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ABSTRACT

We propose a novel method applied to extrasolar planetary dynamics to describe
the system stability. The observations in this field serve the measurements mainly
of radial velocity, transit time, and/or celestial position. These scalar time series are
used to build up the high-dimensional phase space trajectory representing the dynam-
ical evolution of planetary motion. The framework of nonlinear time series analysis
and Poincaré recurrences allows us to transform the obtained univariate signals into
complex networks whose topology carries the dynamical properties of the underlying
system. The network-based analysis is able to distinguish the regular and chaotic be-
haviour not only for synthetic inputs but also for noisy and irregularly sampled real
world observations. The proposed scheme does not require neither n-body integra-
tion nor best fitting planetary model to perform the stability investigation, therefore,
the computation time can be reduced drastically compared to those of the standard
numerical methods.

Key words: methods: data analysis – planets and satellites: dynamical evolution
and stability – celestial mechanics – chaos

1 INTRODUCTION1

Since the gravitationally interacting, and therefore non-2

Keplerian, few-body dynamics can be very complex (Fab-3

rycky 2010), it makes a great deal to investigate the sta-4

bility of exoplanetary systems containing at least two plan-5

ets (Rivera & Lissauer 2001; Armstrong et al. 2015; Baty-6

gin et al. 2015; Goździewski et al. 2016; Panichi et al.7

2018). Dynamical modeling of multiple planetary systems8

requires precise initial conditions and system parameters in9

order to perform reliable n-body numerical integration. The10

most common methods to constrain the planetary masses11

and orbital elements are radial velocity (RV) measurements12

(Laughlin & Chambers 2001; Rivera & Lissauer 2001; Tan13

et al. 2013; Nelson et al. 2014) and transit timing observa-14

tions, especially their variation (TTVs) (Agol et al. 2005;15

Holman & Murray 2005). RV (Laughlin & Chambers 2006;16

Pál 2010) and TTV (Nesvorný & Morbidelli 2008; Nesvorný17

& Beaugé 2010; Veras et al. 2011; Deck et al. 2014; Panichi18

et al. 2018) data sets together provide the input of sophis-19

ticated but fairly time consuming statistical methods (e.g.20

Foreman-Mackey et al. (2013)), which can serve the best21

fitting models in high dimensional parameter space (with a22
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certain confidence level) of the underlying planetary dynam-23

ics. From the obtained parameters one then can predict the24

long-term stability of the system.25

In addition, low-order analytic and semi-analytic in-26

version methods often fail close to dynamical degeneracy27

such as mean motion resonances (MMRs) that are frequent28

among the known exoplanetary systems (Fabrycky et al.29

2014). This shortcoming has been recently avoided by an-30

alytic models of transit timing variation for moderate ec-31

centricities and certain range of masses (Agol & Deck 2016;32

Deck & Agol 2016; Hadden & Lithwick 2016). These meth-33

ods are suitable to resolve the degeneracy between planetary34

masses and eccentricities close to low order MMRs.35

Nonlinear dynamical systems may often produce chaotic36

behaviour which means that they are extremely sensitive37

even for a small perturbation of the initial conditions (Ott38

2002; Tél & Gruiz 2006). This fact makes the application39

of the above mentioned methods even more problematic or40

limited to certain conditions. Describing the dynamics of a41

known deterministic nonlinear dynamical system, when the42

equations of motion are known, means basically exploring43

the phase space patterns. This is, however, not the case in44

the exoplanetary research. In practice, we measure only one45

signal of the underlying dynamics, and have to obtain the46

system’s behavior from this scalar time series. The ques-47
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tion whether the dynamical invariants (such as Lyapunov48

exponents or other measures of irregularity) of a particular49

system can be recovered from a single variable data set is,50

therefore, extremely important.51

In this work a widely used nonlinear data analysis52

method is proposed which is based on the fundamental the-53

orem known as Poincaré recurrence (Saussol et al. 2002).54

In short, any conservative dynamical system recurs sooner55

or later to its former states in phase space. Recently, in56

their report Marwan et al. (2007) showed how the visual57

interpretation of recurrences, the so-called recurrence plots58

(RPs) (Eckmann et al. 1987), are quantitatively related to59

the characteristic of a dynamical system. A generalization of60

RPs to network representation (Donner et al. 2010; Donner61

et al. 2011) widely extended the adaptability of recurrences.62

Application of recurrence network analysis to cutting-edge63

measurements in exoplanetary research provides a robust64

and novel method to investigate the stability. Besides the65

numerical integration of the best fitting planetary models66

we propose a complementary study to describe the system67

stability without having any knowledge about the parame-68

ters and initial conditions.69

The paper is organized as follows. In Section 2, a case70

study of a two-planet system is presented as a basic dynami-71

cal model. The data analysis method is thoroughly described72

in Section 3. Section 4 examines the application to real exo-73

planetary data. The main conclusions are drawn in the final74

section.75

2 THE MODEL SYSTEM76

At this point a simple dynamical model is introduced that77

will provide synthetic time series (RV, TTV, and astrometry78

positions) in order to establish and test the recurrence-based79

data analysis method in Section 3. The Sun, Jupiter, Saturn80

(SJS) subset of our own Solar System has been chosen to be81

the basis of the stability analysis.82

The well-known semimajor axis–eccentricity (a, e) sta-83

bility map of the model system is shown in Figure 1. The84

map is obtained as follows. The barycentric coordinates of85

the Sun and the two massive planets were integrated by86

using the REBOUND-WHFAST routine (Rein & Tamayo 2015)87

over 1000 periods of the inner body, i.e. Jupiter. In addi-88

tion, Saturn’s orbital elements cover a grid of 250x250 ini-89

tial conditions. That is aSaturn = [7.5 : 10], δaSaturn = 0.0190

and eSaturn = [0 : 0.5], δeSaturn = 0.002. Therefore, in these91

plots, the semimajor axis and the eccentricity always refer to92

Saturn’s initial orbital elements in the rest of the paper. In93

order to characterize the system stability the chaos indica-94

tor MEGNO (Mean Exponential Growth of Nearby Orbits,95

Cincotta & Simó (2000)) is calculated for every set of ini-96

tial conditions (aSaturn, eSaturn). The system is regular for val-97

ues about 2 (green) while chaotic for larger MEGNO values98

(red). It has to be emphasized that most of the chaotic tra-99

jectories lead to the disruption of the system. As a result,100

the integration stops when one of the planets escapes the101

system. In this case the value of MEGNO is set to be 8. The102

wide green bands penetrating into the chaotic domain cor-103

respond to certain MMRs. The rightmost resonance around104

a = 9.6 is the 5:2 commensurability between Jupiter and105

Saturn.106

Figure 1. Stability map of Saturn (aSaturn, eSaturn) in SJS sys-
tem. The stability index MEGNO is color coded according to the

color-bar and maximized by 8. The blue triangles indicate the test

data series with different dynamical behaviour as a base of anal-
ysis. From left to right: (7.2,0.02) regular non-resonant, (8.0,0.2)

chaotic, (9.6,0.4) regular resonant. The blue circle depicts the

Saturn’s actual position in the a − e parameter plane. The most
prominent MMRs are also marked at the top of the panel.

