32.08 145.4 6.31×10-16 8.58 7.94×10-2 

-28.75 265.8 3.06×10-7 11.2 0.1272 

      

50 

-50.83 5.263 7.88×10-25 0.391 0 

-42.10 44.21 1.04×10-15 3.00 1.98×10-2 

-34.62 143.1 6.83×10-8 9.55 0.1091 

-29.63 305.1 1.11×10-2 11.5 0.1189 

      

100 

-49.32 5.964 1.03×10-10 0.395 3.57×10-2 

-43.50 49.77 1.13×10-7 3.41 3.96×10-2 

-37.68 151.4 1.23×10-4 9.26 0.1208 

-31.86 305.4 0.135 11.7 0.1525 

      

150 

-51.05 4.942 3.06×10-7 0.354 5.55×10-5 

-43.57 46.56 1.23×10-4 3.20 2.58×10-2 

-39.83 124.8 2.48×10-3 7.46 0.1189 

-33.59 237.7 0.368 11.4 0.3514 

      

200 

-50.49 3.089 3.91×10-5 0.159 1.48×10-2 

-47.17 18.50 2.89×10-4 1.01 6.68×10-2 

-42.18 96.12 5.80×10-3 5.20 0.2496 

-38.85 169.7 4.29×10-2 8.67 0.5348 

-35.53 238.1 0.317 12.1 0.7131 

-33.78 330.5 0.905 13.9 1.064 

-33.03 921.1  12.9 0.7528 
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Figure Legend 

 

Figure 1. Equilibrium snapshots of the system simulated at 20 K, as obtained at four selected 

chemical potential values, shown both from top and side views. Water O atoms are represented 

by red balls, while methylamine molecules dissolved in the ice phase, being in the first 

monolayer at the ice surface, and being in outer molecular layers of the adsorbed phase are 

shown by dark blue, yellow, and cyan colors, respectively. 

 

Figure 2. Adsorption isotherms of methylamine on amorphous ice, shown in the form of 

average number of molecules in the basic box as a function of the chemical potential, as 

obtained from our sets of GCMC simulations at the five temperatures considered. Circles, 

black color: T = 200 K, squares, red color: T = 150 K, up triangles, green color: T = 100 K, 

down triangles, blue color: T = 50 K, diamonds, orange color: T = 20 K. The lines connecting 

the points are just guides to the eye. The state points at which sample configurations have been 

collected for detailed analyses are marked by arrows; the corresponding chemical potential 

values are also indicated. The inset compares the isotherm obtained here at 200 K (filled 

circles) with that obtained previously at this temperature on crystalline Ih ice (Ref. 47, open 

circles). All data points include also the molecules that are dissolved in the bulk ice phase. 

 

Figure 3. The chemical potential of methylamine corresponding to the point of condensation 

as a function of the temperature, as obtained from our GCMC simulations (filled circles). The 

straight line fitted to these points is also shown (dashed line). 

 

Figure 4. Adsorption isotherms of methylamine on amorphous ice, shown in the form of 

surface density vs. relative pressure, as obtained from our sets of GCMC simulations at the five 

temperatures considered. Black circles: T = 200 K, red squares: T = 150 K, green up triangles: 

T = 100 K, blue down triangles: T = 50 K, orange diamonds: T = 20 K. The lines connecting 

the points are just guides to the eye. The Langmuir isotherms fitted to the 200 K, 150 K, and 

100 K data are shown by dashed lines of the respective colors. The inset compares the isotherm 

obtained here at 200 K (filled circles) with that obtained previously at this temperature on 

crystalline Ih ice (Ref. 47, open circles), together with the Langmuir isotherms fitted to them. 

All data points include also the molecules that are dissolved in the bulk ice phase. 
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Figure 5. Mass density profiles of all methylamine molecules present in the basic box (solid 

curves) and of those forming the first monolayer at the ice surface (full circles) along the 

interface normal axis, X, obtained at selected chemical potential values at 200 K (top panel), 

150 K (second panel), 100 K (third panel), 50 K (fourth panel), and 20 K (bottom panel). For 

reference, the density profile of the water molecules forming the ice phase is also shown (thick 

dashed line). All profiles shown are symmetrized over the two interfaces present in the basic 

box. 

 

Figure 6. Dissolution isotherms of methylamine in amorphous ice, shown in the form of 

average number of dissolved molecules in the basic box as a function of the chemical potential, 

as obtained from our sets of GCMC simulations at the five temperatures considered. Black 

circles: T = 200 K, red squares: T = 150 K, green up triangles: T = 100 K, blue down triangles: 

T = 50 K, orange diamonds: T = 20 K. The lines connecting the points are just guides to the 

eye. The inset shows the same isotherms, in the form of bulk concentration vs. relative 

pressure. 

 

Figure 7. Definition of the local frame fixed to the individual methylamine (top left) and water 

(top right) molecules, and of the polar angles  and  of the surface normal vector pointing, by 

our convention, away from the ice phase, X, in these frames (see the text). Illustration of the 

preferred alignments of the surface methylamine molecules relative to the surface normal 

vector, X (bottom left). Orientational maps of the water molecules at the surface of crystalline 

(Ih) ice and amorphous ice, together with the illustration of the orientations preferred at Ih ice 

(bottom right). In the orientational maps, lighter colors correspond to higher probabilities. 

 

Figure 8. Orientational maps of the first layer methylamine molecules at the surface of 

crystalline (Ih) ice at 200 K (top row, Ref. 47) as well as at the surface of amorphous ice at 

200 K (second row), 150 K (third row), 100 K (fourth row), 50 K (fifth row), and 20 K (bottom 

row), as obtained at selected chemical potential values. In the maps, lighter colors correspond 

to higher probabilities.  
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Figure 9. Distribution of the total binding energy of the first layer methylamine molecules 

(bottom panel), as well as its contributions coming from the interaction with the other 

methylamine molecules in the system (middle panel) and with the ice phase (top panel), as 

obtained at 200 K at the surface of crystalline (Ih) ice (open symbols, Ref. 47), and at that of 

amorphous ice (full symbols) at the chemical potential values of -35.5 kJ/mol (red), 

-42.2 kJ/mol (blue), and -47.2 kJ/mol (orange).  

 

Figure 10. Distribution of the total binding energy of the first layer methylamine molecules 

(bottom panel), as well as its contributions coming from the interaction with the other 

methylamine molecules in the system (middle panel) and with the ice phase (top panel), as 

obtained at the surface of amorphous ice at selected chemical potential values at (a) 150 K, (b) 

100 K, and (c) 50 K.  

 

Figure 11. Distribution of the binding energy contribution coming from the interaction with 

the ice phase, as obtained for the methylamine molecules that are dissolved in the bulk 

amorphous ice phase at selected chemical potential values at 200 K (top panel), 150 K (second 

panel), 100 K (third panel), 50 K (fourth panel), and 20 K (bottom panel).  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

Horváth et al. 
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Figure 8 
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Figure 9 
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Figure 10.a 
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Figure 10.b 
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Figure 10.c 

Horváth et al. 
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Figure 11 

Horváth et al. 
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