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Abstract 
The surface charge of brain endothelial cells forming the blood-brain barrier (BBB) is highly 

negative due to phospholipids in the plasma membrane and the glycocalyx. This negative 

charge is an important element of the defence systems of the BBB. Lidocaine, a cationic and 

lipophilic molecule which has anaesthetic and antiarrhytmic properties, exerts its actions by 

interacting with lipid membranes. Lidocaine when administered intravenously acts on 

vascular endothelial cells, but its direct effect on brain endothelial cells has not yet been 

studied. Our aim was to measure the effect of lidocaine on the charge of biological 

membranes and the barrier function of brain endothelial cells. We used the simplified 

membrane model, the bacteriorhodopsin (bR) containing purple membrane of Halobacterium 

salinarum and culture models of the BBB. We found that lidocaine turns the negative surface 

charge of purple membrane more positive and restores the function of the proton pump bR. 
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Lidocaine also changed the zeta potential of brain endothelial cells in the same way. Short-

term lidocaine treatment at a 10 μM therapeutically relevant concentration did not cause 

major BBB barrier dysfunction, substantial change in cell morphology or P-glycoprotein 

efflux pump inhibition. Lidocaine treatment decreased the flux of a cationic lipophilic 

molecule across the cell layer, but had no effect on the penetration of hydrophilic neutral or 

negatively charged markers. Our observations help to understand the biophysical background 

of the effect of lidocaine on biological membranes and draws the attention to the interaction 

of cationic drug molecules at the level of the BBB. 

 

Keywords: bacteriorhodopsin, blood-brain barrier, brain endothelial cells, lidocaine, 

permeability, surface charge 
 

 

1. Introduction 

Every biological membrane shares the same phospholipid bilayer structure, where the 

hydrophobic fatty acid tail of the phospholipids and the hydrophilic, ionized polar head 

groups line both surfaces and create the basis of the surface charge of the cell membrane. 

This surface charge can contribute to the passive or active permeability of ions and 

metabolites [1,2]. Amphipathic drugs, like many anaesthetics interact with the phospholipid 

bilayer membranes according to the bilayer couple hypothesis which states that amphipathic 

drugs affect cells by the asymmetric insertion into one side of the lipid bilayer which 

increases membrane fluidity [3,4]. Lidocaine is a commercially available tertiary amine used 

as local anaesthetic. In addition, this lipophilic drug has anti-hyperalgesic, analgesic, anti-

inflammatory properties and is also used to treat cardiac arrhythmia [5,6,7]. Lidocaine after 

being intravenously injected dissociates to a positively charged quaternary amine and to 

uncharged base forming an in vivo equilibrium between the uncharged and charged 

molecules, which depends on the local pH [8]. Although the mode of action of local 

anaesthetics is not fully understood, it is clear that they interact with lipid membranes [9], 

change the fluidity, micro-viscosity and permeability [8,10]. Hypotheses for the mode of 

action include that lidocaine might interact with membrane proteins binding to the 

intracellular site of the voltage-gated sodium channels blocking its action or just inserts to 

the membrane [9] and interferes with the channel conductivity by changing its shape 

[8,11,12]. The most accepted theory is that lidocaine inserts to specific binding sites in the 

membrane, and by its charge blocks the Na+ current across the cell membrane [11]. 

Bacteriorhodopsin (bR) is a good simplified model to investigate charge-related 

changes of biological membranes. bR is a seven transmembrane-helix light driven proton 

pump with a covalently bound retinal chromophore, found in the cell membrane of 

Halobacterium salinarum, forming purple patches, the so called “purple membrane” [13]. 

The purple color of the chromophore of bR can be converted to blue, reflecting the inhibition 

of the proton pump, by two methods: either by removing divalent cations bound to the purple 

membrane (the “deionized blue” from) [14] or lowering the pH by sulfuric acid solution (the 

“acid blue” form below pH 3.1-3.2) [15]. The functional bR can be restored either by the 

addition of cations or raising the pH. It has been shown that cationic lidocaine is able to 

restore the purple color and the function of the proton pump in deionized bR [16,17], but its 

effect on acid blue bR has not yet been investigated. 

Brain endothelial cells form the morphological basis of the blood-brain barrier (BBB) 

together with pericytes and glial endfeet, and are key elements in maintaining and regulating 
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the homeostasis of the central nervous system [18,19]. The most important parts of the 

physical barrier of the BBB are the interendothelial tight junctions (TJs) and the negative 

surface charge of brain endothelial cells. This negative charge is derived from the endothelial 

glycocalyx composed of sialo-glycoconjugates and heparan sulfate proteoglycans [20,21] 

and the special lipid composition of the plasma membrane of brain endothelial cells [22]. In 

contrast to other cell types, the negatively charged phosphatidylserine and 

phosphatidilcholine were the most abundant in endothelial cells from brain [22]. The negative 

surface charge contributes to the regulation of the permeability for positively charged 

molecules at the BBB [21,22]. 

Lidocaine is administered intravenously to treat cardiac arrhythmia [6], therefore it 

interacts directly with vascular endothelial cells, including brain capillary endothelial cells. 