107

In order to apply the recurrence-based technique to a108

scalar time series, all numerically computed phase space tra-109

jectories are stored and re-used later. This allows one to gen-110

erate synthetic radial velocity (measured along the x-axis111

as the line of sight), star position ((x,y) co-ordinates are112

stored as face on view), and transit time data sets (viewed113

again from the x-axis) imitating the ideal (noise-free and114

equidistant) astronomical observations. Some examples are115

demonstrated in Figure 2. The upper four panels show the116

RV (a,c) and celestial positions (b,d) of the Sun containing117

950 data points. The remaining part of the Figure deals with118

Jupiter’s TTV signal (e,g) and its mid-transit position (f,h)119

with a precision of 10−5 day.120

The integration time for the RV data is ca. 1050 orbital121

periods of Jupiter which means that the sampling frequency122

is less than the mean motion of the inner planet. TTV sig-123

nals carry 950 data points similar to those of RV data in124

order to have the same length of time series in the analysis125

phase. From now on, these data represent the measurements126

subject to examination.127

The length of the time series is chosen to cover a realis-128

tic time frame, i.e around 1000 periods of Jupiter. It might129

seem to be too long on human time scales but it is not un-130

common in currently known, especially tightly packed, exo-131

planetary systems. For example, 1000 orbital periods of the132

inner planets (b-e) in the TRAPPIST-1 system corresponds133

to 1500-6000 days, ca. 4-16 years, the same number of orbital134

revolution for the Kepler-18 system requires 11-20 years, and135

even less for Kepler-412. The length of 950 data points can136

be achieved with the upcoming surveys of the near future.137

Here, we take the opportunity and explain a hidden phe-138

nomenon between synthetic RV and TTV time series which139

is not crucial for the analysis but is worth clarifying. Most of140

the calculations are done for 1050 Jupiter periods in order141

to obtain the RV signal of the Sun. This data set is then142

sampled by 950 points equidistantly given a time series to143
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Stability of exosystems 3

Figure 2. Numerically generated times series for the SJS system.
(a) and (c): Radial velocity (RV) of the Sun along the x-axis. (b)

and (d): Celestial positions of the Sun in the x-y plane. (e) and (g):

Transit timing variation (TTV) of Jupiter. The green and red dots
belong to the initial conditions (7.2,0.02) and (8.0,0.2) marked by

blue triangles in Fig 1, regular and chaotic respectively. The line

of sight is the (positive) x-axis. (f) and (h): Transit positions of
Jupiter. The insets highlight the radial ”spread” (in AU) of transit

positions in the x-y plane.

be analysed. This means that every single RV measurement144

is considered with equal length given above. In contrast, ob-145

taining the TTV signals we set the length of the data to 950146

Jupiter transits. Clearly, the appearance of transits depends147

on the dynamics, as well as, on the initial configuration of148

the system. That is, as the orbital elements change in time149

the 950 TTVs can be obtained sooner or later and, there-150

fore, the time series being analysed might, and actually do,151

somewhat differ in their length.152

153

3 METHODS AND TECHNIQUES154

In this section the data analysis method based on phase155

space recurrences is discussed in detail. Synthetic time se-156

ries are generated as demonstrated in the previous section.157

In some cases to have a more realistic scenario noise is added158

to data. Where this applies, a precise quantitative descrip-159

tion is given in the text. This section is divided into five sub-160

sections according to the schematic work flow in Figure 3.161

Subsection 3.1 gives an overview about the phase space re-162

construction. The second subsection is devoted to recurrence163

plots. The link between RPs and recurrence networks is ex-164

amined in Subsection 3.3. Noisy and unevenly sampled data165

Figure 3. Work flow of the nonlinear time series analysis ap-
plied. Dynamical invariants and recurrence quantification are not

investigated in present work.

analysis is introduced in Subsection 3.4. Finally, the role166

of surrogate data analysis and hypothesis testing is demon-167

strated. This sequence of topics can be thought of as a work168

flow of the whole procedure, Figure 3. The reader might feel169

that this part of the paper is somewhat lengthy, we think,170

however, that the details presented here are pedagogically171

necessary to demonstrate how the method works in general172

before applying it to real data.173

174

3.1 Phase space reconstruction175

The dynamical analysis of a particular system requires the176

evolution of phase space trajectories. Since in an experimen-177

tal setting the observer records the signals in time domain,178

which means not all relevant components of the state vector179

is known, a reconstruction of multidimensional information180

in an artificial phase space is needed. This is possible when181

the following assumption holds (Semmlow & Griffel 2014):182

the variable corresponding to the observable affects the other183

state space variables, i.e. the variables governing the sys-184

tem’s dynamics are coupled. In other words, all hidden vari-185

ables in the system make some contribution to the measured186

signal. In this case, a recovery of the phase space trajectory187

can be done by using an embedding theorem (Takens 1981;188

Mañé 1981; Packard et al. 1980). In what follows, the method189

of time delay reconstruction is interpreted.190

3.1.1 Time delay embedding191

Time series x(ti ) is a sequence of i = 1, . . . , n scalar mea-
surements of some quantity (x) depending on the state of
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the system taken at discrete times (∆t)

x(ti ) = x(n∆t). (1)

The reconstructed m dimensional vector reads (Kantz
& Schreiber 2003) then

x(ti ) → xN = {x(ti−(m−1)τ), x(ti−(m−2)τ), . . . , x(ti−τ), x(ti ))},

(2)

where i = 1 . . . n is the length of the original signal, m is the192

dimension into which the reconstructed vector is embedded,193

the delay, τ, is the time difference between adjacent compo-194

nents of x. After the delay reconstruction the length of x is195

reduced to N = n − (m − 1)τ. That is, the components of the196

reconstructed vector are segments of the original 1D signal197

delayed by τ. Thus, x is an m × [n − (m − 1)]τ matrix. For198

clarity consider the example in Appendix A.199

200

Takens’ embedding theorem (Takens 1981) states that201

the dynamical properties of a d dimensional attractor can202

be reconstructed if m > 2d no matter how large the original203

dimension of the true state space is1. Takens also showed204

that the time lag can have arbitrary value, however, there205

are practically relevant values.206

It should be noted that the reconstructed trajectory is207

not identical to that one we would have from numerical in-208

tegration, i.e. when all the components are known. It might209

differ in shape but preserves the mathematical properties210

such as topology and Lyapunov exponents.211

At this point a natural question might arise. How to212

find the right embedding dimension and time delay? Since213

there are many widely accepted methods to choose appro-214

priate values (Kantz & Schreiber 2003; Ma & Chong-Zhao215

2006) here only those are reported that were used in the216

current analysis. The embedding dimension m can be ob-217

tained by using the concept of false nearest neighbours. The218

primary goal of this procedure is to find neighbours in em-219

bedding space that become not neighbours anymore because220

the temporal evolution. For a detailed description see Kantz221

& Schreiber (2003) and references therein. One method for222

estimating the time delay τ is to find the first minimum of223

the mutual information function (MIF) (Semmlow & Griffel224

2014). MIF can be considered as a nonlinear analog of the225

autocorrelation function and, therefore, it is more appropri-226

ate in this analysis. The TISEAN2 software package (Hegger227

et al. 1999) has been used to calculate the delay parameters228

through the whole analysis.229

At the end of this subsection the parameters of the delay230

reconstruction (m, τ) in SJS system are presented. The previ-231

ously introduced grid of initial conditions (aSaturn, eSaturn)232

is used, though, the embedding dimension and the time de-233

lay is plotted instead of the stability index MEGNO, see234

Figure 4. Each grid point in the (aSaturn, eSaturn) parame-235

ter plane represents a single time series, Sun’s synthetic RV,236

that has been obtained as interpreted in Figure 2.237

Both maps are similar to those showing the stability in-238

dex MEGNO in Fig. 1. The sharp border between chaotic239

1 It has been shown that fewer dimensions are sufficient for mea-

sured data.
2 https://www.pks.mpg.de/~tisean/Tisean_3.0.1/

and regular domains as well as the resonant structures are240

clearly outlined. This is in a good agreement with the the-241

oretical consideration, the more irregular the dynamics, the242

less the correlation between its elements. In other words,243

a motion with increased random elements (i.e. stronger in-244

stability) may require larger embedding dimension than or-245

dered motion (Stergiou 2016), see Figure 4(a). In case of246

a strong gravitational interaction, one of the planets can247

be ejected from the system. If this happens before the in-248

tegration is over, the embedding dimension is set to be a249

large number, m =100, and the corresponding initial con-250

dition is red. We can conclude from both panels that the251

optimally determined embedding parameters carry some in-252

formation about the underlying dynamics. Moreover, the re-253

quested time delay indicates a lesser degree of correlation in254

the dynamics also in agreement with Takens.255

3.2 Recurrence Plots256

Extracting meaningful information from a data set can be257

easy if regular patterns of the observable appear in time258

domain. However, when the time series is more complex and259

no simple rule for its time dependence can be formulated,260

the representations of certain events might help us to draw261

some conclusion about the dynamics.262

Once the phase space trajectories are available, either263

the original or the reconstructed one, these representations264

show up when the state vector returns to a neighbourhood265

of a point that has already been visited. This phenomenon266

was first described by Poincaré and is called as recurrence.267

The related recurrence time statistics became a key concept268

of dynamical system analysis across many disciplines. These269

recurrences in phase space can be easily visualized by re-270

currence plots (RP) originally introduced by Eckmann et al.271

(1987).272

An RP is a very simple method for measuring and visu-
alizing recurrences of a trajectory even in higher dimensions.
It can be represented by a two-dimensional matrix R

