
Initial Concept of an Oracle-Structured Stream
Compression Protocol for Arbitrary Network Flows

Máté Tömösközi1,2, Mingchuan Luo1, Frank H. P. Fitzek1, Péter Ekler2
1Communication Networks Group, Technische Universität Dresden, Germany

3Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Hungary
mate.tomoskozi@tu-dresden.de, Mingchuan.Luo@mailbox.tu-dresden.de, frank.fitzek@tu-dresden.de, ekler.peter@aut.bme.hu

Abstract—Next generation use-cases of wireless networks re-
quire a great deal of flexibility in order to adopt to the
constantly changing state of innovation and to accommodate
future application requirements. Header compression has been
an ever present solution since the advent of wireless networks
and the most current version of it, Robust Header Compression
(RoHC), has seen a widespread adoption in Long Term Evolution
(LTE) cellular networks.

Recent research has mostly focused on the integration and
enhancement of RoHC, instead of advancing the core concept of
the compression. In this paper we present for the first time a
novel design that can tackle the compression of arbitrary packet
streams regardless of the employed protocols and the transmitted
data. We present our initial findings for an error-free scenario
with various simulated and real-life packet streams and show
that even with the absence of design time knowledge about the
packet structures, one can compress a significant part of the
streams, yielding compression gains for IP packets up to 90 %,
as an example.

Keywords: Header Compression, Network Flows, Stream
Compression, Adaptability, Internet of Things, Machine Learn-
ing, Network Function Virtualisation

I. INTRODUCTION

As our Internet grows and becomes even more complex
catalysed by the adoption of numerous next generation wire-
less network applications, such as the Internet of Things and
Vehicle-to-Infrastructure, billions of devices would need to
communicate in the same connected digital environment. To
facilitate this, one has to provide sufficient metadata which
tackle addressing, routing, synchronisation and error recov-
ery concerns, among other things. However, this requires an
encapsulation overhead that can even exceed the size of the
logical payload.

The Internet Protocol (IP) has been widely adapted as the
main network layer protocol. Typically, IP packets contain
a protocol encapsulation overhead from higher layers of the
network protocol stack as well, which are prepended to the
logical payload (i.e., the binary information that needs to
be transmitted). For mobile multimedia settings, a common
protocol combination is RTP/UDP/IP, accounting for 40 bytes
with IPv4 and 60 bytes with IPv6.

Having stated this, network developers cannot assume that
in our rapidly advancing age one has the perfectly fitting
programming library (function) ready for every application
which we did not even invent yet. One of the main limiting
factors for the employment of header compression solutions
for fifth generation networks is the constricting nature of
these compression designs. For example, it has been recently
shown that a customised compression based on Robust Header

Compression version 2 (RoHCv2) decreases the size of Op-
portunistic Routing routing messages in mesh networks by at
least 50 % with the potential to be even better under certain
conditions [1], not to mention that a decrease in message size
also decreases the statistical probability of bit errors.

A decrease in the amount of data requiring transport ad-
ditionally yields indirect benefits in shorter network interface
activity, which can reduce the energy footprints, as predicted
by [2]. The impact of RoHC on media performances have
found that header compression cuts the required bandwidth in
half for voice transmissions (GSM) and improves the overall
voice quality (see [3] and [4]). Later the authors additionally
discovered that video quality can be enhanced as well (see [5]).

However, since there are no standardised compression solu-
tions for the aforementioned routing scenario, one would need
to develop unique implementations for every use-case. Since
the available expertise in the area of header compression is
very limited, this could prove quite costly and could deter
future (protocol) applications – for example QUIC [6] – from
employing compression.

