
Unidirectional Robust Header Compression
for Reliable Low Latency Mesh Networks

Máté Tömösközi1,3, Daniel Lucani2, Frank H. P. Fitzek1, Péter Ekler3
1Communication Networks Group, Technische Universität Dresden, Germany

2Department of Engineering, Communications Systems, Aarhus University, Denmark
3Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Hungary
Email: mate.tomoskozi@tu-dresden.de, daniel.lucani@eng.au.dk, frank.fitzek@tu-dresden.de, ekler.peter@aut.bme.hu

Abstract—Next generation use-cases of mesh networks, such
as connected vehicles and industrial devices, require low la-
tency transmissions while fulfilling high reliability constraints.
However, they also suffer from an increased protocol encap-
sulation overhead when handling a large number of messages
with small payloads. A solution to this problem is to employ
header compression algorithms in order to reduce the size of the
individual protocol headers. Unfortunately, the current state-of-
the-art header compression schemes cannot be readily applied
to network topologies that contain a combination of multiple-
hops and paths, as the compression only works favourably on a
peer-to-peer, single-hop basis.

With the unique combination of network coding and header
compression one can always utilise unidirectional compression
with maximum gain. In this paper we introduce and evaluate, for
the first time, an integrated network coded header compression
solution, which we call unidirectional Robust Header Compression
(uRoHC). We show that one can – proportionally to the logical
payload size – double the payload delivery efficiency compared
to standard IPv4 and that we achieve results 10–15 % better
than that of RoHCv2 for streams containing 33 bytes of payload.

Keywords: Robust Header Compression, Network Coding,
RoHCv2, uRoHC, Mesh Network, Latency, Reliability

I. INTRODUCTION

Mission critical applications of wireless mesh networks
pose a serious concern when considering the combination of
low delays while still providing high reliability. Generally,
wireless mesh networks are known for their very dynamic
nature where nodes can disappear from the network due to
failure of hardware or a change in network accessibility while
being mobile, etc. Nonetheless, fifth generation wireless use-
cases demand that both of the above properties should be
fulfilled as best as possible.

Since we live in a world where billions of devices and
more are connected to the same network, one has to provide
enough information for the network to be able to deliver to the
right recipient at the right time, in the right order and has to
make sure that the receiver knows which application to deliver
to. This, in turn, requires an encapsulation overhead that can
even exceed that of the original data. As seen on Figure 1, as
an example, to deliver 25 bytes of real-time information, one
needs to provide at least 48 bytes of various protocol headers.
And at this point we didn’t even touch on the need for recovery
from losses prevalent in wireless networks.

When compressing applicable streams with Robust Header
Compression version 2 (RoHCv2, defined in RFC 5225) one
reduces the size of the Application, Transport and Internet
layer protocol headers down to a fraction of their original
size, in an ideal case, to a mere 1–3 bytes or by ∼ 90 %

Application Transport Internet LinkPayload

Overhead: 192%IP Protocol Stack:

Payload

Overhead: 0%Optimal:

R LinkPayload

Overhead: 44%Header Compression:

LinkPayload

Overhead: 80%Network Coded RoHC:

NC

LinkPayload

Overhead: 48%uRoHC:

u

R

Fig. 1. Example of protocol overhead assuming RTP/UDP/IPv4 packets of
the Internet Protocol Suit with 25 byte long payload and 8 byte-link layer
header, where R is the RoHC, NC the RLNC and u the uRoHC headers.

of the original header size [1]. The price one pays for this is
an increase in computational requirement per sender/receiver
pair, a loss of flexibility and an increase in the probability
of successfully delivered packets being discarded because of
decompressor desyncronisation. With the loss of flexibility we
refer to certain assumptions a compressor makes about the
structure of the headers and that it should receive uncom-
pressed packets without any errors. Consequently, it has to as-
sume either a direct peer-to-peer link between the compressor
and the decompressor or a fast enough bidirectional channel to
facilitate a feedback mechanism. A decrease in the amount of
data requiring transport additionally yields indirect benefits in
shorter network interface activity, which can reduce the energy
footprints, as predicted by [2].

