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Abstract: The microwave (MW) technique is an efficient tool in the realization of organic reactions,
as well as in the analytical field and in the food industry. The continuous flow approach is of
special interest as a promising way to scale-up MW-assisted syntheses. Besides summarizing the
batch precedents, this review focuses on the utilization of the MW technique in the continuous-flow
realization of organophosphorus transformations. The advantages of the continuous flow technique
against the batch accomplishment are also shown. A few materials chemistry-related applications are
also mentioned.
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1. Introduction

1.1. Batch vs. Continuous Flow Systems

Continuous procedures have been playing a significant role in important fields like the oil, plastic,
and fine chemical industries, or metal processing for a long time [1]. The paradigm shift from batch
reactions to continuous accomplishments is the consequence of progress in organic chemistry, and came
to the front in the last decade [2].

As compared to a step-by-step batch reaction (Figure 1/I), where the most important parameters
are the concentration of the starting materials, the temperature, and the reaction time, in continuous
flow operations (Figure 1/II) the outcome can be controlled by the flow rate of the reagents and the
average residence time set in the reactor. A continuous flow reaction can reach a steady state when
the intake and the output are stationary. This means that the product is obtainable continuously in
a permanent quality [3].

Flow reactors offer a basically different processing environment [4]. In a typical flow reactor,
relatively small quantities are present in the reacting volume, allowing for a better mixing and a faster
response on parameter adjustments. The precise parameter control is the key factor to obtain the target
molecules with better purity and selectivity, as well as in higher yields. Continuous processes also mean
an improvement regarding safety, as the handling of toxic or unstable intermediates becomes easier
when smaller amounts are used [5]. Due to the low volume ratio and small quantities, the temperature
regulation is simple, which makes the overall reaction safer. Moreover, flow reactors do not contain any
gas volume, which enables reaction temperatures exceeding the boiling point of the solvent more easily.
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Figure 1. Schematic drawings of a batch and a continuous flow system. Figure 1. Schematic drawings of a batch and a continuous flow system.

An up-to-date and safe synthesis requires a fully controlled process [6]. Flow reactors can be
readily coupled with tools of the process analytical technology (PAT), allowing real-time monitoring
and the possibility for automation. Due to the easy monitoring and constant product quality,
a continuous flow reactor can be an ideal choice for syntheses in the pharmaceutical industry [7].

The scale-up of flow reactions should be mentioned as a possible drawback [8]. This problem may
be overcome by operating a series of parallel flow reactors of the same size. The flow reactions under
discussion require a homogeneous medium with low viscosity, which may also mean a challenge in
certain applications. The price of the necessary equipment for a continuous process is usually higher
compared to that of a batch reactor [9].

1.2. Batch Microwave Chemistry

Microwave (MW) irradiation is widely used as a heat source in different fields, such as organic,
inorganic, and analytical chemistry, finding applications in the medicinal, polymer, and food industries,
as well as in the areas of material processing [10,11].

The evolution of MW-assisted processes started in the 1950s [12]. For three decades, the MW
technique was mainly used in the food industry or as a heat source for drying. The first chemistry-related
applications, e.g., sample preparation and digestion in analytical chemistry, also appeared during
this period. The first MW-assisted chemical syntheses were introduced in 1986 [13,14]. Since then,
thousands of publications have been published in this area.

Early synthetic attempts using MW irradiation were carried out in kitchen MW ovens [12].
In these devices, the MW irradiation is controlled by turning on and off the magnetron, which does not
allow continuous irradiation and makes the process uncontrollable. The lack of precise measurement
and control of the most important parameters (temperature and pressure) makes these experiments
unreproducible. The problem was recognized, and this initiated the development of professional MW
reactors designed for laboratory use. The first commercially available MW reactors appeared on the
market in the early 2000s. The improvement from household MW ovens was significant. These MW
reactors were equipped with a specially designed MW cavity, a built-in magnetic stirrer, and a precise
temperature sensor, and also offered a connection to a PC for the monitoring and control of the
experiments. The use of professional MW chemistry became broadly available, and this multiplied the
amount of publications in the area under discussion.

In contrast to conventional heat sources, MW can directly heat the molecules in the bulk of
a mixture [15]. Besides the energy efficiency, MW heating has several other benefits, such as accelerating
reactions and offering milder reaction conditions, higher yields, and better selectivities, as well as
allowing solvent- and/or catalyst-free methods.