The first IP header compression scheme was the Com-
pressed Transport Control Protocol (CTCP or VJHC). It was
designed by Van Jacobson [7] and it exclusively focuses on the
compression of the TCP protocol. CTCP combines TCP and
IP headers together for better results and lower complexity,
while the compression algorithm itself employs delta coding.
The main benefit of CTCP – besides its novel concept – is the
high compression ratio. Unfortunately, it is very susceptible
to bit errors, as it was designed to operate on the wired
networks of its time, which results in the loss of synchronism
with the decompressor and the consequent discarding of suc-
cessfully received compressed packets. Moreover, it lacks any
internal error detection scheme and it relies on the protection
mechanism of other protocols. Robust Header Compression
(RoHC), specifically version 1 of RoHC, which was introduced
in [8], was modelled on the concept of extensibility with
various profiles that were added later and was incorporated into
the 3GPP-UMTS and WiMAX networks. However, the newest
header compression standard, version 2 of Robust Header
Compression, defined in [9], opts for simplicity in design over
extensibility. It aims to be more robust under similar network
conditions, while increasing compression gain. Consequently,
it had gained widespread adoption in the Long Term Evolution
(LTE) networks next to RoHCv1.

Although both versions of RoHC achieve around 80-90 %
in gain (see [10]), a lack of knowledge about the structure
of the packet data – including any headers – normally neces-
sitates to omission of header compression altogether. Since

the various compression standards rely on fixed structures
inside the headers, which purpose can only be determined at
design time of the compression algorithm, one would need to
construct separate compression schemes for each to accom-
modate compression of that particular stream. In the world
of massive heterogeneity and standardisation of our Internet,
this is, of course, a quite impregnable hurdle. However, with
the advancement of the increasing data processing capabilities
of modern hardware, one can utilise such emerging concepts
as Network Function Virtualisation, Artificial Intelligence, as
well as Machine Learning.

In this work we advocate the employment of an oracle in
order to determine the structure of the packet flow and to
enable their future compression. We call this idea and the
accompanying compression scheme Oracle-Structured Stream
Compression or O2SC. An oracle, or an oracle machine in
computational theory terms, is an abstract entity which can
make decisions of higher complexity. It acts as a black box,
that given a certain input, produces a corresponding output in
a single operation. In our case, we delegate the design time
determination of the packet structure to an oracle entity and
we construct a compression scheme that, given an arbitrary set
of packets, can query the aforementioned oracle and interpret
its solution to determine how to compress the given stream.

This in turn enables the compression of packet flows that
would otherwise not be compressible at all (basically, any
non-UDP/IP, TCP/IP stream), or only partially by current
standards (various extensions, and/or header combinations do
not have standardised compression profiles).

Note, that this treatment of our concept is initial and some
of the applied considerations can be improved on. We base
our design on years of first hand experience with header
compression, especially with RoHCv2 defined in [9]. As of
yet, we do not consider multiple flows, nor losses, as well
as packets of varying sizes. However, none of these provide
serious design issues and can be solved with relative ease,
which we plan to publish in the near future. Moreover, in this
paper we have not yet considered the integration of some of
our more forward looking concepts, such as network coded
compressed packets [11], as well as reliable base proposal.

In the following Section we discuss the overall design of this
oracle-structured solution. In Section III we evaluate the com-
pression for specific header combinations in the IP protocol
stack. After that, Section IV presents various measurements
with real-life packet flows, such as the control messages of a
Franka Emika robot arm. Finally we conclude in Section V.

II. COMPRESSION DESIGN

In order to facilitate the compression of any set of con-
secutive network packets, we define two entities that sit on
opposite sides of a (direct) channel: the compressor and
the decompressor. The main goal of the compressor is to
guarantee that the decompressor is in synchronism with it
and is aware of every change in the compressed flow, while
making sure that only the bare minimum of data is transmitted.
The decompressor in turn has to verify each incoming packet
and determine whether it can safely update its context without
corrupting it for the future recovery and decompression of
messages.

Our main metric of evaluation throughout this paper will be
the compression gain or savings, which can be expressed as:

S = 1.0− ‖Tco‖
‖Tuc‖

, (1)

where ‖Tco‖ and ‖Tuc‖ are the total transmitted bytes during
compression and without compression. Our initial evaluations
of RoHC employs exactly this formula and expresses the
amount of compression that can be achieved for a given packet.
For further details we refer to [10].

