
Universal RT-middleware robot controller 

Ferenc Tajti1,2, Géza Szayer1, Bence Kovács1, Péter Korondi1 
1Department of Mechatronics Optics and Engineering Informatics, Budapest Univ. of Technology and Economics 

2MTA-ELTE Comparative Ethology Research Group (MTA: 01 031) 
Budapest, Hungary 
tajti@mogi.bme.hu 

 
 

Abstract — This paper presents a new dimension of 

robotics for SMEs. Open AIST RT-middleware technology 

enables SMEs to reuse old robots or machine tools which 

have good mechanism but outworn electronics. The 

technical solutions are described for three different 

experimental systems of different machines. All the 

systems are universal in the term that they can be 

connected to many different machines. They were all 

developed as a RT-Middleware real-time component in 

order to make them flexibly connectable to each other to 

form a production cell. The third is our latest novel 

conception which is combining the reliability of the 

LinuxCNC software system and the flexibility of RTM 

technology with using modern hardware elements. One of 

our several LinuxCNC based controllers is presented as an 

experimental result. 

Keywords — Robot controller, RT middleware, CNC 

controller, SCARA, LinuxCNC 

I. INTRODUCTION 

At the previous decades the industrial robots and NC 
machines becomes available for smaller companies. Industrial 
robots has slightly different programming mode than other 
Industrial machines like CNC machines and Lathes. 
Programming of NC machines is more standardized (G-code), 
while different programming languages and interfaces exist 
for different robots even from the same manufacturer. It is 
important to follow standards at production, however this 
standardization is absent in industrial robotics. Despite the 
standard G code NC machines usually do not have any 
appropriate port (and sometimes I/O opportunities) for high 
level communication in a manufacturing cell. Due to these 
limitations of existing NC and robot controllers, many 
researches were started to develop a new, open-source, 
flexible middleware software and hardware architecture for 
replacing outworn controllers [1, 13]. 

We are the first in the field of universal control 
development who are combining the following two popular 
existing concepts to merge their benefits: the reliable 
LinuxCNC and the flexible RT-Middleware technology. 

The organization of the paper is as follows: Section II 
describes the origin of LinuxCNC software system. Section III 
introduces the RT-Middleware technology, Section IV 

presents three different concepts for hardware architecture, 
Section V gives an example solution with experimental 
results, and Section VI concludes the paper. 

II. RS274NGC G-CODE STANDARD AND LINUXCNC 

The US government sponsored Public Domain software 
systems for numeric control of milling machines were among 
the very first projects developed with the first digital 
computers in the 1950`s. In fact, the need and concepts of 
universal motion controllers is not a novel issue in the 
industry. The universality was described by modularity, 
portability, extensibility, and scalability requirements before 
two decades when the development of LinuxCNC was already 
started [2]. The project was originally launched by the 
National Institute of Standards and Technology (NIST) in 
1989 [2, 3] and the software was moved under public domain 
in 2000, allowing external contributors to make changes and 
reuse the code. The characteristics of universality are still 
forming an actual topic as the available hardware elements are 
improved and the control architectures are developed. Today, 
LinuxCNC is a very reliable and popular open source software 
system that can be used under General Public License for 
numerical control. 

III. RT-MIDDLEWARE FRAMEWORK 

The Japanese Ministry of Economy, Trade and Industry 
(METI) in collaboration with the Japan Robot Association 
(JARA) and National Institute of Advanced Industrial Science 
and Technology (AIST) started a 3 year-national project 
“Consolidation of Software Infrastructure for Robot 
Development” in 2002 [4]. An ICE Extension was proposed in 
[14, 15]. With the intention of implementing robot systems to 
meet diversified users' needs, this project has pursued R&D of 
technologies to make up robots and their functional parts in 
modular structure at the software level, and to allow system 
designers or integrators building versatile robots or systems 
with relative ease by simply combining selected modular 
parts. The robot technology middleware have been developed 
as infrastructure software for implementing the proposed robot 
architecture, named "OpenRTM-aist" (Open Robot 
Technology Middleware). 