Ri, j (ε ) = Θ(ε − ||xi − xj | |), i, j = 1 . . . N, (3)

where N is the length of the (reconstructed) phase space273

trajectory, Θ(·) is the Heaviside step function, ε a tolerance274

parameter, and | | · | | is a norm. The embedded delay vectors275

obtained from measured points are xi and xj at different time276

instant, ti and t j, respectively. If a trajectory at t j returns277

to an ε neighbourhood of a point where it was at ti (t j > ti)278

then the corresponding matrix element is 1, i.e. recurrence279

occurs, otherwise 0. To be more precise280

Ri, j (ε ) =
{

0, when ε < | |xi − xj | |,
1, when ε > | |xi − xj | |.

(4)

The matrix R is symmetric by definition. Plotting the281

elements of the binary matrix with different colors, one can282

obtain the RP. Figure 5 depicts four recurrence plots cor-283

responding to two initial conditions marked in Fig. 1 (blue284

triangles). In panel (a), the lower right triangle (red) de-285

picts the RP corresponding to the reconstructed trajectory286

from Sun’s RV data originating from (aSaturn, eSaturn) =287

(8.0, 0.2), the upper left (green) is for (aSaturn, eSaturn) =288

(7.2, 0.02). Panel (b) shows the same obtained from the TTV289

signals of Jupiter. One can see the differences between the290
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Stability of exosystems 5

Figure 4. Embedding dimension (a) and time delay (b) dependence for (aSaturn, eSaturn) initial conditions similar as in Figure 1. The
resolution is 100x100 points each directions. The synthetic data sets include 950 measurements of Sun’s radial velocity during the 1050

Jupiter-periods. Marked points correspond to different dynamical regimes (blue triangles) and the Saturn’s actual position (circle) in the

(a, e) plane, see also Figure 1. Similar plots can also be constructed from the TTVs and celestial positions, not presented here.

regular (green) and chaotic (red) dynamics. Basically, RPs291

have different patterns associated with different kind of time292

evolution of trajectories (periodic, quasi-periodic, chaotic)293

(Zou et al. 2007; Ngamga et al. 2012). At the very basic level,294

dots typically appear as diagonal line segments on RP. Pe-295

riodic signals yield non-interrupted lines, while chaotic dy-296

namics results in a pattern of diagonals much shorter than297

for periodic cycles. For a profound review about different298

structures of RPs see Refs. Marwan & Kurths (2004); Mar-299

wan et al. (2007).300

Equation (3) reveals that RP depends on the threshold301

ε and norm | | · | |. In the literature there are many examples302

how to select ε . Several rules of thumb can be found such303

as (i) it should not exceed 10% of the maximum diameter of304

the phase space, or (ii) ε is at least five times the STD of the305

observed noise (Stergiou 2016; Semmlow & Griffel 2014). It306

is clear, if the threshold varies, it results in different density307

of points in RP.308

An alternative approach is that we fix the ratio of 1309

to 0 in R and choose a dynamic threshold that provides a310

constant density of points in the RP. This practical choice311

avoids the sparse structure of RP due to a low threshold,312

and helps to make consistent analysis with constant density313

of points.314

The commonly used norms for the same distance be-315

tween two points are L1-norm (Manhattan norm), L2-norm316

(Euclidean distance), and L∞-norm (Maximum norm). To317

construct the RPs in this work dynamic threshold (with re-318

currence rate 4-10%) and maximum norm is employed.319

320

3.3 Recurrence Networks321

A natural way to analyse complex systems is using complex
network theory developed in the last two decades. The fact
that nonlinear time series analysis can be used effectively to
study complex dynamics and the successful application of
networks in various fields stimulated the demand of trans-
forming time series into complex networks. Recently, sev-
eral different methods have been proposed (Xu et al. 2008;
Shimada et al. 2008; Donner et al. 2010). In many cases a
network can be describe mathematically as a graph G(V, E)

Figure 5. Recurrence plots for two different trajectories in SJS

system based on RV data sets (a) and Jupiter’s TTV signals (b).
Integration time: 1050 Jupiter periods with 950 measurements for

RVs and 950 TTVs. The recurrence rate (RR) is fixed to 0.1. The

phase space distance is defined by the maximum norm.

where V = {1, 2, . . . N } is a set of vertices and E ⊆ V × V
represents the edges between pairs of vertices. In case of
unweighted and undirected networks a symmetric N × N ad-
jacency matrix (Ai, j) completely describes the graph G

Ai, j =

{
1, when i, j ∈ E,
0, otherwise .

(5)

In this work only proximity networks, a subclass of net-
works which are directly related to Poincaré recurrences, will
be used. An ε-recurrence network (RN) consists of vertices
formed by reconstructed state vector in the phase space (xN ,
see Section 3.1.1) connected by edges to other vertices in
their ε neighborhood. This definition allows to re-interpret
the recurrence matrix (Ri, j) of an RP in the following way

Ai, j = Ai, j (ε ) = Ri, j (ε ) − δi j, (6)

where Ai, j is the adjacency matrix of a complex network322

embedded in a phase space, Kronecker delta (δi j) avoids the323

self-loops in the graph. The matrix A carries the symmetry324

properties of matrix R, consequently RN is a graph with no325

self-loops and multiple edges. Equation (6) illuminates an326

alternative view of RPs, namely, the joint proximity obser-327

vations in phase space can be represented as links in complex328
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networks. Moreover, Ai, j describes random geometric graphs329

where the vertices are located in a metric space such as the330

reconstructed phase space. The quantitative description of331

RNs, to be discussed later, provides relevant geometric infor-332

mation about the underlying dynamics. Furthermore, recur-333

rence network method is not based on temporal correlations334

or explicit time ordering (Donner et al. 2011). This prop-335

erty of RNs will be extremely useful in case of irregularly336

sampled data sets.337

338

In order to explore different types of dynamical regimes339

(quasi-periodic or chaotic) two basic network measures are340

introduced. Other fundamental quantitative characteristics341

of complex networks can be found in recent groundbreaking342

works of Albert & Barabási (2002); Newman (2003); Boc-343

caletti et al. (2006).344

The average path length APL can be defined as the
arithmetic mean of geodesic distance (di j) between all pair
of vertices (i, j)

APL =
2

N (N − 1)

∑
i,j

di j, (7)

where di j is the minimum number of edges between two345

vertices. In continuous systems APL is approximately the346

length of the trajectory in the phase space, hence, periodic347

(Zou et al. 2010) orbits are characterized by larger APL than348

chaotic ones.349

Transitivity (T RN), which is a closely related quantity350

to clustering, is the relative number of triangles compared351

the total number of connected triples of nodes. In contrast352

to the global clustering coefficient, transitivity gives equal353

weights to all triangles in the network (Barrat & Weigt354

2000):355

T RN =
3 × nr. of triangles in the network

nr. of linked triples of vertices
(8)

=

∑
i, j,k Ajk Ai j Aik∑

i, j,k Ai j Aik (1 − δ jk )
.