A. The Oracle
Since we utilise the oracle machine concept for the deter-

mination of the design time compression structure, we need
to construct its input and output rigorously. First of all, we
specify the available knowledge of the oracle as:

Pn = {p1, . . . , pn}, (2)

where pi ∈ Fm
28 , n, i ∈ N, 1 ≤ i ≤ n. Fm

28 a finite field
representing a packet of length m bytes. Pn in turn is a set of
n available uncompressed messages (i.e., a history of previous
packets).

In turn, we define the oracle as a function

f : Fm
28 ×Pn → Fm

22 . (3)

The corresponding output of the function is of Fm
22 , which

is the same length as the packet and represents a certain
compression pattern for a given packet from Fm

28

The output pattern consists of a series of 2-bit flags sig-
nalling whether a given field is static, sequential or random.
These in turn are defined as follows:

• Static: These fields have constant, very rarely changing
value between packets. Their transmission should gener-
ally be done once per the lifetime of the flow. Examples of
them include: IP source and destination addresses, UDP
source and destination port numbers, RTP payload types.

• Sequential: Fields of this type change in a well defined
manner, meaning that the delta between consecutive pack-
ets stays relatively constant throughout the transmission.
Fields of this class can be: IPv4 identification, RTP
timestamp, RTP sequence number, etc.

• Random: Lastly, these fields do not exhibit any specific
pattern, and change in an erratic way. They include
various checksums, or an already compressed logical
payload. Note, that some of these fields could be deduced
in the knowledge of the underlying algorithms, e.g., CRCs
and checksums, however, the current oracle design does
not consider this.

For this article we employed a model trained with a basic
logistic regression as the oracle, and it provided a generally ac-
curate estimation of the packet structure. An obvious drawback
of this approach is that the compression cannot commence
until a model is created. This either requires the buffering of
numerous packets before compression or the offline generation
of the model. Our current research efforts target the deter-
mination of the right classification, one that finds sufficient
balance between accuracy and prediction complexity. An in-
depth evaluation of these techniques is, however, out-of-the-
scope of this contribution.

B. Compressed Packet Pool
We define the following compressed packet pool, which

currently contains 4 packets, one non-sequential (Non seq)
and three sequential ones (Seq 0, Seq 1, Seq 2).

The non-sequential packet type is used to initialise the
decompressor context, as well as to transmit new compression
patterns. Table I shows the field allocation of this particular
packet. In general, all packet types contain one byte of flags
as a bit field. In this version of O2SC, we reserve two bits to
distinguish the four packet types and one bit to signal if the
pattern length field is two bytes long instead of one. The rest
of the bits are currently unused and set to zero. In the future
we will need these to add context identifiers for the separate
compression contexts, as well as to accommodate more packet
types.

TABLE I
THE FIELD STRUCTURE OF THE NON-SEQUENTIAL PACKET TYPE.

1 1-2 Lpattern ||st|| ||sq|| ||r||
Flags Pattern Pattern Static Sequential Random

Length

Bit field Uncomp. Comp. Uncomp. Uncomp. Uncomp.

The second field of the non seq packet is the actual pattern
length. Since at the maximum one can use two bytes to
signal the pattern length, at the moment the compression
only supports up to 218 octets. This allows us to cover
only a small portion of the IPv6 jumbograms, however, the
compression gain for packets on this scale would possibly be
negligible due to the enormous payload size. The 218 length
is achieved via pattern compression, which packs every 2-bit
value sequentially. We use x ∈ [0, 1, 2] to signal each of the 3
field types. In case a given pattern characteristic repeats more
than 4 times (e.g., the static flag 0x00 is repeated at least 4
more times), we use the fourth flag value (0x03) to signal the
number of repeats up till 32. If the number of repeats is still
larger than this, new instances of the same field is created until
all values are referenced. The compressed size of the pattern
in bytes with a single sequence of repetition can be obtained
by the following formula:

Lpattern(m, k) =

⌈
2 · (m− k) + 10 · dk · 33−1e

8

⌉
, (4)

where m is the total number of bytes in the packet, k is
the number of times a certain value repeats. In essence,
Equation 4 counts number of “non-compressed” pattern bits
and the number of “compressed” ones – accounting for repeats
longer than 33 – in bytes. For example, a patter with length
100 which contains the repetition of one of the values 72
times would yield with k = 2, m = 100, 11 bytes. Without
compression this would cost m · 4−1 = 25 bytes.