To manage the rapidly growing need for sensor 
communication in robotic applications several suitable 
architectures, named middlewares, are being developed for 
easy system integration. Unfortunately, most of these 



middleware technologies are developed independently of each 
other and are often dedicated for specific user applications [5]. 
RT-Middleware is the only middleware solution that is under 
standardization [6] and also this solution has proved to be 
industry ready and used by many industrial partners: Toshiba 
(different system components), Honda (ASIMO humanoid 
robot), AIST (OpenHRP humanoid robot, etc.) and also many 
research institutes. The most important middleware solutions 
can be found in [7- 11] and a comparison can be found in [11, 
12]. The main goal of the middleware system is the 
development of a common language and control concept for 
different users and tasks. The base of RT-Middleware concept 
is that system is build up from low-level, real-time, platform 
independent components (RTCs, RT-Components). These 
components are developed for certain machines, sensors and 
actuators. From these components more complex machine 
configurations can be made: production cells or an entire 
production line. The advantage of this architecture is its well-
defined hierarchy, modularity, scalability and fast 
development ability. More details about the RT-middleware 
can be found in references [9]. 

IV. DIFFERENT ARCHITECTURE CONCEPTS 

Following chapter describes three different experimental 
systems for different machines. The first is a joint controller 
which can be the smallest element of a manufacturing cell and 
controlled by an RTM server. The second is a compact 3-axis 
desktop CNC controller, which works as a small plug&play 
RT-Middleware unit. The third concept is combining the low-

level flexibility (able to control different kind of systems on 
low level) of the LinuxCNC software system and the high-
level flexibility (connectable to each other to form a 
production cell) of the latest RT-Middleware technology. 

A. The first one is a joint controller 

In case there is no hard-real-time attachment necessary 
between machine joints, it is possible to develop one RT-
Middleware RTC hardware and software unit to drive any 
joint. In this concept more instances of joint component is 
controlled by a higher level RTC component. Main advantage 
of this architecture is its flexibility: new joints can be attached 
or joints can be reconfigured with the reuse of joint RTC 
hardware and software component. It has certain small delay 
in control which makes it not fit for example simultaneous 
movement of high speed CNC machine joints, but it fits to 
most automation applications like pick&place. An RT-
Middleware based joint was developed to test the performance 
of this concept and get experimental results. Two pieces of 
this joint controller were manufactured and attached to the 
first two angular joints of an ADEPT 604-S type SCARA 
robot. Block diagram of the hardware architecture can be seen 
on figure IV.1. The logic was implemented in a SUZAKU-V 
FPGA board. Custom logic and PowerPC processor was 
configured to run Linux kernel and realize real-time interfaces. 
The board is connected to the Middleware server via Ethernet. 
Furthermore the developed electronics includes power 
amplifier for DC motors, signal conditioning and necessary 
power converters. It was developed to be the smallest element 
of a manufacturing cell. 

E
th
e
r n
e
t

A
d
d
r e
s
s
/ D
a
ta
 B
u
s

 
Fig. IV.1. The block diagram of the joint controller RTC 

B) The second one is a simple decentralized CNC controller 

At a 3 axes CNC machine the joints are usually linearly 
independent. In this case the joint coordinates have effects only 

on the X, Y and Z coordinates of the TCP. Our decentralized 
CNC controller can get the joint references from an external 
PC based G code interpreter. The mechanical design and the 
shape of the workspace of milling machines can be specialized 



for different tasks, but the control method can be the same. 
After the controller and the machine is connected, the position 
control loops of the axes run on the CNC controller (figure 
IV.2), and can be tuned via RS232 port from a PC. It is 
possible to control additional functions along output 8 relays, 
and 8 isolated inputs, for example coolant, tool size 
measurements, and other PLC functions. These I/O interfaces 
can be accessed along ModBus interface. With this system 
design and a normal PC different CNC machines can be 
controlled without machine specific controller development. 
The G code is a common machine language so the PC based 
RT-Middleware G code interpreter can be used universally. 
Our decentralized CNC controller is a universal hardware 
element for these machines so the cost of this concept can be 
reduced by the increasing number of the manufactured 
controllers. 

CNC Controller

Control PCB

(SPI) PWM 

Amplifiers

LPT

(Step/Dir)

Machine 

Signals RS232

(UART)
LCD 

Panel

(SPI&I2C)

I/O Panel 

(I2C)
DC In

(12V)

Back Plane

I/O PCB

Digital Inputs

Relay Outputs

Motor Outputs

DAC Output

(0...10V)

Front 

Plane

Control

LCD

Menu 

buttons

Power Switch

Toroid

230/9V

20VA

E-Stop

Machine Signals

LPT

RS-232

AC In

(~230V/50Hz)

10

3x2

6

9

10

25
37

External E-Stop
70A

SK2P

PWM Amplifier

Power PCB

H-bridgesSPI

2

Estop

12V]