As the mechanism of MW heating requires the interaction of MWs and the material, the dielectric
constants of the reagents have to be checked before designing a MW-assisted synthesis [10]. At least
one of the starting materials should be polar enough to be able to absorb the MW energy. In certain
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cases, polar additives (e.g., polar catalysts, salts, or ionic liquids) may be added to increase the polarity
of the mixture [16–18].

Over the years, the MW technique has proven to be efficient in a wide variety of syntheses.
Among these, a few reaction types like couplings, multicomponent reactions, condensations, and
cycloadditions turned out to be especially advantageous under MW conditions [19].

Although the MW technique has several benefits, the scale-up suffers from a serious limitation [12].
The MW irradiation is generated by a magnetron coil, which has a defined geometry. Structural
materials, like borosilicate glass or Teflon, are needed for MW equipment requiring a special design, not
allowing for the establishment of larger-scale reactors. Manufacturers of MW devices offer multimode
reactors, where 6–12 samples can be heated parallelly. However, this is far away from a real scale-up,
which is inevitable for industrial-like applications. A more suitable approach allowing MW-assisted
syntheses in larger quantities is discussed in the next chapter.

1.3. Continuous Flow Microwave Attempts

According to a review in the field of MW-assisted material chemistry [20], continuous processes
have been developed for the preparation of carbides, sintering of ceramics, or the continuous treatment
of oil-contaminated drill cuttings. These instances differ from the usual flow reactions discussed in
this subchapter, as the feed of the reactor is not a homogenous solution.

In MW-assisted organic chemistry, the continuous flow technique is of special interest. Combining
MW heating with the continuous flow technique creates a promising way to scale-up MW-assisted
syntheses [12,15,21–23]. The first systems coupling MWs and continuous flow were applied to polymer
heating and solid drying in the 1980s [24,25]. The continuous flow MW reactors for chemical reactions
appeared in the 1990s [26]. Since then, the number of publications in this field has been constantly
increasing, and until the present more than 300 papers have been published. The advantages of
continuous flow MW reactors were reported for a series of transformations. However, in many cases,
fabricated domestic MW ovens were used. Due to the uncontrolled temperature and pressure in these
non-professional MW “reactors”, it is practically impossible to reproduce these transformations [23,27].
Gradually, professional MW-flow systems with accurate temperature measuring devices were also
developed [28,29].

The continuous flow MW systems usually consist of three main parts: the dispensing units for
the starting reagents, the MW cavity, and the product collector (Figure 2). The reagents are fed into
the reactor using one or more pumps that may be HPLC or syringe pumps. The pressure is usually
controlled by a back-pressure regulator while the temperature is monitored using a built-in IR sensor
or a fiber optic sensor. In most cases, the flow reactor is made of MW transparent Pyrex or Teflon.
Further scale-up of flow MW systems can be realized by applying parallel reactors.
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Figure 2. Schematic drawing of continuous flow microwave (MW) systems.

There are many types of continuous flow MW reactors [21], which contain a normal flask or
tube [30], an Ω- or U-shaped tube [31,32], a spiral glass tube [30,33–35], or a mixed tube [36] to
accommodate the reactive volume. Furthermore, reactor designs of fixed bed tubular coils [37,38],
filled columns [37–39], and capillary reactors [40–42] are also available. Coupling MW heating and
microreactors is also a challenging endeavour [23].
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There are several papers, which reported on continuous flow MW accomplishments in the g or kg
scales [27,43–57], or even larger scales (500 kg product per day) [58].

The spread of MW and continuous flow techniques have resulted in an enormous development
in synthetic chemistry. Continuous flow MW reactors make possible efficient, fast, and selective
transformations, as well as precise monitoring and control of the reaction parameters.

1.4. Microwaves in Batch Organophosphorus Syntheses

Guenin summarized the early results obtained in MW-promoted P-chemistry [55].
It was found by us that P-hydroxy phospholene oxides, -phospholane oxides,

and -hexahydrophosphinine oxides (1) could be esterified with alcohols under MW conditions
to provide the respective phosphinates (2) in yields of 31–82% [56–60]. Although this protocol
means a green way to prepare the phosphinates, the temperatures of 200–235 ◦C and the times of
up to 5 h are disadvantageous. Later on, we observed that, in the presence of 10% of ionic liquids
(ILs), the esterifications were more efficient. This was shown via the esterification of different ring
phosphinic acids (1) with pentanol (Scheme 1). Among the imidazoliaun salts tested as catalysts,
[bmim][PF6] was found to be the most appropriate [61]. The use of this additive made almost complete
conversions possible, as well as higher yields (72–94%) at lower temperatures of 180–220 ◦C after
shorter reaction times of 0.5–2 h. The positive effect of the IL additives is the consequence of their
better MW absorbing ability.
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Scheme 1. Direct esterification of ring phosphinic acids (1) by pentanol using [bmim][PF6] as
the catalyst.

