INTRODUCTION
Temporal voice regions responding selectively to conspecific vocalizations have been found in both humans (Belin et al. 2000) and macaques (Petkov et al. 2008).

Are voice-selective regions specialized for conspecifics?
Is species-specific selectivity driven by emotions / acoustics?
Are there human brain regions specialized for animal vocalizations?

METHODS
Participants. 22 human listeners (11 female; 12 dog owners)

Stimuli. 96 human vocalizations (nonlinguistic, emotional)
96 dog vocalizations (various contexts, emotional)
96 nonvocal sounds (familiar environmental)

Human and dog stimuli rated for perceived emotional valence and intensity

RESULTS
1. Superior temporal sulcus (STS)
 human > nonvocal dog > nonvocal
 p < .05 (FWE-corrected)

2. Temporal pole (TP)
 human > dog
 p < .05 (FWE-corrected)

3. Fusiform gyrus (FG)
 dog > human
 p < .05 (FWE-corrected)

CONCLUSIONS
• Voice regions along the STS are not conspecific-specific: STS is sensitive to both human and dog vocalizations in humans (also in non-dog owners)
• TP regions are specialized for human voices; species-specific selectivity is not driven by stimuli’s perceived emotional content or acoustics
• No brain regions are specialized for dog vocalizations; stronger response to dogs in FG regions is caused by deactivation for human vocalizations

REFERENCES