After the mathematical definitions of RN-related quan-356

tities, let us apply them to the synthetic data sets ob-357

tained from the model systems SJS. The average path length358

and transitivity has been calculated over the stability map359

(aSaturn, eSaturn). Figure 6 summarizes the results based on360

the RV of the Sun and the TTV of Jupiter.361

At a glance, it is obvious that all four panels show the362

structure of Figure 1. The chaotic and regular parts can be363

easily distinguished. Nevertheless, the details around MMRs364

and at the edge of chaos also match the texture. Before going365

into the further details, we should highlight some important366

results of previous studies. Zou et al. (2010) and Zou et al.367

(2016) investigated continuous and discrete dynamical sys-368

tems by means of recurrence network technique. They found369

the following specific features:370

(i) Transitivity takes larger value for regular orbits and371

lower value for chaotic ones both in continuous and in372

discrete systems.373

(ii) However, the average path length shows different be-374

havior. For discrete systems, the APL of a periodic or-375

bit is smaller than that of a chaotic one. In contrast,376

for continuous systems, periodic orbits are character-377

ized by larger average path length than chaotic ones.378

Now, we can analyse the panels in Figure 6 in more379

details. Let us concentrate on the left column first where380

the color maps depict the recurrence network measures APL381

and T RN based on the Sun’s radial velocity. The results382

we see here are, loosely speaking, based on a continuous383

dynamical system. Since the time series are obtained from384

the RV of the Sun which is a real component of the phase385

space trajectory. Panel (a) demonstrates that regular motion386

accomplishes larger APL while chaotic behaviour comes with387

smaller values. This also applies for the measure transitivity388

in good agreement with point (i) above.389

390

The panels (b,d) belonging to TTVs of Jupiter, i.e. the391

network measures acquired from the transit times of the392

larger planet, can be interpreted somewhat differently. We393

should see that transit times either of Jupiter or Saturn do394

not represent any component of the phase space trajectory.395

They are based on special configurations when the planet396

passes in front of the star. This situation can be thought397

of as a discrete map3 rather than a continuous trajectory,398

which plays the a crucial role in our following argument. If399

we consider the TTV signal as a map-like description of a400

continuous dynamical system, the information in panel (b)401

is consistent with (ii). Namely for discrete systems APL is402

smaller for regular motion. Besides, the landscape of the403

(aSaturn, eSaturn) map shows extremely fine details of the404

stability regions and MMRs (recall Figure 1). It is clear that405

measure APL is capable of distinguishing regular and chaotic406

behavior based on measurable quantities such as RV and407

TTV in a synthetic two-planet system.408

Scrutinizing panel (d) the overall picture is promising409

since it is almost identical to panel (b). However, one can410

observe that the T RN values for regular motion are clearly411

less than those for chaotic orbits. This situation completely412

contradicts point (i) above. To understand the discrepancy413

several control computations have been done including dif-414

ferent embedding parameters, longer integration time and415

also longer time series with more data points. However, we416

always find the same situation, namely regular motion is417

characterized by lower transitivity. Donner et al. (2010) and418

also Zou et al. (2010) underline that for discrete systems419

the RN breaks down into disjoint components around pe-420

riodic orbits since they appear as finite sets of points in421

the phase space. Thus the transitivity tends to 1. This is,422

however, not the case in higher dimensions. Because the pe-423

riodic orbits and trajectories nearby are not restricted to424

small domains of the phase space anymore. Consequently,425

the regular trajectories can explore regions as large as the426

chaotic ones in the phase space. For more details, we draw427

the readers attention to Appendix B where we demonstrate428

the effect discussed above by using coupled standard maps429

as high dimensional discrete Hamiltonian systems. Based on430

the previous argument, we point out that the RN-measure431

3 Well-known maps in dynamical systems theory are the strobo-
scopic and Poincaré maps. However, transit times do not satisfy
the required conditions for these concepts.
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Figure 6. Color maps of two RN measures APL and TRN over the initial condition grid (aSaturn, eSaturn). On the left the base of
the analysis is the Sun’s RV while on the right it is Jupiter’s TTV signal. Every time series contains 950 data points. The eSaturn=0.3

line is marked in panel (d) in order to guide the eye in Figure 7. To calculate various RN measures the publicly available PYUNICORN

(http://www.pik-potsdam.de/~donges/pyunicorn/) package has been used (Donges et al. 2015).

Figure 7. RN measures APL and TRN versus the initial conditions aSaturn. The other initial condition eSaturn is set to be 0.3 as

indicated in Fig. 6. The two curves represent the synthetic (gray) and noisy-gappy (red) data sets, respectively.

transitivity (TRN) provides smaller value for regular dynam-432

ics and larger value for chaotic motion when analysing the433

three body problem from discrete dynamical systems point434

of view, i.e. when the phase space reconstruction is based on435

the TTVs.436

3.4 Noisy time series and missing data points437

Up to now the analysis has been performed on numerically438

generated synthetic time series where the measurements439

evenly sample the exact noiseless calculations. However, to440

demonstrate the robustness of RN analyses against noise and441

possible missing data points the theoretical calculations are442

modified as follows.443

First, a Gaussian white noise, with zero mean and stan-444
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dard deviation equal to one, is added to the original time445