The solid–liquid heterogeneous phase alkylation of ring phosphinic acids (1) was studied by
alkyl halides under MW irradiation, using K2CO3 to remove the liberated hydrogen halogenide
(Scheme 2) [57,62]. The effect of triethylbenzylammonium chloride (TEBAC) as a phase transfer
catalyst (PTC) was also investigated. In the cases of the alkylation of 1-hydroxy-3-phospholene oxides
(1A or 1B), it was found that by using benzyl bromide, which is of increased reactivity, the respective
phosphinates (3A and 3B) were obtained in yields of 92%/84% (also in the absence of a catalyst). At the
same time, when alkyl halides of normal (nPr- and nBu-bromide) or decreased reactivities (iPr-bromide)
were applied, the presence of TEBAC enhanced the reactions. Yields of 90–96% were obtained for
derivatives with normal alkyl chains. In these cases, the effect of the catalyst was synergetic with
the MWs. The alkylations were then extended to the esterification of 1-hydroxyphospholane oxides
(1C and 1D) and a 1-hydroxy-hexahydrophosphinine oxide (1E). The respective esters were obtained
in rather good yields (81–98%).

Aryl phosphonates (5) may be intermediates for arylphosphonic acids. A MW-promoted,
NiCl2-catalyzed Arbuzov reaction of aryl bromides (4) with triethyl phosphite was developed by our
team (Scheme 3). In this case, a catalytic transformation was assisted by MWs [63,64].
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The solid–liquid phase alkylation of CH acidic P-derivatives, such as diethyl cyanomethylphosphonate
(6), diethyl ethoxycarbonylmethylphosphonate (7), and tetraethyl methylenebisphosphonate (8),
providing products 9–11, was developed under MW irradiation (Scheme 4) [65–67]. There was no
need to apply a PTC under MW irradiation [68,69]. A protocol for the di-substitution of diethyl
ethoxycarbonylmethylphosphonate (7) was also worked out [70].
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Scheme 4. Alkylation of active methylene-containing phosphonates.

It was found that there was no need for a catalyst in the Kabachnik–Fields reactions carried out
under MW conditions [71,72]. A series of α-aminophosphonate derivatives (13) was synthesized
by the three-component reactions of primary or secondary amines, oxo-compounds, and different
>P(O)H reagents, like dialkyl phosphites, alkyl phenyl-H-phosphinates, and secondary phosphine
oxides (Scheme 5) [71–76].
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Double Kabachnik–Fields reactions were also developed, where the primary amines were reacted
with two equivalents of paraformaldehyde and the same amounts of the >P(O)H species under MW
irradiation in a catalyst-free manner (Scheme 6) [73–79]. The respective products (14) could be prepared
in variable yields. After double deoxygenation of the bis(aminophosphine oxides) (14, Y1 = Y2 = Bn,
Ph or 4-MeC6H4), the bisphosphines obtained were used as bidentate P-ligands in the preparation of
ring Pt complexes [76–79].Materials 2019, 12, x FOR PEER REVIEW 6 of 15 
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The first P–C coupling reaction between aryl- or vinyl-halides and dialkyl phosphites furnishing 
phosphonates was described by Hirao using Pd(PPh3)4 as the catalyst [85,86]. Later on, other methods 
were also reported to replace the Pd(0) catalyst with Pd(II) or another metal (e.g., Ni(II) salts applied 
together with mono- or bidentate P-ligands). The P–C coupling was then extended by utilizing other 
>P(O)H reagents, bases, and solvents. Our research group found that the P–C coupling of aryl-
bromides and different >P(O)H species, like dialkyl phosphites, ethyl phenyl-H-phosphinate, and 
diphenylphosphine oxide may take place in the presence of Pd(OAc)2 as the catalyst precursor under 
MW conditions without the addition of the usual P-ligands, but using the P-reagent in some excess 
(Scheme 8) [87,88]. The ArP(O)< products (17) were obtained in variable yields. Our idea was that the 
excess of the >P(O)H compounds existing under a tautomeric equilibrium (with the >P-OH form) 
may act as P-ligands [89]. 