One can circumvent desyncronisations and add support
for multi-path/multi-hop transmissions by encoding header
compressed packets via various FEC codes. Random Linear
Network Coding (RLNC, or simply network coding) [3] is
a coding technique that has been used in many applications
including, but not limited to, distributed storage, bandwidth
optimisation, encryption, etc. It is a unique rateless code which
provides the benefit of recoding. In multi-hop topologies, when
a packet goes through a relay, the node normally has to first
decode than encode again. This, of course, adds a lot of
delay, which is unacceptable in delay critical systems, such
as in our case. Network coding, instead, can simply recode an
already coded symbol, thereby limiting the delay to a single
encoding operation, which is significantly faster than decoding
and encoding again, as seen in [4]. It also supports online
and systematic codes which avoid buffering and unnecessary
coding, both of them being critical for the fulfilment of latency



requirements [5].
Our primary concern with RLNC is the added overhead

of network coding information, which is relative to the em-
ployed Galois-field and generation sizes. We refer to the
naive combination of network coding and header compression
as coded Robust Header Compression or cRoHC, as seen
in Figure 1. However, the main contribution of this paper
is the introduction of an integrated network coded header
compression technique in a way that minimises the network
coding overhead while still keeping the complete functionality
of RLNC, which are beneficial for low latency and high
reliability.

Wireless mesh applications usually exhibit a self-organising
and autonomous nature as well. Both Random Linear Network
Coding and Opportunistic Routing (OpR) have been examined
thoroughly in this context [6]. It has been recently shown that a
customised compression solution based on RoHCv2 decreases
the size of OpR routing messages by at least 50 % with the
potential to be even better under certain conditions [7], not to
mention that a decrease in message size also decreases the
statistical probability of bit errors. Network coding for the
mesh is also known not only in the context of OpR, but also
for enabling smaller delays compared to other Forward Error
Correcting codes (FEC), as discussed in [5].

When the integration of RoHCv2 into a low latency wireless
mesh network is considered, one must face either the challenge
of long round trip times or the added computational require-
ments of the compression and decompression procedures at
each relay node. In the former case, one increases the overall
delay because of an added decompressor feedback loop, which
opted mesh enabled solutions to only consider a subset of the
header fields for compression (static and implied fields, see,
e.g., [8]) or to provide redundant context information in each
packet (so called Additional Information Containers or AICs,
see, for example, [9]). Albeit both of these cases increase the
potential efficiency of the transmissions, they also decrease
the maximum achievable compression gain due to the above
limiting factors.

Concerning the latter problem, when hop-by-hop compres-
sion is advocated, one can – in the worst case scenario –
completely disrupt the compression, as the procedure assumes
that the input traffic is from a single source, complete and in its
original ordering. The compression of a stream with missing
packets – which would surely occur after multiple consecutive
hops in a wireless mesh – would force the compressor to com-
pletely reinitialise the decompressor on a more frequent basis,
as it cannot exploit the inherent progression characteristics of
the header fields. This, in turn, decreases the compression gain.

In this paper we introduce and evaluate a unique integrated
approach for network coded robust header compression called
unidirectional Robust Header Compression or simply uRoHC.
This novel take on header compression rends itself naturally
to the employment in low latency high reliability wireless
mesh networks by exploiting the benefits of rateless codes for
reliability and recoding for latency, both of which are inherent
properties of Random Linear Network Coding. This work also
presents for the first time a method for enabling, specifically,
version 2 of Robust Header Compression for deployment in
the mesh. Nonetheless, the introduced concepts can be utilised

for a wide range of header compression standards.
In the following Section we describe the employed metrics

and our measurement testbed. Section III explores the pros and
cons of applicable header compression setups while Section IV
introduces the solution’s design. Following that, Section V
evaluates and shows actual measurement results before we
conclude in Section VI.

II. METRICS AND EVALUATION SETUP

In order to evaluate the benefit of the individual compression
methods, various ways of quantification can be defined, the
most straightforward being the amount of bytes saved when
compressing. In this case, one simply calculates the ratio of
the compressed packet size compared to the original uncom-
pressed packet. This we call compression gain or savings and
can be expressed as:

S = 1.0− ‖Tco‖
‖Tuc‖

, (1)

where ‖Tco‖ and ‖Tuc‖ are the total transmitted bytes during
compression and without compression. Our initial evaluations
of compression employs exactly this formula. For further
details we refer to [1].