series. The amplitude of the noise is chosen to be 15% of the446

amplitude of the original signal. Furthermore, in order to447

imitate astronomical observations (even those obtained by448

space based detectors) a certain amount (20%) of randomly449

selected data points have been extracted from the original450

time series. More precisely, in the first stage the center of an451

interval is randomly defined along the data set, then, in the452

second stage, the length of this interval is chosen again ran-453

domly. The data points falling in the interval are removed454

from the signal. This procedure is repeated until the desired455

percentage of the missing data is achieved.456

In Section 3.1 time delay embedding was established.457

This type of reconstruction requires uniformly sampled time458

series which is not fulfilled when dealing with scanty data459

set. It has been recently shown by Lekscha & Donner (2018)460

that a cubic spline interpolation of the original data back to461

uniform time series followed by the classical time delay em-462

bedding provides reasonable good phase space reconstruc-463

tions. According to this, we use in our analysis time delay464

embedding on cubic splined data sets.465

Figure 7 illustrates the RN measures APL and T RN in466

the noisy SJS model. In order to save computation time467

only one section (see the blue arrow in Figure 6d) of the468

(aSaturn, eSaturn) plane has been investigated. Each panel469

contains the results based on the synthetic time series (gray)470

as well as the noisy and non-uniformly sampled data (red).471

Basically the gray curves correspond exactly to the values in472

Figure 6. The red dots follow the gray structure but the con-473

trast is somewhat weaker. That is, the effect of the presence474

of noise and missing data points results in smaller difference475

between regular and chaotic values of RN measures. Nev-476

ertheless, the ordered motion corresponding to MMRs (2:1477

and 5:2) is still perfectly detectable. One can also observe478

that RN measures for RV data behave somewhat different479

than that of TTV, especially between the two MMRs. And480

also the same applies here what has been discussed earlier,481

namely, lower values of T RN correspond to regular motion482

in TTV signals.483

We have demonstrated that recurrence network mea-484

sures are precise and convenient tools to analyse regular and485

chaotic motions in gravitational three body problem. The486

method is also acceptable in real world examples when the487

signal is loaded with noise and the sampling is not perfectly488

uniform. Nevertheless, it should be emphasized that the ob-489

tained numbers (APL, T RN) are relative values even though490

they distinguish the different types of motion correctly. This491

means, for example, that the average path length for regu-492

lar dynamics is smaller than for chaotic (in the case of dis-493

crete systems). Therefore, the question arises naturally how494

one can decide from one single scalar time series whether495

it comes from a chaotic/regular dynamics when we do not496

have any objective reference point. The answer is given by497

surrogate data analysis described in next section.498

3.5 General principles of surrogate tests499

Surrogate tests are examples of Monte Carlo hypothesis tests500

(Theiler et al. 1992; Theiler & Prichard 1996) applied for501

testing nonlinearity in a time series. The basic idea is that502

a nonlinear observable λ0 is computed from the data and503

then one has to decide whether λ0 suggests that the data are504

nonlinear. First, a null hypothesis is taken we want to test,505

say, the data come from linear processes. Then a number of506

artificial data sets are generated which are consistent with507

the null hypothesis. This means they have linear properties508

similar to those of the original data but nonlinearities are509

removed. In practice, the newly generated surrogates pre-510

serve some properties of the original signal (mean, variance,511

power spectra). Having the ensemble of surrogate time series512

discriminating statistics are performed, i.e. the nonlinear ob-513

servables λi are also computed for the surrogates and then514

they are compared with the original one. If the value of dis-515

criminating statistics λ0 from the original time series does516

not fall within the distribution of the discriminating statis-517

tics of the surrogates, the null hypothesis should be rejected.518

Otherwise, the signal does not contain nonlinearities.519

To quantify this process, we can use hypothesis testing520

(Kantz & Schreiber 2003; Schreiber & Schmitz 2000) . If we521

have a good reason to suppose that the distribution of λi522

is Gaussian, then the mean and standard deviation define523

the significance which can be used to construct a desired524

significance level of inference. However, in general, the dis-525

tribution of discriminating statistics of surrogate data set is526

not normal, and, therefore, using a rank-based test instead527

is a better choice. Suppose N surrogate time series are gen-528

erated and λi are the calculated nonlinear measures of ith (i529

= 1. . . , N) data set. Let λ0 be the discriminating statistics530

for the original signal. There are N+1 λs. Now, all these531

discriminating statistics are ranked in an increasing order.532

If the original signal was generated by a linear process, the533

chance that λ0 is the smallest will be 1/(N+1). According534

to the rank-order strategy, the null hypothesis is rejected if535

λ0 is the smallest among the (N+1)λs. This will give a false536

rejection if λ0 being smaller than other λi by chance, which537

occurs with probability 1/(N+1). That is, if we want to have538

a false rejection with 95% significance (2 ’sigma’), 19 surro-539

gate time series have to be generated in case of one-sided540

test.541

3.5.1 Pseudo-Periodic Twin Surrogates (PPTS)542

Since our method is based on recurrence network analy-543

sis, and the exoplanetary observables show mostly quasi-544

periodic and chaotic behavior, we use, through our analysis,545

the PPTS method to generate surrogate time series. The546

PPTS algorithm uses the phase space structure and RP rep-547

resentation to generate surrogates.548

In what follows, we give the algorithm of the PPTS549

(Carrión & Miralles 2016).550

(1) Construct the RP of the original signal using
Equation (3) with predefined RR and identify the
twin points. The larger the RR, the more twins.
We found the RR=0.1-0.15 is adequate in order
to find twins.

(2) Randomly choose an initial condition i0 and set
i = i0. Initialize n=1.

(3) If there is a twin point for x(i), make the next
point of the surrogate xs(n) = x( j), where j is ran-
domly chosen among the twin points with proba-
bility 1/T (here T is the number of twins for the
state x(i)). Let i = j and n = n+1.

551
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(4) If there is no twins for x(i), choose a neighbor x( j)
from all of the elements of the phase space repre-
sentation with probability

P(x( j)) ∝ exp
−||x(i) − x( j) | |

ρ
, (9)

where ρ is the noise radius (Small et al. 2001). Set
the next point of the surrogate xs(n) = x( j). Let
i = j and n = n+1.

(5) Repeat from (3) and (4) until n = N .
552

The crucial step in the PPTS algorithm above is how to553

choose the noise radius ρ in Eq. (9). When ρ is too small, the554

original signal and the surrogate are identical, while in case555

of too large noise radius the generated surrogates will be un-556

correlated random points. Small et al. (2001) suggest a care-557

ful selection method for ρ when the noise level is fine tuned558

so that the intercycle dynamics are destroyed but intracy-559

cle dynamics are preserved. We propose a different method560

to find the desired noise radius. The base of our alternative561

is to measure the similarity between two time series, called562

dynamic time warping (DTW). Here, we only use the out-563

come, i.e. the value of ρ, of the DTW procedure (a detailed564

description and example can be found in Appendix C).565

As mentioned above the PPTS method is strongly con-566

nected to the recurrences and the underlying phase space567

structures. Since recurrence plots determined from PPT sur-568

rogate data behave differently for regular and chaotic time569

series compared to the RPs obtained from the original sig-570

nal, one can test the null hypothesis that the observed time571

series is consistent with quasi-periodic orbit.572

573

574

Now, let us consider several examples from the model575

system SJS to see how PPTS works in practice. We pick up576

two initial conditions from the (aSaturn, eSaturn) parameter577

plane one regular and one chaotic as usual. First, we deal578

with RV data. Figure 8(a) and (b) portray the RV time579

series, i.e. Sun’s velocity component vx, for initial condi-580

tions (aSaturn, eSaturn) = (7.2, 0.02) and (aSaturn, eSaturn) =581

(8.0, 0.2), similarly as in Fig. 2. These two initial conditions582

are also marked as blue triangles in Figure 1. Both data sets583

contain 950 points, the difference to those in Figure 2 is that584

current time series are cubic splined (due to missing obser-585

vations) with additional noise. According to the description586

above we generated 100 surrogates for regular as well as587

chaotic time series, respectively in order to achieve 99% sig-588

nificance in hypothesis test. Panels (c) and (d) illustrate one589

pair of the corresponding pseudo-periodic twin surrogates.590

Having the surrogate data sets we can compare the591

RN measure of the original signal and those obtained from592

PPTSs. We focus on APL and T RN as before. The bottom593

four panels, Figure 8(e)-(h), show the relation of these val-594

ues. In each plot the red solid line represents the APL and595

T RN values of the original signal. The blue circles corre-596

spond to the APLs and T RNs for 100 different PPTS data597

sets. The rank-based test reveals that in the regular case598

both APL and T RN fall into the zoo of surrogate RN mea-599

sures. In contrast, when the dynamics is chaotic the orig-600

inal measures are located well outside the set of surrogate601

Figure 8. Hypothesis test based on the RV signal in the SJS

system. Left: Regular dynamics - original time series (a), one

of the surrogate data sets (c), different recurrence network mea-
sures (APL, TRN) compared to the same characteristics calcu-

lated from PPTSs. The noise radius appearing in the PPTS algo-

rithm is ρstable = 0.202. Right: Chaotic dynamics - panels match
those on the left. The green dashed lines denote the ±1 standard

deviation of blue data points around the red line (RN measures

of the original signals). ρchaotic = 0.252.

Figure 9. Hypothesis test exploration of (Jupiter) TTV signal.
The panels have the content as in Figure 8. ρstable = 0.089 and
ρchaotic = 0.13, see Appendix C.
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Figure 10. TTV signal (top) and hypothesis test (middle and
bottom) of Kepler-26b. The horizontal solid line represents the

TRN = 0.627 and APL = 3.951 for the original time series, while

the dashed lines show the ±1 standard deviation (ρ = 2.076) of
the same measures calculated from 100 PPTSs (circles).

points. That is, in the later case we can reject the null hy-602

pothesis, according to which the original signal comes from603

quasi-periodic motion.604

One can accomplish the same analysis on TTV data sets605

as well. Figure 9 depicts the hypothesis test for the same two606

orbits based the TTV signal of Jupiter4. We call again the607

readers’ attention that 950 transits cover slightly different608

time spans for different types of motion.609

610

611

4 APPLICATION TO EXOPLANETARY612

SYSTEMS613

The results presented in previous sections are based on nu-614

merical integration of a well-defined planetary system in-615

cluding the Sun, Jupiter, and Saturn. Our RN analysis shows616

that 950 data points either RV or TTV measurements (in617

case of Jupiter) are enough to carry out the stability investi-618

gation of the system. Next we want to apply the whole pro-619

cedure to real exoplanetary systems that are known in the620

literature. As always, the amount and quality of the acquired621

4 The method works well for Saturn’s TTV too.

Figure 11. Top: Kepler-26c TTV. Middle-bottom: Hypothesis
test for Kepler-26c. TRN = 0.387 , APL = 3.133 , ρ = 2.977.