32 MHz8-bit RISC 

Microcontroller

32 MHz8-bit 

RISC MCU

 
Fig.IV.2. Block diagram of the 3 axis CNC controller  

C) Linux based modular multi-axis controller 

The latest version of our controllers is a complete modular 
solution for most motion control applications up to 9 axes. The 
system is based on LinuxCNC, which reliable core was 
developed since more than two decades, described in the 
introduction. And we combined this deep experience with 
modern hardware elements of today's semiconductor industry. 
This platform is an open-source software system that 
implements numerical control capability using general purpose 
computers to control any servo driven machines. It uses Linux 
kernel with real time extensions (RTAI or RTLinux), and can 
control up to 9 axes or joints of a machine using standard G-
code as input. It can handle the operation of all peripheral 
machine elements, e.g. tool length measurement, cooling, tool-
change procedure, etc. The graphical user interface can be 
customized for specific kinds of usage e.g. touch screen or 
interactive development, see figure IV.3. Programming 
features include most needs of NC usage. It is possible to 
implement inverse kinematics, hence the software system is 
capable to control non-Cartesian robots as well. The hardware 

architecture of the generic system layout can be seen on figure 
IV.4. The PC installed with LinuxCNC is hosting a PCI card, 
which is based on a PCI bridge ASIC and an FPGA. 

 
(a) 

 
(b) 

Fig. IV.3 Default (a), and a customized (b) graphical user interface of 
LinuxCNC software system 

 



(a) 

CONTROLLER CASE

TEACH PENDANT

Touch-screen,

Joystick, other UI elements

PC - Realtime Linux

Open Source Robotic Plaform: Enhanced Machine Controller

IN-OUT MODULES:

Relay output module

Opto-isolated input module

ADC/DAC module

PCI card

P
C
I -
b
u
s

32-bit

parallel bus

FPGA

Xilinx Spartan III

(TQFP208)

PLX PCI-bus 

interface

(TQFP176)

Servo connectors

Step/Dir,

CW/CCW,

A/B, CAN,

±10V

Encoder

(A,B,Z)

R
S
4
8
5
-b
u
s

SERVO MODULES

(Position, speed or current 

modes)

Fault Enabled

INTERFACE MODULES

CUSTOM TOOLS/DEVICES

Ex.: Kinect 3D camera,

i-Space, Motion capture,

RT-Middleware components

 

(b) 
Fig. IV.4 Typical system layout of the LinuxCNC based motion controller 

As the LinuxCNC has a simple ladder diagram editor and 
handles standard PLC functions, the hardware architecture is 
extended with a RS485 bus for I/O extension modules. The bus 
is handled by a separate 8-bit RISC microcontroller on the PCI 
card, which communicates via SPI with the FPGA. Currently 
digital input, relay output, ADC/DAC, and teach pendant 
modules are exist. These modules can be connected in chain 
with a termination resistor at the end of the bus, see figure 
IV.5./a. Each module has a unique, four bit long address on the 
bus, hence up to 16 modules can be chained to one PCI card. 

(a) 

(b) 
Fig.IV.5. RS485 expansion (a) bus and (b) module concepts 

Basically, the modules have a bus powered and a field or 
application powered side with an optical isolation between 
them, see figure IV.5./b. But for example an optical isolated 
input module has only field power side as the inputs from the 
field are only simple opto-coupler inputs. Each node connected 
to the bus is recognized by the PCI card automatically. During 
startup the driver exports pins and parameters of all available 
modules automatically. All the I/O-s of these modules can be 
routed to a function in the hardware abstraction layer (HAL) of 
LinuxCNC, and can be controlled by a custom logic 
implemented with the ladder editor.  

The specialty of the system is in the servo connection 
interface. A novel modular concept is introduced for 
connecting different types of servo controllers including the 
old analogue systems, the incremental systems, and modern 
CAN based servo modules. Four different small and simple 
axis-interface modules were developed, and combining them in 
many different ways makes the possibility of interfacing with a 
servo controller. These types are optical isolator, DAC module, 
differential line driver, and a breakout for simple terminal 
connection. Figure IV.6. shows only two different servo 
examples from the possible 8: a analogue, and an incremental 
with differential outputs and encoder feedback. 

 
(a) 

 
(b) 

Fig.IV.6. Examples of (a) analogue and (b) differential incremental servo interface 



V. EXAMPLE SOLUTION 

This chapter presents an application to multi-axis 
simultaneous control. LinuxCNC was connected to a SCARA 
type robot. The theoretical background of the implemented 
control algorithm is described in point A). The modular 
hardware structure resulted a flexible system which can be 
connected to any similar machines without long time 
demanding hardware development (described in point B). 