Scheme 6. Double Kabachnik–Fields reaction starting from primary amines.

The deoxygenation of phosphine oxide by-products is challenging. Cl3SiH or PhSiH3 are
suitable reducing agents, however, the previous reagent is corrosive, while the latter one is
expensive. In replacement of these reagents, the cheap (Me2SiH)2O (TMDS) and polymethylsiloxane
(–(OSiMeH)n–; PMHS) were used under MW conditions. It was proved that under MW irradiation,
there was no need for any catalyst proposed by Beller et al. [80]. This is exemplified by the reduction
of 1-phenyl-3-methyl-3-phospholene 1-oxide (15) using PhSiH3, TMDS and PMHS, as summarized in
Scheme 7 [81–84].
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Scheme 7. Reduction of a 3-phospholene oxide by cheap silanes.

The first P–C coupling reaction between aryl- or vinyl-halides and dialkyl phosphites furnishing
phosphonates was described by Hirao using Pd(PPh3)4 as the catalyst [85,86]. Later on, other methods
were also reported to replace the Pd(0) catalyst with Pd(II) or another metal (e.g., Ni(II) salts applied
together with mono- or bidentate P-ligands). The P–C coupling was then extended by utilizing
other >P(O)H reagents, bases, and solvents. Our research group found that the P–C coupling of
aryl-bromides and different >P(O)H species, like dialkyl phosphites, ethyl phenyl-H-phosphinate,
and diphenylphosphine oxide may take place in the presence of Pd(OAc)2 as the catalyst precursor
under MW conditions without the addition of the usual P-ligands, but using the P-reagent in some
excess (Scheme 8) [87,88]. The ArP(O)< products (17) were obtained in variable yields. Our idea was
that the excess of the >P(O)H compounds existing under a tautomeric equilibrium (with the >P-OH
form) may act as P-ligands [89].
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2. Microwave-Assisted Continuous Flow Applications

2.1. Development of the Continuous Flow Microwave Device

Among continuous flow MW-assisted syntheses, there are examples for esterifications [27,44,46],
acylations [27,44,46], multicomponent [27] and rearrangement reactions [27,28,44], couplings [27,28,43,44],
and polycondensations [90]. The simplest model is the esterification of carboxylic acids with alcohols,
where different types of flow cells (e.g., teflon coils, glass tubes, or ceramic tubes) were applied in
kitchen MW ovens [91,92] or in professional MW reactors [93,94].

A continuous flow MW system (Figure 2, Section 1.3) was developed by us, using a commercially
avialable flow cell (Figure 3) immersed into a CEM® MW reactor [95]. The mixture of the reagents is fed
into the reactor by a HPLC pump. The temperature of the mixture is monitored and controlled by an IR
sensor built into the reactor. After irradiation at the desired temperature, the leaving reaction mixture
is cooled down in a spiral-like cooler, and is passed through a back pressure regulator operating at
250 PSI.
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The first model reaction to be investigated by us in the flow system developed was the direct
esterification of benzoic acid with various aliphatic alcohols [95]. At first, batch reactions were carried
out to investigate the reaction. The reactivity of the alcohols towards benzoic acid was mapped and the
parameters were optimized. Based on the batch results, the esterification rate of benzoic acid depends
on the boiling point (from EtOH to nPentOH) and the steric properties of the alcohols (nPr vs iPr).
Then, the esterifications were optimized further in the continuous flow MW reactor. It was found that
when using 15 equivalents of alcohol at 140 ◦C at a flow rate of 0.35–0.25 mL/min (with a residence
time of 20–30 min), the direct esterifications were complete and the corresponding alkyl benzoates
were obtained in yields of 95–98%.
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2.2. Elaboration of the Continuous Flow Transesterification of Dialkyl Phosphites

The MW-assisted transesterification of dialkyl phosphites (dialkyl H-phosphonates) was studied
with simple alcohols (Scheme 9) under catalyst-free conditions [96]. These compounds may serve as
starting materials, for example in the Kabachnik–Fields condensations or in the aza-Pudovik reactions,
to provide potentially bioactive α-aminophosphonates [97]. As the first step, the transesterifications
were performed under batch conditions. It was found that, depending on the conditions (molar ratio,
temperature, and reaction time), the alcoholysis of dialkyl phosphites (18) resulted in the formation of
dialkyl phosphites with two different (19) or with two identical (20) alkyl groups in different ratios.
Dialkyl phosphites with two different alkyl groups (19) are valuable building-blocks in the synthesis
of chiral organophosphorus derivatives [73].
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Scheme 9. Batch alcoholysis of dialkyl phosphites by simple alcohols.