data is extremely important, we try to analyse the best pub-622

lic data sets. Thus, we decide to use only space-based TTV623

signals, e.g. Kepler data, since the available RV measure-624

ments about two-planet systems contain a small number of625

data points and are very sparse in time.626

4.1 Data627

After 17 quarters the Kepler satellite finished its original628

mission and collected more than 69,000 transits for 779 KOIs629

with high signal to noise ratio (SNR). The most interesting630

systems with significant long-term TTVs have been pilled631

up and published in a catalog (ftp://wise-ftp.tau.ac.il/632

pub/tauttv/TTV/ver_112) (Holczer et al. 2016) in order to633

make the light curves more usable for further research. We634

limited the choice of possible systems to those presented in635

Holczer et al. (2016) and their stability analysis can be found636

in a recent paper of Panichi et al. (2018) for comparison.637

4.1.1 Four-planet system: Kepler-26638

The stability analysis of this planetary system (Steffen et al.639

2012) is based on the TTV signals of two super-Earths (out640

of the confirmed four by Jontof-Hutter et al. (2016)) being641

in 7:5 MMR. First, we have done the cubic spline fit since642

the time series has 17 % missing transits in the available643

epoch frame. Then after the phase space reconstruction the644

noise radius has been obtained as, ρ = 2.076. Having the645

value of ρ we can generate the surrogates and perform the646
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Figure 12. TTV of Kepler-36b (missing data 13 %) and hypoth-
esis test. The panels have the content as in Figure 8. TRN = 0.430
, APL = 3.557 , ρ = 37.177. Credit: Kovacs (2019).

hypothesis test. Figure 10 shows the TTV signal and the647

results of the hypothesis test for the inner planet, Kepler-648

26b. The two bottom panels portray transitivity (T RN) and649

average path length (APL) of recurrence network (red solid650

lines). The same measures of the 100 surrogates (blue circles)651

encompass those coming from the original signal, the null652

hypothesis can be accepted, i.e. the observed time series is653

produced by quasi-periodic dynamics.654

The same applies to Kepler-26c. The missing transit655

events give a signal of 14 % of the whole covered time span.656

Based on the hypothesis test one can conclude that the plan-657

etary dynamics shows regular motion, see Figure 11.658

659

660

4.1.2 Two-planet system: Kepler-36661

The Kepler-36 system (Deck et al. 2012) has one of the662

largest TTV signals among the known planetary configu-663

rations. Based on this fact, the dynamical analysis, derived664

from TTVs of two planets, assisted to explore a complex be-665

haviour in this extrasolar planetary system. A great success666

of the exploration of Kepler-36 is the emergence of stable667

chaos.5 In our analysis the hypothesis test shows no consis-668

5 A phenomenon related to a short dynamical life time, in con-

trast to the orbital elements that indicate long regular motion.

Figure 13. TTV of Kepler-36c (missing data 30 %). Hypothesis

test. TRN = 0.546 , APL = 5.75 , ρ = 20.381. Credit: Kovacs

(2019).

tent results. Neither for the two component of the system669

nor for the different network measures. As one can see, the670

original measure of T RN appears to be the lowest one in the671

rank based test middle panel of Figure 12. This means that672

the null-hypothesis can be rejected, i.e. the original signal673

comes with 99% level from chaotic dynamics rather than674

quasi-periodic. The other measure, APL, shows the opposite675

(bottom panel) yielding that we can expect a regular motion.676

This is, however, not the case for Kepler-36c (Figure 13).677

Kepler-36c appears to be stable for both T RN and APL in678

hypothesis test. In fact, most of the surrogate transitivity679

values are above the T RN of the original time series (middle680

panel of Fig. 13). Still following the previous rules we accept681

the null-hypothesis. Although, three out of four tests charac-682

terize the system as a regular one, the discrepancy definitely683

shows more uncertainty. What we can conclude based on the684

SJS model system and its hypothesis test, see Figure 9 is that685

the motion taking place in Kepler-36 is very close to the res-686

onance border just like the chaotic (aSaturn, eSaturn)=(8.0,0.2)687

pair in SJS system. The stable chaos scenario suggested by688

Deck et al. (2012) completely overlaps with the stickiness689

effect appearing at the border of regular domains (MMRs690

in celestial mechanics) in dynamical systems (Tsiganis et al.691

2000). In addition, Panichi et al. (2018) also found that the692

system (Kepler-36) is very close to the border of the 7:6693

MMR.694
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4.1.3 Two-planet system: Kepler-29695

The Kepler-29 system (Fabrycky et al. 2012) harbours two696

super-Earth planets on tightly separated resonant orbits.697

This indicates a fairly large TTV signal plotted in Figs. 14698

and 15 upper panels. Unfortunately, the data is very sparse699

compared to other time series in the catalog. The 1500700

days run contains only 93 valuable transit measurements701

(from possible 108) producing a signal with 32-36% missing702

points. Unfortunately, the large gaps that can cause trou-703

ble and misinterpretation of cubic splined time series. Thus704

one should handle the analysis with care. (Panichi et al.705

2018) showed that the integration time plays an important706

role in the stability investigation of this particular systems.707

Although, the initial conditions of the inner planet (Kepler-708

29b) are sitting well inside the regular domain of the (a, e)709

stability map for shorter time, it turns out that the center of710

the resonance becomes unstable for longer integration. The711

initial conditions eventually appear at the border of the reg-712

ular and chaotic domain falling into the sticky region, simi-713

larly to Kepler-36.714

The results of the hypothesis tests based on the avail-715

able data sets are shown in Figures 14 and 15 predict regular716

dynamics for the inner as well as for the outer planet. This717

is not in contradiction to previous findings bearing in mind718

that the time series is extremely short. It might present719

chaotic nature for longer time scales. Moreover, in case of720

Kepler-36 system the planets are closer to each other with721

an order of magnitude resulting in much stronger mutual722

gravitational perturbation and dynamical effect on shorter723

times. Thus, the different dynamical time scales can explain724

the more irregular outcome of the stability investigation of725

Kepler-36 from the same kind (length, noise, gaps) of data726

set.727

728

729

5 CONCLUSIONS730

In this paper we describe the stability of multiplanetary731

systems based solely on astronomical observations. The732

technique involves complex network analysis through phase733

space reconstruction (time delay embedding) and recurrence734

plot representation (Figure 3). The Sun-Jupiter-Saturn sys-735

tem is used for pedagogical purposes. This well-known two-736

planet configuration serves a large variety of motions (pe-737

riodic, quasi-periodic, chaotic, sticky) what can also be ob-738

served in extrasolar planetary systems. Having the knowl-739

edge about the SJS dynamics (indicators MEGNO) we are740

able to test the new strategy to obtain the stability and741

explore the strength, weakness, and applicability of the742

method. We have shown that complex network measures743

(such as average path length, transitivity) applied in recur-744

rence network (RN) framework characterize the system dy-745

namics accurately. Moreover, our strategy copes with noisy746

and non uniformly sampled time series as well. The whole747

procedure has been applied in real exoplanetary systems. In748

spite of short and sparse data sets the analyses match with749

earlier stability studies of the same systems.750

Although the long-term stability is the primary goal of751

Figure 14. TTV Kepler-29b (missing data 32 %). Hypothesis

test. TRN = 0.541 , APL = 3.932 , ρ = 12.6.