A) Kinematics of the experimental non-Cartesian system 

Three different universal architectures were introduced 
from which two were connected to a SCARA type robot. This 
chapter describes the implemented SCARA kinematics (Fig. 
V.1.) which is followed by hardware and driver-level software 
description of an experimental systems. 

 
Fig. V.1. Mechanical drawing of the Adept 604-S SCARA robot. m1, m2, m3 
are the masses, l1,l2,d0,d3 are the length, q1,q2,q3,q4 are the angles of the 
corresponding joints. (These data are necessary only for the calculations of 
robot dynamics: lc1 and lc2 are the masses position on joint 1 and joint 2, 

respectively.) 

The Cartesian coordinates of TCP can be expressed as 
equation (5.1), (5.2), (5.3). 

( )221 q+ql+ql=x 11  cos cos ⋅⋅  (5.1) 

( )221 q+ql+ql=y 11 sinsin⋅  (5.2) 

421 q+q+q=ρ  (5.3) 

Forward kinematics can be expressed deriving equations 
(5.1), (5.2) as (5.4),(5.5). 

( ) ( ) 1112112 sin sin qqlq+qq+ql=x 2
&&&& ⋅⋅−⋅⋅−  (5.4) 

( ) ( ) 11211  coscos qql+q+qq+ql=y 122
&&&& ⋅⋅⋅  (5.5) 

The connection between the Cartesian velocities and joint 
velocities can be represented as equation (5.6). 

Θ(q)J=X && ⋅  (5.6) 

Where 









y

x=X

&

&&  

 













2

1

q

q=Θ

&

&&  

Where ( )qJ  is a Jacobean matrix as equation (5.7) 

( ) 











⋅⋅⋅

⋅−⋅−⋅−

  

 

+qq   l)+q  (q +l  q l

)+q  (q l)+q (q l q lJ(q)=

21221211

21221211

coscoscos

sinsinsin  (5.7) 

B) Application example 

At a manufacturing line an assembler or palletizing cell is 
usually indispensable. The most common palletizing type robot 
is the SCARA. The LinuxCNC has a kinematic module, which 
software part is open source as well. We designed the 
kinematic module for a SEIKO D-TRAN TT 4000SC SCARA 
robot. The original controller was broken and obsolete, but the 
mechanics of the machine worked perfectly. Our controller has 
a modular built up, so the main parts of the system are 
separated in three shelves. The first one is universal for most 
kind of machines which is the PC and the PCI card. (Fig.V.2.a) 
The machine specific signals (end- and homing- switches), the 
RS485 bus, and the CAN references are also connected to this 
part of the controller. 

The second shelf contains the modular components, which 
is chosen for the specific machine. In this case these are the 
DC power amplifiers and the RS485 modules. (Fig.V.2.b) 
(These can be digital and analogue I/O-s.) The power 
amplifiers are connected to the DC bus, to DC logic power, to 
CAN references and to the encoders. The motor parameters, 
the encoder parameters and control loops at the power 
amplifiers can be tuned and measured via USB. 

The third shelf contains the power electronics. (Fig.V.2.c)  
These elements are mainly saved from the original controller. 
It has an E-Stop circuit, fuses, DC powers, brake resistors and 
thermal protection. With this concept we could save and 
modernize the original robot mechanics (and some of the 
power electronics). The machine can be integrated into a 
modern and flexible manufacturing line as a palletizing cell. 
According to the modular built up of the controller we could 
use the SCARA robot again without any long time demanding 
electronic and software development. As a part of the system 
we also developed a teach pendant with touch screen and 
joysticks for the X,Y,Z and rotZ jogging. The controller has 
standard Ethernet, USB, etc. interfaces. With the LinuxCNC 
RT-Middleware component the robot can be connected and 
integrated into a high level manufacturing control system. 



 
(a) 

 
(b) 

 
(c) 

Fig.V.2. Shows (a) control, (b) power amplifier, and (c) power electronics 
shelves of the modular controller 

VI. CONCLUSION 

The LinuxCNC & RT-Middleware based modular control 
system was implemented with success for more machines now: 
Two 3-axes desktop CNC, a 3-axes dental CNC, a 5-axes with 
tool-change and tool-length measurement, and at least two 
SCARA robots. All of these machines can be connected along 
the RTM interface of the LinuxCNC and can work together in 
real-time applications. The improvement of the modules and 
all other hardware elements was in progress with every system 
integration. The first controller was running since more than 
one year with negligible maintenance now, showing that the 
system is reliable too. The application was started by external 
international system integrators in Europe this year. 