While the above metric is perfect for ascertaining the
benefit of compression if losses on the network are of no or
little concern, however, it fails to capture the effort it takes
to retransmit (recover) missing packets and/or decompressor
contexts. Therefore we define the payload delivery efficiency in
order to ascertain the effort it takes to deliver a given payload
successfully to the recipient under losses as:

E =
Rx

Tx
, (2)

which is the ratio between the total received bytes at the sink
node that can be delivered to the application layer (e.g., the
logical payload) without errors (Rx) and the total transmitted
bytes including any redundant transmissions (Tx).

Specifically for our testbed, we use an equivalent form of
Equation 2 as:

E = 1.0− ‖L‖+ ‖F‖‖T‖ , (3)

where E is the efficiency as before, ‖L‖ is the amount of
dropped packets in bytes (excluding redundant packets), ‖F‖
is the amount of packets which failed decompression in bytes
and ‖T‖ the total transmitted bytes of the given scenario (as
sent by the source).

The downside of the above formulae is, however, that
the measured values are always relative to the amount of
logical payload (i.e., smaller payloads yield higher gain and
efficiency), therefore, one always have to keep in mind the
type of data that is transmitted.

In order to indicate the robustness of the compression with
respect to the discarding of compressed packets, we define
the decompression error ratio as the ratio between the bytes
of compressed packets discarded by the decompressor – due
the desyncronisation – and the total transmitted compressed
packets in bytes:

D =
‖F‖
‖Tco‖

. (4)



We also evaluate our solution based on the difficulty and
reality to compress IP traffic. Therefore, we consider the
following streams for compression:

• Easy: An artificial well-behaved RTP/UDP/IPv4 stream
where fields either stay static or increase by the same
delta during the lifetime of the transmission. The payload
is fixed to a length of 33 bytes to reflect real VoIP.

• Hard: Another artificial RTP/UDP/IPv4 stream where
the field deltas change randomly resulting in a hard to
compress transmission. The payload length is 33 bytes.

• GSM: To enable measurements under common real-
world scenarios, we utilised the Asterisk VoIP server1,
which connected a fixed desktop client and an Android
smartphone, both using the ZoIPer VoIP client software2.

• CAIDA: We used real-life traces obtained from the Centre
for Applied Internet Data Analysis (CAIDA)3. The trace
contains more than 12 · 103 UDP packets from one flow
between a source and a destination.

The streams are replayed locally and compressed (coded)
on a computer in the pcap format with the commercial
implementation of RoHCv2 from acticom GmbH.4, as well as,
the kodo network coding library provided by Steinwurf ApS5.
The latter was modified in order to accommodate efficient
header compression, as described in Section IV.

During our assessment, we additionally measured the net-
work coded compression output for each of the above streams
under simulated loss rates based on correlated loss probabili-
ties Pl ∈ [0.0; 1.0) from the Gilbert-Elliot model [10]. Losses
are presumed to cover both missing and corrupted packets
(e.g., an erasure channel). The model, illustrated in Figure 2,

Good Bad

pg,b

pg,g pb,b

pb,g

Fig. 2. Gilbert-Elliot channel model with two different loss probability states
g(ood) and b(ad).

is a two state Markov-chain, where (i) no errors occur in the
Good state and (ii) no packet is conveyed successfully in the
Bad state. In our measurement setup we streamline in such a
way that only one parameter is used, i.e., pg,g := 1.0 − pg,b,
pb;b := 1.0− pb,g and pb;b := 1.0− pg,g . We initially assume
an error-free channel with pg,b := 0.0, which we continuously
increase with a delta of 0.01. This ensures that the loss pattern
generally contains equally long bursts of packet losses and
error-free transmissions.

This model – even if not resembling any specific wireless
system – is well suited for the evaluation of the compression

1https://www.asterisk.org/
2http://www.zoiper.com/.
3http://www.caida.org/data/passive/passive 2018 dataset.xml
4http://acticom.de/header-compression/robust-header-compression-2/
5http://steinwurf.com/products/kodo.html

efficiency under a lossy erasure channel, as it can produce
finely tunable bursty loss sequences, which is exactly the
condition that would make the compressor lose synchronism
with the decompressor, thereby rendering the decompression
of any following packet impossible until a context refresh. We
employed 100 loss sequences generated for each integer loss
probability, resulting in 10000 experiments for each transmis-
sion scenario with at least 1000 packets per experiment.