dynamical analysis it should be noted that the method we752

present is strictly based on the signal measured. It means753

no further temporal extension of the phase space trajectory754

is available, say for millions of orbital revolutions, like in755

the case of numerical integration. Numerical integration is ,756

however, the conventional approach that uses the orbital pa-757

rameters as initial conditions obtained from the best fitting758

planetary models. And then applying one of the chaos indi-759

cator methods to find long time behaviour of the system. Our760

technique describes, in contrast, the dynamical behaviour761

of reconstructed phase space trajectory based on the time762

frame of the available observations. Clearly, for the direct763

problem (i.e. numerical integration of the initial conditions),764

one can find different stability phenomenon for slightly mod-765

ified initial conditions or for the same initial states but dif-766

ferent evolution time. For example, high eccentricity motion767

often leads to escape from the system that occurs for sooner768

or later. Obviously, no chaos detecting method can obey769

such a situation properly. Furthermore, close to the border770

of resonances, where stickiness acts, the orbit might exhibit771

regular situation, however, after a time it detaches from that772

domain and behaves chaotically (or escapes). In this study773

we show how the method works for a certain time interval774

(1050 orbits for Jupiter sampled by 950 measured points)775

in case of RV and the same number of transits (950). We776

note that the method was tested for longer and shorter inte-777

gration times. That is, the MEGNO map for the same (a,e)778

parameter plane has been calculated for different time inter-779

vals and, consequently, its structure was different, especially780
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Figure 15. TTV Kepler-29c (missing data 36 %) and hypothesis

test. TRN = 0.598 , APL = 3.161 , ρ = 14.21.

at MMRs. Nevertheless, NR measures were also capable in781

these situation to catch the distinct dynamical situations.782

Let us draw a parallel between the direct numerical in-783

tegration and RN method. The best fit planetary model per-784

mits accurate initial parameters for further numerical inte-785

gration. However, these initial conditions strongly depend786

on the length of the time series as well as S/N. Fine tun-787

ing the initial parameters by improving these circumstances788

(follow-up observations) might lead to different kind of dy-789

namics than those emerging from the ”obsolete” orbital el-790

ements. Exactly the same situation holds for RN measures.791

The more longer the data set, i.e. covers larger segments of792

the dynamics, the precise the stability analysis. Indeed, no793

extrapolation for the far future is needed and also the whole794

procedure does not require neither the initial conditions nor795

the system parameters and the equations of motion explic-796

itly. All in all, what we can do with MEGNO for a given797

integration time, RN measures do the same job for identical798

length of time series as well.799

To our best knowledge, this study is the first step of ap-800

plication of nonlinear time series analysis methods to obtain801

stability of exoplanetary systems. Hence, there are many802

ways to improve it. We mention some of them based on our803

experience so far.804

• Length of the time series: Long-term stability analysis805

requires sufficiently long phase space trajectories to deter-806

mine either the LCEs or other more efficient6 chaos detec-807

6 More efficient means in this sense that the method can distin-

tion quantities. This is also true for indirect methods as well.808

Fortunately, we can expect that the signals will be more pop-809

ulated and precise in the future.810

• Combining RV-TTV-ASTROMETRY data: Various811

system information acquired by several observation tech-812

niques can describe distinct physical actions. The above813

mentioned observables give us different insights into the dy-814

namics. Obviously, these are coupled since they come from815

the same system. The recurrence network method used in816

this work allows to mix different kind of measurements7 and817

with the help of this more information about the system818

dynamics can be obtained.819

• Different surrogate algorithms: Surrogation is a widely820

used technique in time series analysis. In this study we per-821

formed the analysis by using the PPTS algorithm. However,822

there are other methods that are probably more sensitive,823

say, for the linear colored observational noise added to the824

system (Luo et al. 2005). Therefore, it is worth checking dif-825

ferent surrogate generation methods to distinguish chaotic826

and regular motion in dynamical systems. Furthermore, we827

used only one static significance test (based on 100 surro-828

gates which yields 99% level). One also might carry out more829

tests. In these situations the total probability of a false re-830

jection can be different. To deal with such a scenario and831

how to modify the significance level we refer to the text-832

book (Kantz & Schreiber 2003).833

• Different embedding techniques: Phase space recon-834

struction is a must in RN analysis. Besides the classical time835

delay embedding there are various techniques that guaran-836

tee a successful trajectory reconstruction Lekscha & Donner837

(2018). Moreover, one can also find alternative parameter838

estimation of delay embedding (Small & Tse 2004; Hirata839

et al. 2006; Nichkawde 2013) as well as different kind of re-840

construction methods (Hirata & Aihara 2017; Uzal et al.841

2011; Carroll 2018a; Lekscha & Donner 2018) that can also842

be tested in dynamical astronomy.843

• Other types of networks: Once we have the recon-844

structed phase space trajectory the natural choice is to use845

RN measures. However, other types of networks are suit-846

able to explore the dynamical variability. Visibility graphs847

(Lacasa et al. 2008; Zou et al. 2014; Mutua et al. 2016) are848

promising candidates to use them as an alternative approach849

in planetary dynamics.850

• Machine learning techniques: Many papers appeared re-851

cently about the attractor reconstruction and exploration of852

chaos in dynamical systems making use of machine learning853

techniques called reservoir computing (Pathak et al. 2017;854

Lu et al. 2018; Nakai & Saiki 2018; Carroll 2018b). In this855

process the input data are the measured time series like in856

our present analysis. Moreover, the method could also solve857

the problem of surrogate analysis which is naturally encoded858

(as modified autonomous reservoir) in the mechanism they859

use. An additional method that might fit well to our pur-860

poses is convolutional networks of 2D image processing. A861

fresh paper (Hatami et al. 2018) proposed a strategy wherein862

a convolutional neural network (CNN) classifier has been863

guish chaotic and regular motion from short (few thousands of

orbital period) integration times.
7 This is true only when some basic criteria about the time se-
ries are fulfilled. See more about joint recurrence plots and cross-
recurrence plots. (Marwan et al. 2007)

MNRAS 000, 1–17 (2019)
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applied to recurrence plots obtained from time series of dy-864

namical systems. They assert that CNN model works better865

for texture images (practically RPs) than other time series866

classification schemes. These methods hold a significant po-867

tential to improve future dynamical modeling not only for868

planetary sciences but other fields of physics.869

• High dimensional Hamiltonian problems: Not only for870

recurrence based analysis but for other network measures871

most of the analysis covers the well-known didactic examples872

such as dissipative Rössler, Lorenz, Hènon-Heiles systems873

or the classical Standard map as a Hamiltonian example. It874

would be extremely beneficial to examine how the network875

measures behave in more complex phase space e.g. in high876

dimensional Hamiltonian systems.877

In summary, we believe that the method presented878

above can be used as a completion or prerequisite of dynam-879

ical analysis based on best fit planetary models followed by880

numerical N-body integration. Furthermore, recent efforts881

(Carter & Agol 2013; Deck et al. 2014; Forgács-Dajka et al.882

2018) show significant improvement in indirect stability and883

dynamical analysis based on measured time series that also884

supports our strategy.885
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APPENDIX A: TIME DELAY EMBEDDING IN1031

PRACTICE1032

Let us consider a heuristic example for the delay reconstruc-1033

tion using synthetic measurements.The univariate data set,1034

containing 600 points, is given as1035

x(ti ) =

*.............
,

#1
#2
#3
...

#598
#599
#600

+/////////////
-

, i = 1 . . . 600.

Next, choose the embedding parameters, for instance,1036

m = 3, τ = 4. Consequently, the size of the matrix xN is1037

3 × 592 as it can be seen below1038

xN = {x(ti − 2 · 4), x(ti − 4), x(ti )} =

*........................
,

#9 #5 #1
#10 #6 #2
#11 #7 #3
...

...
...

#598 #594 #590
#599 #595 #591
#600 #596 #592

...
...

#600
...

#600

+////////////////////////
-

.