Acknowledgement 

The authors wish to thank the support to the Hungarian 
Research Fund (OTKA K100951),  the MTA-BME Control 
Engineering Research Group and MTA-ELTE Comparative 
Ethology Research Group (MTA: 01 031). The results also 
discussed above are supported by the grant TÁMOP-4.2.2.B-
10/1--2010-0009. 

References 

[1] Bence Kovács, Géza Szayer, Ferenc Tajti, Solvang Bjorn, Péter Korondi, 
Design of a universal robot controller Robi, International Engineering 
Symposium at Bánki (IESB 2011). Budapest, Hungary, pp. 1-13, 
2011.11.15. 

[2] Proctor, F. M., and Michaloski, J., "Enhanced Machine Controller 
Architecture Overview," NIST Internal Report 5331, December 1993. 
Available online at ftp://129.6.13.104/pub/NISTIR_5331.pdf 

[3] Albus, J.S., Lumia, R., “The Enhanced Machine Controller (EMC): An 
Open Architecture Controller for Machine Tools,” Journal of 
Manufacturing Review, Vol. 7, No. 3, pp. 278–280, September 1994. 

[4] Bence Kovács, Géza Szayer, Ferenc Tajti, Péter Korondi, István Nagy: 
"Robot with dog type behavior”, 17th Int. Conference on Electrical 
Drives and Power Electronics The High Tatras, Slovakia 28–30 
September, 2011 

[5] Kotoku, Tetsuo: "Robot Middleware and its Standardization in OMG" in 
International Conference on Intelligent Robots and Systems (IROS'06) 
Workshop on Robotic Standardization, Beijing, China, 11-13 Oct. 2006 

[6] J.U. Cho, Q.N. Le and J.W. Jeon, An FPGA-Based Multiple-Axis 
Motion Control Chip, IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 
856-870, Mar. 2009. 

[7] Ozaki Fumio, Oaki Junji, Hashimoto Hideaki, Sato Hirokazu, "Open 
Robot Controller Architecture (ORCA)" in Journal: Nippon Kikai 
Gakkai Robotikusu, Mekatoronikusu Koenkai Koen Ronbunshu, Vol. 2, 
2003. 

[8] M. Mizukawa, H. Matsuka, T. Koyama, T. Inukai, A. Noda, H. Tezuka, 
Y. Noguchi, N. Otera, "ORiN: open robot interface for the network - the 
standard and unified network interface for industrial robot applications" 
in Proceedings of the 41st SICE Annual Conference (SICE 2002), 
Tokyo, Japan, Vol. 2, pp. 925- 928, Aug. 2002. 

[9] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, Yoon Woo-Keun, “RT-
middleware: distributed component middleware for RT (robot 
technology)” in Proceedings of 2005 IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS 2005), pp. 3933- 3938, ISBN: 
0-7803-8912-3, 2-6 Aug. 2005. 

[10] G. Veiga, J. N. Pires,K. Nilsson “On the use of SOA platforms for 
industrial robotic cells” in Proceedings of Intelligent Manufacturing 
Systems (IMS2007), Spain, 2007. 

[11] J.-C. Baillie, “URBI: towards a universal robotic low-level programming 
language” in Proc. of IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS 2005), pp. 820- 825, ISBN: 0-7803-8912-3, 
2-6 Aug. 2005. 

[12] B. Solvang, G. Sziebig, and P. Korondi, “Multilevel control of flexible 
manufacturing systems,” in Proc. IEEE Conference on Human System 
Interactions (HSI’08), pp. 785– 790, 2008. 

[13] Solvang Bjørn, Refshal Lars Kristian, Sziebig Gábor “STEP-NC Based 
Industrial Robot CAM System.” In: 9th IFAC Symposium on Robot 
Control (SYROCO2009). Gifu, Japán, 2009.09.09-2009.09.12. (IFAC) 
Gifu: IFAC by Pergamon Press, pp. 361-366. 

[14] Zoltán Krizsán, “ICE Extension of RT-Middleware Framework”, in 
Proceedings of 10th International Symposium of Hungarian Researchers 
on Computational Intelligence and Informatics, pp 513-521, 2009. 

[15] Zoltán Krizsán, Szilveszter Kovács: Structural Improvements of the 
OpenRTM-aist Robot Middleware, Applied Computational Intelligence 
in Engineering and Information Technology Topics in Intelligent 
Engineering and Informatics, Eds: R.E. Precup, S. Kovács, S. Preitl and 
E.M. Petriu, 2012, Volume 1, pp. 287-300, ISBN: 978-3-642-28304- 