The rest of the packet is made up of the uncompressed
value of each field packed consecutively in groups of static,
sequential and random fields. The complete non seq packet
size is therefore obtained as:

Lnon seq(m, k) = 1 + Lpattern(m, k) +m. (5)

Using the above example, the complete packet size would
be 112 bytes, which is 12 bytes more than the original
packet. This is however not an issue, since the majority of
the compressed traffic will use sequential packets.

The seq 2 (delta) packet type only transmits the random
fields as uncompressed values, see Table II. This packet yields
the maximum compression gain as the rest of the fields are
inferred from the decompressor context based on the last two
received packet’s difference for the given sequential fields
(i.e., the current field delta). This in turn necessitates that the
decompressor receives at least two consecutive compressed
packet before a seq 2 packet and that there is no fluctuation
in the field deltas at all. In case one field’s delta changes, but
the rest does not, this packet type cannot be used. In turn, a
prefect oracle would flag such fields as random if the trade-off
of the extra random bytes is justified. The compressed packet
length would be calculated as follows:

Lseq 2 = 1 + ||r||, (6)

where ||r|| is the number of random fields in the flow.
Continuing the previous example, given 10 random fields,
Lseq 2 would be 11 bytes, which is an 89 % gain.

TABLE II
THE FIELD STRUCTURE OF THE SEQUENTIAL 2 (DELTA) PACKET TYPE.

1 ||r||
Flags Random

Bit field Uncompressed

In case at least one of the above deltas change, the compres-
sor can fall back to the seq 1 (lsb) packet (Table III). This one
transmits each of the sequential fields with LSB compression
applied to them. The LSBs (which stands for Least Significant
Bit) can transmit a small amount of change in the fields, which
is bounded by the employed number of bits. This technique
is used throughout the two versions of RoHC and defined in
e.g., [9]. For further details we refer to the RFCs. We employ
LSBs with parametrisation k = 4, p = 1, meaning that we use
4 bits per field, and can represent a change in delta between
[−1, 14]. We are considering making the choice of k and p
flexible, however, for this version we stay with these values.
Consequently, the length of this packet type can be obtained
as:

Lseq 1 = 1 + d||sq|| · 2−2e+ ||r||, (7)

where ||sq|| is the number of sequential fields. Since each
sequential field is represented by 4 bits we apply the 2−2

multiplier to their original size. In case our experimental
packet contains 18 bytes of sequential fields, the length of
this packet would be 16 bytes, which yields a gain of 84 %.

TABLE III
THE FIELD STRUCTURE OF THE SEQUENTIAL 1 (LSB) PACKET TYPE.

1 ||sq|| · 2−2 ||r||
Flags Sequential Random

Bit field LSB4 Uncompressed

If none of the above conditions can be fulfilled for the
sequential fields, the compressor can still use the seq 0
(random) packet type from Table IV before reverting back
to non seq packets.

TABLE IV
THE FIELD STRUCTURE OF A SEQUENTIAL 0 (RANDOM) PACKET TYPE.

1 ||sq|| ||r||
Flags Sequential Random

Bit field Uncompressed Uncompressed

In this case, all of the sequential fields are transmitted
uncompressed, resulting in:

Lseq 0 = 1 + ||sq||+ ||r||. (8)

For the above example, the packet size would be 29 bytes,
yielding a 71 % gain.