III. COMPRESSION GAIN AND ROBUSTNESS

Before we can combine RoHCv2 with network coding we
first need to examine the compression configuration space
and find the setting that suits our purposes the most. Since
Robust Header Compression is capable of recovery from losses
on the channel, we can evaluate it under specific policies
that balance robustness and compression efficiency. Because
network coding is the recovery mechanism that we want to
rely on the most, we need to find the appropriate operational
mode of RoHCv2 that can coexist with it. Specifically, we
consider the following compressor and decompressor settings:

• Unreliable: The compression utilises settings that favour
high compression gain. Periodic context reinitialisations
are set to occur every 1000 packets, optimistic repeats are
set to 0 and context confidence is always ensured. This
operational mode by itself alone would require a channel
with no or very little losses (ε < 1%) to function.

• Static: The compression settings do not depend on the
observed loss rate of the channel. There is one fixed
configuration used throughout the transmission session
which is supposed to compensate for losses even if they
do not occur. This is the most common method employed
by the integrators of RoHC. In this case the timeout is
set to 33 packets and the optimistic repetition count is 3.

• Adaptive: Compression overhead and decompression con-
text confidence is subject to the expected loss rate of the
channel. The optimistic repetition count is increased by 1
after every 10 % increase in loss rate until a maximum of
5 (which is the highest setting for the implementation).
Context timeout is also decreased from 1000 to 100,
50, 33, 25, 20 and 16 at the same time. Note that the
adaptive configuration can be more fine-tuned as long as
one knows the characteristics of the compressible stream,
see [11] for further details.

First, we evaluate RoHCv2 for the compression gain in
relation to robustness for the above easy and hard streams.
Figure 3 shows the calculated average gain under correlated
losses. We observe that the gain depends very much on the
compressor and decompressor settings. We take the IP-only
compression gain (Equation 1) as the baseline, which in this
case is 0 since no compression is performed. We see that
the static performs at exactly 0.4 and the adaptive setting
decreases the savings after each 0.1 drop in the expected loss
probability until it reaches its minimal value at about 0.25.

When we compare them to the respective decompression
error ratios from Equation 4 (i.e., robustness to losses) in
Figure 4, we see that both of them perform very reliably and,
as expected, the adaptive setting achieves better robustness in
general. When we look at the unreliable setting’s savings in



0.0 0.2 0.4 0.6 0.8 1.0
Loss Rate

0.0

0.1

0.2

0.3

0.4

0.5
C

om
p

re
ss

io
n

G
ai

n

Easy IP

Hard IP

Easy Unreliable

Hard Unreliable

Easy Static

Hard Static

Easy Adaptive

Hard Adaptive

Fig. 3. RoHCv2 compression gain for unreliable, static and adaptive settings
of the easy and hard RTP streams over correlated losses.

Figure 3, we see that it is albeit the best at 0.45, however
the decompression failures contrast it quite much, where it
discards at most 40 % of the successfully delivered packets for
the easy stream and even 60 % for the hard stream in Figure 4.
Therefore this setting is not feasible for most scenarios where
losses may occur. We confirm that the robustness to com-
pressed packet losses on the channel is inversely proportional
to the compression gain, e.g., the adaptive setting compared
to the unreliable. We will show later that with uRoHC this
won’t be a concern any more.

0.0 0.2 0.4 0.6 0.8 1.0
Loss Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ec

om
p

re
ss

io
n

E
rr

or
R

at
io

Easy Unreliable

Hard Unreliable

Easy Static

Hard Static

Easy Adaptive

Hard Adaptive

Fig. 4. Failed decompressions with RoHCv2 for unreliable, static and
adaptive settings of the easy and hard RTP streams over correlated losses.

IV. SOLUTION DESIGN

When considering the combination of network coding and
RoHCv2 one can proceed in two ways. The straightforward
way involves a hierarchical design where first the compression
on the original stream is resolved and the resulting output is
fed into the network coding algorithm. In this paper we refer to
this method as coded Robust Header Compression. The benefit
of this approach is that the compression and encoding phases
are handled independently of each other, which gives a greater
flexibility when choosing coding policies (e.g., full vector
network coding, online or sliding-window network coding, pro-
gressive shortening [12]) and coding parameters (systematic
approach, generation size, field size, etc.). The downside of
this is that the two stages do not share any knowledge between

each other which results in some redundant information being
transmitted in some packets (for example, original length
of packets, position inside the generation). This, of course,
counteracts any gains from compression.