Hydroxyalkyl- or aminoalkyl-functionalized H-phosphonates could be synthesized by the
alcoholysis of dialkyl phosphites with glycols or amino alcohols (Scheme 10) [98,99]. During the
investigation of this reaction, it was found that mixed phosphites (21) and/or fully transesterified
products (22) were formed as major components, depending on the ratio of the starting materials,
the temperature, and the reaction time. These derivatives may be starting materials in the synthesis of
P-containing polymers, which form a special group within plastics [100,101]. In certain cases, a small
amount of by-products (23–25) was also present in the reaction.
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Scheme 10. Batch alcoholysis of dialkyl phosphites by diols and aminoalcohols.

The continuous flow alcoholysis of dialkyl phosphites by aliphatic alcohols in the absence of
catalyst was also elaborated using the same continuous flow MW system applied in the esterification of
benzoic acid (Scheme 11) [102]. By the precise control of the reaction parameters, the alcoholysis could
be fine-tuned towards dialkyl phosphites with two different (19) or with two identical alkyl groups
(20). Although the selectivity of the reaction was rather similar under flow and batch conditions,
in the continuous flow reactor, the dialkyl phosphites with two different alkyl groups were obtained at
a shorter reaction time in a higher proportion with a somewhat higher productivity.
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2.3. Continuous Flow Synthesis of α-Aminophosphonates by the aza-Pudovik Reaction

We elaborated the MW-assisted continuous flow synthesis of potentially biologically active
α-aminophosphonates by the aza-Pudovik reaction, involving the addition of dialkyl phosphites to the
C=N double bond of imines (Scheme 12) [103]. Before optimization, we carried out the flow-compatible
addition based on our previous experiences [104]. In this simple two-component model reaction,
the reagents were fed together into the flow cell. The MW-assisted catalyst-free continuous flow
reaction of N-benzylidene-butylamine or N-benzylidene-cyclohexylamine and diethyl phosphite in
ethanol afforded the corresponding α-aminophosphonates (26) in yields of 90–92%.
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2.4. The Synthesis of α-Aminophosphonates by Continuous Flow Kabachnik–Fields Reaction

An efficient synthetic route towards α-aryl-α-aminophosphonates is the three-component
Kabachnik–Fields reaction of primary amines, benzaldehyde derivatives, and dialkyl phosphites.
The continuous flow variation was elaborated by us (Scheme 13) [103]. To avoid the possible side
reactions of the starting materials at room temperature resulting in the formation of an imine or
an α-hydroxyphosphonate, a dual-pump continuous flow system had to be developed. The mixtures
of the primary amine and diethyl phosphite in ethanol (pump A), and benzaldehyde in ethanol
(pump B) were fed separately into the mixer of the HPLC pump. After optimization of the conditions,
the continuous flow method was proved to be more efficient than the batch approach, as the
corresponding α-aminophosphonates (27) were obtained in a shorter reaction time, and a lower
excess of phosphite was needed.
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3. Conclusions

The recent paradigm shift from batch processes to continuous flow operations has brought about
a significant change in organic chemistry, and meant a challenge in organophosphorus chemistry.
The continuous flow technique means improvements in respect to safety, selectivity, and efficiency,
and makes possible the development of automated syntheses more easily. MW chemistry has come
to the front in the 1980s. Since then, the MW technique has spread in various fields, including
organic, analytical, and material chemistry. Many types of reactions were proved to be more
efficient under MW conditions. In the field of organophosphorus chemistry, several transformations,
such as the esterification of phosphinic acids, O- and C-alkylations, Kabachnik–Fields condensation,
the reduction of phosphine oxides, and P–C couplings all take advantage of MW irradiation.
By combining flow chemistry and the MW technique, besides the benefits mentioned above, the easy
scale-up of MW-assisted reactions has also become possible. The elaboration of the alcoholysis of
dialkyl phosphites and the synthesis of α-aminophosphonates by aza-Pudovik reactions, as well as
Kabachnik–Fields reactions in a continuous flow MW reactor, allowed the preparation of the target
organophosphorus products more efficiently, meaning an improved productivity as compared to the
batch approaches.
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