We obtain the compressed size of the complete transmission
with a single pattern simply as the number of each sent packet
type multiplied by their length:

L(m, k) = a · Lnon seq(m, k) + b · Lseq 0

+ c · Lseq 1 + d · Lseq 2,
(9)

where a, b, c, d are the number of times each corresponding
packet type occurs during the transmission. Note, that we do
not include a thorough discussion about the theoretical analysis
of the achievable compression gain as the main focus of this
paper is to prove the feasibility of our concept via practical
evaluations. Nonetheless, an in-depth study would be quite
intriguing – which we will publish as soon as we finalise the
compression design – since the achievable gains significantly
depend on various parameters, such as the ratio of static fields
to sequential and random ones, as well as the probability of
incorrect pattern predictions by the oracle, etc.

C. Compressor States

At the moment the compressor has three available states
as depicted in Figure 1. These act like a finite state machine
and enforce certain decisions during compression, as discussed
previously. A new instance of the compressor always starts in
the None state, which signifies that there is no connection
established with the decompressor as of yet and no uncom-
pressed packet was seen.

None Non-Seq Seq
1st packet

& pattern

!static

!pattern

Fig. 1. Compressor state machine

The compressor will always transit from the None state to
the Non-Seq (i.e., Non-sequential) state when it sees the first
uncompressed packet and has access to a byte-pattern from the
oracle. In the Non-Seq state the compressor is always forced to

send non-sequential packets in order to ensure decompressor
initialisation or the synchronisation of static fields.

From the Non-Seq state the instance can advance to the
Seq (sequential) state when no change occurs in any of the
static fields. The packets sent in this state can be any of the
sequential pool. The state machine does not enforce the choice
of seq packet types, as the compressor always chooses the
one that would yield the smallest packet, while still being
decompressible.

A transition back to the Non-Seq state is also possible if
either a new pattern is received from the oracle or the field
characteristics violate the last used pattern.

III. HEADER COMPRESSION

In this section we discuss our measured results for O2SC
applied to the standard IP protocol stack using the following
stream as an example:

• IP: In the case of IPv4, the header contains every manda-
tory field, resulting in 20 bytes of header information and
the identification number always advances by exactly 1
for each consecutive packet. In case of version 6 of the
Internet Protocol, only the base header is considered (i.e.,
no extension headers are present, like routing, hop-by-hop
options, etc.)

• UDP: The UDP packet header adds an extra 8 bytes
of overhead to the above IPv4 (IPv6) header, however,
it only contains static and random fields (i.e., UDP
checksum).

• Easy RTP: With the addition of the RTP header, the
structure of the packet becomes more complicated. For
this evaluation, we only consider a constant size RTP
header, meaning that optional and variable sized fields are
omitted (the CSRC identifiers and the extension header).
This way, the RTP adds an extra 12 bytes of overhead.

• Hard RTP: This stream is the same as the easy RTP,
except that the marker-bit sets and unsets after a time
randomly determined from the [5, 25] interval. The same
is true for the packet type, which randomly changes after
[100, 200] packets and the timestamp, which varies with
a delta between 150 and 300 every [150, 300] packets.

In all cases we omit the payload in order to measure the pure
header compression.

In Figure 2 we show the achieved compression gains when
employing the experimental implementation of the O2SC
compression. In all cases the compression performs with at
least 80 % gain, in the case of IP and UDP/IP even around
90 %. For the RTP, compression gain is somewhat lower due
to the oracle flagging more fields as random.

In Figure 3 the mean compressed header is presented with
95 % confidence intervals. In the case of the non-RTP streams,
the average size falls closely around 1 byte, while for RTP it
is mostly between 5 and 6 bytes.

IV. COMPRESSION OF CAPTURED STREAMS

In this section we evaluate the compression for various
real-life streams that were captured on the network interface.
Consequently, most of them contain 14 bytes of Ethernet
header. For the creation of the logistic regression model we
took the first 100 packets of each as the training datasets and

IP UDP Easy RTP Hard RTP
0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

IPv4 IPv6

Fig. 2. Various protocol headers and their corresponding average compression
gains with O2SC.

IP UDP Easy RTP Hard RTP
0

10

20

30

40

50

60

P
ac

ke
t

S
iz

e
(b

yt
e)

Uncompressed IPv4

Uncompressed IPv6

Compressed IPv4

Compressed IPv6

Fig. 3. Various protocol header lengths before and after compression with
O2SC, as well as 95 % confidence intervals.

evaluated the compression with the following independent 900
packets.