In order to limit the (de)coding overhead both in relation
to compression gain and coding complexity, we will always
assume the usage of the so called systematic approach. When
using this method, each original packet is coded together with
the other packets having 0 coefficients. Which means that
the packet passes through the encoding process unmodified
and can be decoded directly without any need for Gaussian-
elimination or other coded packets. The actual random linear
network encoding only takes place when redundant packets
are sent over the network to make up for losses.

We also assume that RLNC recovers all losses by network
coded redundancy transmissions on the packet erasure chan-
nel. Therefore we can be sure that the decompressor receives
all compressed packets without fault. With this consideration
we can utilise the unreliable setting from the previous section,
which produces the highest compression gain without any
concerns for robustness.

0.0 0.2 0.4 0.6 0.8 1.0
Loss Rate

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ce
n

cy

IP

Optimal

Systematic Predicted

Worst Case Predicted

Systematic Measured

Measured

Fig. 5. Predicted efficeincy depicting the best (systematic) and worst case
scenarios using generation size 8 for the easy stream.

Figure 5 shows the theoretical bounds of this combined
header compression and network coding assuming the easy
stream from before. The efficiency of the IP transmission
is represented in black. Both the predicted and measured
values show the expected linear fall-off when factoring in
losses on the channel assuming 40 bytes of header overhead
(20 bytes IPv4, 8 bytes UDP, 12 bytes RTP with 33 bytes
logical payload). The optimal efficiency presumes that there is
a 0 byte overhead, which is the theoretical maximum gain.
The systematic approach of network coding, illustrated in
red, passes every packet onto the channel without coding
and is therefore ideal for achieving high compression gains.
If there are no retransmissions on the channel, this method
would coincide with a header compression only scenario
assuming a specific static configuration producing 3 byte long
compressed headers with some extra overhead introduced by
purely network coding (in this case 5 bytes). The complete
coded Robust Header Compression scenario – show in green
– depicts the theoretical worst case efficiency and the blue
one teases the actual measured values. The network coding
overhead is a combination of the systematic phase and the



transmission size of the redundant packets (which have a
network coding header of generation size +1, given an 8
symbol generation and 28 finite field size).

Our second solution, the unidirectional Robust Header
Compression, takes a more integrated approach. In this case
we opt for a specific network coding mechanism, called seed
codes. When utilising the seed codes of the kodo library,
instead of sending each random coding coefficient in every
packet, the decoder derives them by referring back to a
common and shared seed used during the initialisation of the
uniform random number generating algorithm by the sender.
The transmitted seed is normally 4 bytes long in kodo, but
we instead limit it to 7 non-zero bits. This is applicable since
the seed of a random generation algorithm can be any random
number and this seed is generated independently as well. The
systematic approach header is reduced to 7 bits too. The
limitation here is that one cannot use larger generations than
128. This is of little concern though, since it was shown in [5]
that large generation sizes have a negative effect on delay. With
these considerations we limit the coding header to 1 byte,
containing either 7 bits of packet index for the systematic,
or 7 bits of seed for the non-systematic phase. The last bit
is reserved for a flag signalling each of the phases (0x80 for
systematic, 0x00 otherwise). The transmission of the packet
length is also omitted. Since our new header is always non-
zero, we can exchange it with the last byte of the coded packet,
allowing us to derive the packet size trivially upon reception.

The assumption of erasure channels also equips us for the
omission of the UDP checksum by setting it to zero. This is
normally not feasible, because RoHCv2 indirectly uses it to
check for bit errors. Since all RoHCv2 packet formats contain
their own CRC values, this is an optimisation step which
we are willing to make. In case additional error-detection
codes are required, one is advised to place them over the
coded packets, as they are resolved first. It is also possible to
determine errors based on the structure of the coded symbols,
which is an ongoing research effort of one of the authors.

V. EVALUATION

We first evaluate the naive coded header compression and
than compare it to the more integrated uRoHC approach.
Figure 6 shows the cRoHC efficiency using the full vector
network coding of kodo with respect to various generation
sizes (G). We observe that we gain the highest efficiency
with the smallest generation size (G = 8), maximising at
a value ∼ 0.75, which decreases toward zero as the loss
rate increases. Since we employ the systematic approach, the
larger generation sizes also start at the same value, which
produces uncoded packets with a small network coding over-
head. However, as more lost packets have to be recovered, the
ratio between systematic and redundant coded packets slowly
shifts toward the latter. Since non-systematic packets contain
a larger overhead than systematic ones, the first slowly starts
to outweigh the second and the efficiency starts to drop more
sharply. Also, because the overhead of non-systematic packets
is mostly determined by the size of the encoding vector, a
higher generation size means more coefficients need to be
transmitted, which decreases the payload delivery efficiency
even further.