Those elements that remain under the horizontal line1039

are omitted. In this method the recovered signals are in rows1040

as indicated in shaded box in xN , i.e. in our example the1041

original time series elements (#9, #5, #1) represents the first1042

point of the reconstructed phase space trajectory in m = 31043

dimensions.1044

APPENDIX B: RN MEASURES IN1045

HIGH-DIMENSIONAL MAPS1046

In this section we investigate how the RN measures vary
when the dimension of the system is increasing. The main
objective is to demonstrate that transitivity (T RN) might
have lower values for ordered motion than for chaotic ones
in higher dimensions. As a model for our study we consider
the 4D and 18D symplectic maps consisting of 2 and 9 cou-
pled standard maps. The general formalism of symplectic
coupling of N symplectic 2D maps is the following

Θ
n+1
i = Θni + pn+1

i ,

pn+1
i = pni + K sinΘni −

N∑
j=1

Bi, j sin[Θnj − Θ
n
i ],

mod (2π)

(B1)

where K is the nonlinearity parameter and Bi, j is the cou-1047

pling strength. The coupling on the i-th map is a pertur-1048

bation in pi and the full coupling is symplectic provided1049

Bi, j = Bj,i = B. System (B1) is a typical chaotic conser-1050

vative system with mixed phase space. To show the be-1051

haviour of RN measures we fix the parameters K=1.5 and1052

B=0.0, 0.005, and 0.05. Furthermore, the initial conditions1053

are the following (Θ10, p10)=(3.241,p10) where p10 ∈ [0, 2π],1054

(Θi0, pi0)=(3.24,0.05), i=2. . . 9.1055

1056

Phase portraits for different B parameters and N=2 are1057

shown in Figure B1 bottom row. The classical structure is1058

depicted when B=0, i.e. the two maps are decoupled. Invari-1059

ant curves fade in higher dimension since in this case (Θ1, p1)1060

section is a projection of the 4D phase space. Indicating the1061

stability we overplot the Lyapunov exponents along the line1062

of initial conditions. One can observe that the main islands1063

remain stable and only the small stability regions become1064

unstable for larger B.1065

Considering the recurrence network measures the 2D1066
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Figure B1. RN measures APL (top) and TRN (middle) for coupled 4D standard map (N=2). The larger the B, the stronger the

coupling. The pattern specifies the lower TRN for regular motion when the extended phase space becomes more significant. Bottom:

Phase portraits of (Θ1, p1) sections. As expected the well-known embedded phase space structure vanishes in higher dimension. Note
that the LCE curves (purple) does not show the real value, they are enlarged (by a factor of 10) for better visualization. Red part: now

N=9, that is, the phase space has 18 dimensions.

map serves what we expect from literature (Zou et al. 2016).1067

That is, smaller value of APL but larger value of TRN for1068

periodic motion. In turn, when the phase space is extended1069

the value of T RN starts to decrease at regular domains. The1070

higher the coupling, the larger the T RN ’s decay, APL shows1071

the same characteristic. In other words, the large stability is-1072

land keeps its stability (the LCEs remain zero) while the net-1073

work measure T RN turns to be low. Similar behaviour can be1074

seen in (Marwan et al. 2015) when they found smaller T RN1075

for stable motion (LCE=0) than for unstable in Lorenz961076

model. Although, the Lorenz96 system is a high dimensional1077

continuous dynamical model, the explanation of the phe-1078

nomenon can be the same. Namely, in higher dimensions,1079

periodic orbits are not confined to a finite part of the phase1080

space but can sweep a large domain that is comparable with1081

chaotic realm in size. Consequently, the clustering, and also1082

the transitivity, due to the divergence of the trajectories is1083

not so efficient in resulting in smaller values even in the case1084

of periodic motion. This fact might clarify the lower TRN1085

values for regular dynamics in the three body problem, Sec-1086

tion 3.3 Fig. 6.1087

For higher dimensional phase space, for instance N = 9,1088

the tendency is similar. As one can see the essential differ-1089

ence between the uncoupled and coupled scenarios follows1090

our former observation. The phase portrait get more fuzzy1091

and with this the RN measures drop off for regular motion.1092

Based on these findings we believe in the results pre-1093

sented in Fig. 6(d) wherein smaller TRNs describe the regu-1094

lar dynamics. The precise study of RQA and RN description1095

of high-dimensional Hamiltonian systems (either continuous1096

or discrete) is crucial and must be carried out carefully in1097

the future. To our best knowledge it has not been done yet.1098

We postpone this work elsewhere.1099

MNRAS 000, 1–17 (2019)
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APPENDIX C: DYNAMIC TIME WARPING1100

As we have seen, the noise radius ρ is a pivotal parameter1101

in pseudo-periodic twin surrogates algorithm (PPTS), see1102

Section 3.5.1. Its value tunes the PPTS which means if ρ1103

is too large the generated surrogate will be a sequence of1104

random values. While, in contrast, if the value of ρ is too1105

small, the produces time series is identical to the original1106

one. What we need, therefore, is a method that gives a suit-1107

able noise radius which is not too large and not too small.1108

In other words, we want to generate a time series that con-1109

tains some dynamics noise, nevertheless, it is similar to the1110

original signal compared by naked eyes.1111

In this section we propose the method of dynamics time1112

warping (DTW) that is suitable to quantify the similarity1113

of two time series (Berndt & Clifford 1994). Without going1114

into the details we present some of the basic feature of DTW1115

and then present how it works in case of PPTS algorithm.1116

Comparing two sequences, possible with different1117

length, one needs a local cost measure. This measure is typ-1118

ically small if the two signals are similar to each other, and1119

large otherwise. Then one can construct the cost matrix that1120

defines the local cost measure between each pair of points of1121

two signals. As a final step the task is to find an alignment1122

between of the two time series that minimizes the overall1123

cost. For a more precise mathematical formulation of DTW1124

see reference (Müller 2007).1125

Based on the algorithm in Section 3.5.1 a large number1126

(250) of PPTSs has been generated over several orders of1127

magnitude of ρ. Then we stored the actual value of DTW.1128

Small DTW characterizes minor difference between the orig-1129

inal signal and the generated surrogate while relative large1130

value reveals significant contrast between them. See Fig-1131

ure C1 for specifying the noise radius in two different dy-1132

namical regime.1133

For practical purposes we accept the appropriate noise1134

radius when the DTW curve (black solid line) leaves the 11135

standard deviation defined by the first 20% of data points1136

(green dashed line). Using this rule is a must because the1137

first part of the plot, i.e. the DTW for small noise radii,1138

might fluctuate in a great way, especially in strongly chaotic1139

cases.1140

1141

The upper panel of Fig. C1 portrays the relationship1142

between DTW and noise radius for the regular orbit origi-1143

nating at (aSaturn, eSaturn) = (7.2, 0.02). The two well sep-1144

arated values of DTW indicate the role of the noise radius1145

explained above. The smaller value of DTW (ρ . 0.1) char-1146

acterizes that the two time series are similar while the right1147

tale of the plot (ρ & 3) denotes when the surrogate and1148

the original signal are completely different. The noise radius1149

should be chosen from the rest part of the curve. The blue1150

dashed line is placed to the value of ρ = 0.075 where DTW1151

starts to diverge from its mean value (∼ 5 × 104) calculated1152

from the first 20% of the data points.1153

The lower panel shows DTW vs. noise radius for the1154

chaotic orbit starting at (aSaturn, eSaturn) = (8.0, 0.2). The1155

main structure of the plot matches the upper one. However,1156

the DTW values are larger by an order of magnitude. The1157

noise radius corresponding to the 1 standard deviation limit1158

(ρ = 0.13) is marked by the vertical blue dashed line.1159

Figure C1. Dynamic time warping vs. noise radius. Top: reg-

ular dynamics. Bottom: chaotic dynamics. The reference signal
in both cases is Jupiter’s TTV, see Fig. 9(a) and (b). Different

scale of dynamical noise in PPT surrogate algorithm yields dis-

tinct features in resulting surrogate time series. The intermediate
values present a suitable noise radius to generate PPTSs having

the same intracycle dynamics (but vanishing the intercycle struc-
tures) as the original data set. Red solid lines correspond to mean

DTW value of first and last 20% of data points, respectively. The

green dashed lines mark the ± 1 standard deviation of the same
segments of data. The thick black curve represents a smoothing

of the original 250 data points by a moving average (window size

is 5).

Making use of DTW we are able to set the appropriate1160

value of noise radius (ρ) in PPTS algorithm, see Eq. 9. We1161

should however emphasize that the choice of 1 sigma limit1162

is empirical and further investigation is needed how to suit1163

more precisely the DTW algorithm to find the best ρ.1164

This paper has been typeset from a TEX/LATEX file prepared by1165

the author.1166
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