• Franka: This stream was captured on a direct link be-
tween a Franka Emika robotic arm1 and its controlling
computer. During the recording the arm performed re-
peated circle drawing motions. The stream contains a
single IPv4 header and 235 bytes of undefined payload.

• Asterisk: We connected the Asterisk VoIP server2 to a
fixed desktop client and an Android smartphone, both
using the ZoIPer VoIP client software3. This configuration
utilised the GSM 06.10 codec, which is the full-rate audio
codec version that results in 33 bytes of payload. The
RTP timestamp and sequence numbers have a constant
increase (delta) of 160 and 1, respectively. The RTP
marker bit is always 0 except in the first two packets.

• Ekiga: This scenario represents a video conferencing
session, which was originally generated using the Ekiga
open source softphone software4. The packets contain
RTP headers and a relatively large payload of 160 bytes.

1See https://www.franka.de/panda/ for details.
2See https://www.asterisk.org/ for details.
3See http://www.zoiper.com/ for details.
4See http://www.ekiga.org/ for details.

• Radio: A TCP acknowledgement stream of a digital radio
station, which is in general efficient to compress as no
logical payload is present. This stream is the only one
which doesn’t contain an Ethernet header.

• VLC: This scenario represents a high fidelity audio trans-
mission and was generated using the RTP streaming
features of the popular Video Lan Client (VLC) open
source software5. This is again an RTP session, however,
in this case the underlying IP version is the 6. The logical
payload is 320 bytes.

In Figure 4 we show the various compression gains for
the above streams including any payload that is present. We
observe that the highest gain is achieved for the Radio stream
at about 83 % and the lowest is with the VLC stream, which
is below 20 %. However, contrary to the normal header
compression scenarios, O2SC does not have any knowledge
about the separation of network headers and payload and it
also considers the latter part for compression.

Franka Asterisk Radio VLC Ekiga
0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Fig. 4. Compression gain using O2SC for various real-life network streams.

In order to put these gains into more context, we present
the uncompressed and compressed packet sizes in Figure 5.
We observe that in every case there are savings of at least
50 bytes which, considering the limited amount of known
headers (40-60 bytes), is a significant gain not unlike the
established compression standards.

Franka Asterisk Radio VLC Ekiga
0

100

200

300

400

P
ac

ke
t

S
iz

e
(b

yt
e)

Uncompressed Compressed

Fig. 5. Average packet sizes (and 95 % confidence intervals) without and
with O2SC for various real-life network streams .

5See http://www.videolan.org/ for details.

In Figure 6 we present the achieved compressed packet
sizes. We note that most of the degradation of the compression
gain hails from the repeated transmission of the oversized non-
sequential packet.

0 20 40 60 80 100
Packet Index

0

50

100

150

200

250

C
om

p
re

ss
ed

P
ac

ke
t

S
iz

e
(b

yt
e)

Asterisk Uncompressed

Asterisk Compressed

Ekiga Uncompressed

Ekiga Compressed

Fig. 6. Uncompressed and compressed packet sizes during voice call sessions
with the Asterisk server and the Ekiga platform.

In some cases this occurs quite frequently, like with the
Franka stream, shown in Figure 7. A solution for this would be
to further decrease the transmitted pattern length or to employ
references for repeating patterns, such as the case with table-
based compression [9]. Even though the achievable gain is
degraded by the repeated transmission of the non-sequential
packets, the enormous gain from the compression of some of
the packets by more than 150 bytes adds up. This also leads
us to believe that our compression concept can step past the
constraints of only tackling the compression of standardised
protocol headers and can provide benefits even inside the
application layer and the logical payload.

0 20 40 60 80 100
Packet Index

150

200

250

300

C
om

p
re

ss
ed

P
ac

ke
t

S
iz

e
(b

yt
e)

Franka Uncompressed Franka Compressed

Fig. 7. Uncompressed and compressed packet sizes of the control stream for
the Franka Emika robotic arm.