0.0 0.2 0.4 0.6 0.8 1.0
Loss Rate

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ce
n

cy

IP

cRoHC G = 32

RoHC Adaptive

cRoHC G = 64

cRoHC G = 8

cRoHC G = 128

Fig. 6. Efficeincy of cRoHC with actual measurements using various gener-
ation sizes with the hard stream.

In Figure 7 we present the distribution of the average coded
packet sizes for the above scenario for various generation
sizes. We see that the smallest network coded packets are pro-
duced when the generation size is very small (G ∈ {8, 16}),
in which case about half of the transmission contains smaller
packets than that of the original IP transmission and the
other half is at maximum the size of the original. For higher
generation sizes the compression gain deteriorates even further
and at G = 128 it even produces packets with sizes 200 % or
larger than that of the original ones.

IP RoHC G=8 G=16 G=32 G=64 G=128
0

20

40

60

80

100

T
ot

al
T

ra
n

sm
is

si
on

(%
)

S ∈ [1.0, 0.33]

S ∈ (0.33, 0.0]

S ∈ (0.0,−0.33]

S ∈ (−0.33,−2.0]

S ∈ (−2.0,−3.0)

Fig. 7. Average packet size distribution and compression gain of cRoHC
using various generation sizes with the hard stream.

In case of the modified seed code based header compression,
compression gains and robustness to errors stays relatively
constant, as attested by Figure 8. uRoHC performs better than
cRoHC in all cases thanks to the higher integration of both
schemes. It also exhibits a more stable fall-off since the length
of the network coding overhead is no longer defined by the
number of the coefficients. Figure 8 also shows a gain over
traditional RoHCv2, which is due to our consideration from
Section IV for the omission of the UDP checksum.

Figure 9 represents the packet size distribution of uRoHC.
As expected, the size of the produced coded packets does not
depend on the generation size because the transmission of the
coefficients is replaced by a single constant seed.

Real life traffic evaluation shows similar results with the
same steady linear-like fall-off observed in Figure 8. For the



0.0 0.2 0.4 0.6 0.8 1.0
Loss Rate

0.0

0.2

0.4

0.6

0.8

1.0
E

ffi
ce

n
cy

IP

uRoHC G = 32

RoHC Adaptive

uRoHC G = 64

uRoHC G = 8

uRoHC G = 128

Fig. 8. Efficeincy of uRoHC with actual measurements using various
generation sizes with the hard stream.

IP RoHC G=8 G=16 G=32 G=64 G=128
0

20

40

60

80

100

T
ot

al
T

ra
n

sm
is

si
on

(%
)

S ∈ [1.0, 0.33]

S ∈ (0.33, 0.0]

S ∈ (0.0,−0.33]

S ∈ (−0.33,−2.0]

S ∈ (−2.0,−3.0)

Fig. 9. Average packet size distribution and compression gain of uRoHC
using various generation sizes with the hard stream.

GSM stream there is an efficiency gain of ∼ 15 % over stan-
dard RoHCv2 compression and for the CAIDA there is only a
minor gain of ∼ 2 %, which is due to the UDP/IP compression
being more robust to compressed packet losses as the headers
contain mostly static fields and that the compression already
provides peak gains at ∼ 91 %.

VI. CONCLUSIONS

5G mesh network use-cases that require low latency trans-
missions and high reliability could suffer from a protocol
encapsulation overhead that can outweigh the amount of data
one is supposed to send. A solution would be to employ header
compression algorithms in order to reduce the size of the
individual protocol headers. Robust Header Compression is an
already established standard which tackles IP-based compres-
sion quite well, however, the current scheme does not allow
deployment in wireless mesh networks as the compression
works on a peer-to-peer, single-hop basis.

In this paper we introduced and evaluated, for the first
time, an integrated network coded header compression solution
called unidirectional Robust Header Compression. With this
combination one only needs to provide compression func-
tionality on both endpoints of a transmission. We show that
one can cut the payload delivery overhead in half for RTP
transmissions even in cases when standard RoHCv2 would

struggle and potentially fail, and that we can even improve
on RoHCv2 under the assumption of erasure channels.

Our ongoing research focuses on decreasing the coding
overhead even further by applying progressive shortening [13]
to header compressed packets and evaluating it in a real mesh
environment, as well as, generalising the header compression
scheme itself for the application to arbitrary protocol headers.

ACKNOWLEDGMENTS

This work was supported by the BME-Artificial Intelligence
FIKP grant of EMMI (BME FIKP-MI/SC), the János Bolyai
Research Fellowship of the Hungarian Academy of Sciences
and the SCALE-IoT Project (Grant No. 7026-00042B) granted
by the Danish Council for Independent Research, the Aarhus
Universitets Forskningsfond Starting Grant Project AUFF-
2017-FLS-7-1, and Aarhus University’s DIGIT Centre.

REFERENCES

[1] M. Tömösközi, P. Seeling, P. Ekler, and F. H. P. Fitzek, “Performance
evaluation of network header compression schemes for UDP, RTP and
TCP,” in Periodica Polytechnica Electrical Engineering and Computer
Science, Online First (2016) paper 8958, 2016.

[2] M. Tömösközi, P. Seeling, P. Ekler, and F. H. P. Fitzek, “Robust
header compression version 2 power consumption on android devices via
tunnelling,” in 2017 IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 418–423, May 2017.

[3] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, pp. 4413–4430, Oct
2006.

[4] M. Tömösközi, F. H. P. Fitzek, D. E. Lucani, M. V. Pedersen, P. Seeling,
and P. Ekler, “On the packet delay characteristics for serially-connected
links using random linear network coding with and without recoding,”
in Proceedings of European Wireless 2015; 21th European Wireless
Conference, pp. 1–6, May 2015.

[5] M. Tömösközi, F. H. P. Fitzek, D. E. Lucani, M. V. Pedersen, and
P. Seeling, “On the delay characteristics for point-to-point links using
random linear network coding with on-the-fly coding capabilities,” in
European Wireless 2014; 20th European Wireless Conference, pp. 1–6,
May 2014.

[6] S. Pandi, S. Wunderlich, and F. H. P. Fitzek, “Reliable low latency
wireless mesh networks from myth to reality,” in 2018 15th IEEE
Annual Consumer Communications Networking Conference (CCNC),
pp. 1–2, Jan 2018.

[7] M. Tömösközi, I. Tsokalo, S. Pandi, F. H. P. Fitzek, and P. Ekler,
“Header compression in opportunistic routing,” in European Wireless
2018; 24th European Wireless Conference, pp. 1–6, May 2018.

[8] D. Kidston, W. Chae, and H. Rutagemwa, “Multihop multicast header
compression in manets,” in 2018 IEEE International Conference on
Communications (ICC), pp. 1–7, May 2018.

[9] F. H. P. Fitzek, T. K. Madsen, P. Popovski, R. Prasad, and M. Katz, “Co-
operative ip header compression for parallel channels in wireless meshed
networks,” in IEEE International Conference on Communications, 2005.
ICC 2005. 2005, vol. 2, pp. 1331–1335 Vol. 2, May 2005.

[10] P. Sadeghi, R. A. Kennedy, P. B. Rapajic, and R. Shams, “Finite-
state markov modeling of fading channels - a survey of principles and
applications,” IEEE Signal Processing Magazine, vol. 25, pp. 57–80,
Sep. 2008.

[11] M. Tömösközi, P. Seeling, P. Ekler, and F. H. P. Fitzek, “Regression
model building and efficiency prediction of rohcv2 compressor imple-
mentations for voip,” in 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, Dec 2016.

[12] M. Taghouti, D. E. Lucani, M. V. Pedersen, and A. Bouallegue,
“Random linear network coding for streams with unequally sized
packets: Overhead reduction without zero-padded schemes,” in 2016
23rd International Conference on Telecommunications (ICT), pp. 1–6,
May 2016.

[13] M. Taghouti, M. Tömösközi, M. Höweler, D. E. Lucani, F. H. Fitzek,
A. Bouallegue, and P. Ekler, “Implementation of network coding with
recoding for unequal-sized and header compressed traffic,” in 2019 IEEE
Wireless Communications and Networking Conference (WCNC) (IEEE
WCNC 2019), (Marrakech, Morocco), Apr. 2019.