V. CONCLUSION

Compression of IP packet flows has seen a wide adoption
in fourth generation wireless networks. However, solutions for
flexibly compressing a wider range of (future) packet flows has
not emerged as of yet.

In this paper we presented for the first time a compression
design that can tackle the compression of various network
flows without any prior knowledge during the design of the
compression solution. We proposed the employment of a
machine learning-based oracle entity that can determine the
structure of compressible packets and which can be queried
and interpreted by the appropriate compression platform. Con-
sequently, we have introduced a completely new scheme based
on the current state-of-the-art Robust Header Compression
that can compress significant parts of the packets, yielding
compression gains up to 90 %.

Nonetheless, our current design and evaluation is limited,
as we do not yet consider losses in the compressed packet
flow and multiple streams. Moreover, the handling of changing
packet lengths and variable sized headers is still open. Imple-
menting a solution to these issues is part of our ongoing work,
as well as the thorough analysis of the underlying theoretical
principles.

ACKNOWLEDGMENTS

This work was supported by the BME-Artificial Intelligence
FIKP grant of EMMI (BME FIKP-MI/SC), the János Bolyai
Research Fellowship of the Hungarian Academy of Sciences.

REFERENCES

[1] M. Tömösközi, I. Tsokalo, S. Pandi, F. H. P. Fitzek, and P. Ekler,
“Header compression in opportunistic routing,” in European Wireless
2018; 24th European Wireless Conference, pp. 1–6, May 2018.

[2] M. Tömösközi, P. Seeling, P. Ekler, and F. H. P. Fitzek, “Robust
header compression version 2 power consumption on android devices via
tunnelling,” in 2017 IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 418–423, May 2017.

[3] S. Rein, M. Reisslein, and F. H. P. Fitzek, “Voice quality evaluation
for wireless transmission with ROHC,” tech. rep., in International
Conference on Internet and Multimedia Systems and Applications, 2003.

[4] F. Fitzek, S. Rein, P. Seeling, and M. Reisslein, “Robust header com-
pression (ROHC) performance for multimedia transmission over 3g/4g
wireless networks,” Wireless Personal Communications, vol. 32, no. 1,
pp. 23–41, 2005.

[5] P. Seeling, M. Reisslein, F. Fitzek, and S. Hendrata, “Video quality
evaluation for wireless transmission with robust header compression,” in
Information, Communications and Signal Processing, 2003 and Fourth
Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint
Conference of the Fourth International Conference on, vol. 3, pp. 1346–
1350 vol.3, Dec 2003.

[6] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Internet-Draft draft-ietf-quic-transport-19, Internet
Engineering Task Force, Mar. 2019. Work in Progress.

[7] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial
Links.” RFC 1144, Feb. 1990.

[8] A. Martensson, T. Wiebke, C. Burmeister, R. Hakenberg, H. Fukushima,
T. Yoshimura, M. Degermark, K. Le, H. Zheng, H. Hannu, Z. Liu,
K. Svanbro, L.-E. Jonsson, A. Miyazaki, T. Koren, and C. Bormann,
“RObust Header Compression (ROHC): Framework and four profiles:
RTP, UDP, ESP, and uncompressed.” RFC 3095, July 2001.

[9] K. Sandlund and G. Pelletier, “RObust Header Compression Version 2
(ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite.” RFC 5225,
Apr. 2008.

[10] M. Tömösközi, P. Seeling, P. Ekler, and F. H. P. Fitzek, “Performance
evaluation of network header compression schemes for UDP, RTP and
TCP,” in Periodica Polytechnica Electrical Engineering and Computer
Science, Online First (2016) paper 8958, 2016.

[11] M. Tömösközi, D. E. Lucani, F. H. Fitzek, and P. Ekler, “Unidirectional
robust header compression for reliable low latency mesh networks,” in
2019 IEEE International Conference on Communications (ICC): Mobile
and Wireless Networks Symposium (IEEE ICC’19 - MWN Symposium),
(Shanghai, P.R. China), May 2019.