According to previous studies lidocaine affects the electrostatic potential of lipid bilayers: 

the charged molecular form acts at the lipid headgroups, while the uncharged molecule 

increases the electrostatic potential in the middle of the membrane [23,24]. In the present 

study our aim was to understand how lidocaine interacts with cell membranes using a simple 

membrane system containing bR and cell culture models of the BBB. We are the first to study 

the direct action of lidocaine on the surface charge of brain endothelial cells and their function 

including electrical resistance and permeability. The endothelial surface charge and its 

relationship to barrier function is an underresearched area of the BBB field. We hypothesized 

that lidocaine, a cationic drug molecule, can directly influence the permeability of charged 

molecules across the BBB.  

 

2. Methods 

 

2.1. Animals  

Organ harvest from animals was performed according to the regulations of the 1998. 

XXVIII. Hungarian law and the EU Directive 2010/63/EU about animal protection and 

welfare. The local animal health authority, the Governmental Office for Csongrád County, 

Directorate of Food Chain Safety and Animal Health approved our studies (Permit numbers: 

XVI/834/2012). For primary cell isolations brain tissues were obtained from 4-week old and 

1-day-old Wistar rats (Harlan Laboratories, United Kingdom) of both sexes. Animals were 

kept under a 12 h light/dark cycle and fed on standard rodent chow and water ad libitum in 

the conventional animal house of the Biological Research Centre. Following the 3R-rule all 

efforts were made to minimize animal suffering and pain. 

 

2.2. Materials 

All reagents were purchased from Sigma-Aldrich Ltd. Hungary (part of Merck Life 

Science), unless otherwise indicated.  

 

2.3. Treatments 

All treatments performed on bR or in vitro cell cultures were done using a stock 

solution of lidocaine (20 mM, Sigma L7757). Lidocaine was dissolved in water at 30 °C. 

Stocks were always prepared freshly before each experiment. 

 

2.4. Bacteriorhodopsin assays 

2.4.1. Preparation of purple membrane 
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Purple membranes containing bR were isolated as described previously [13] from 

Halobacterium salinarum strain R1, which homologously expresses wild type bR and does 

not tend to form vacuoles, thereby facilitating the isolation procedure. Cultures of H. 

salinarum archaebacteria were grown for about 70-90 h in a shaking incubator, then the 

culture was centrifuged, pelleted and re-suspended in 200 ml of 25% NaCl solution with 

5 mg of DNase. After dialysis against distilled water (DW) the red clear lysate was 

centrifuged (30 min at 50000 g) and a purple pellet was obtained. To separate the purple 

membranes from other fragments the pellet was washed once with 4.3 M NaCl, once with 

0.1 M NaCl and finally with DW. In the end the purple membrane was centrifuged in a 

concentration gradient of sucrose from 0.5 to 1.5 M for 10 h at 200000 g in order to remove 

the red material. From 10 L of bacteria suspension 300-500 mg of purple membrane is 

gained. 

 

2.4.2. Preparation of polyacrylamide gels  

The effects of lidocaine were studied on purple membranes which were immobilized 

in 0.1% polyacrylamide gel as described previously [25]. Briefly, the gels were prepared 

using the combination of two solutions. First, tetramethyl-ethylene-diamine (TEMED, Serva, 

Hungary) was added to the purple membrane suspension with a final dilution of 0.35% (v/v) 

to prepare the first solution with an optical density (OD) of 4. Then 30% acrylamide/bis 

mixture (BioRad, Hungary) was prepared containing ammonium persulfate (Serva, Hungary) 

at a final concentration of 0.1% (v/v). At the end the two solutions were combined and poured 

into a mould where it polymerized and remained in DW for 24 h.  

 

2.4.3. Treatment of polyacrylamide gels containing purple membrane  

Gels containing purple membranes were incubated with different concentrations of 

lidocaine. For this treatment lidocaine solutions of 10 and 1 mM were prepared in 0.5 mM 

H2SO4 (pH 3.0 - 3.2). The gel slabs (4×4×20 mm in dimension) were soaked in glass flasks 

containing 15 ml of each treatment solution at 4ºC in the dark for a minimum of 24 h. After 

the incubation photocycle measurement was performed [26], where a blank gel that did not 

contain bR was used as a reference. The gel samples were placed in rectangular plastic 

cuvettes with both the measuring light and the perpendicular exciting laser light crossing 

through 4 mm pathlengths. The temperature of the samples was kept at 20 ºC during the 

measurements. Absorption spectra of the samples were taken with a ScanSci miniature 

spectrophotometer [UNICAM UV/Vis Spectrometer UV4] prior to the photocycle 

measurement. Time resolved difference spectra after the exciting laser pulse (Continuum 

Surelight Nd-YAG laser + OPO, appr. 10 ns pulse width) were taken using home built timing 

and triggering units and an Andor iStar gated CCD detector attached to a Jobin Yvon HR300 

spectrograph. The white measuring light from a 35 W Hamamatsu high pressure Xe light 

source was chopped with a Uniblitz shutter to provide illumination for several tens of 

milliseconds only during a measuring cycle of 3 s. For the sample in 10 mM lidocaine 

solution, pH 3.0, 560 nm, for that without lidocaine, at pH 3.0, 630 nm laser pulses were 

applied in the several 100 µJ range. Difference spectra were measured on a logarithmically 

equidistant manner from 250 ns to 630 ms with 5 spectra per decade. 

 

2.5. Cell cultures 

2.5.1. Blood-brain barrier models  

2.5.1.1. hCMEC/D3 human brain endothelial cell line 
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The human hCMEC/D3 brain endothelial cell line [27] was purchased from Merck 

Millipore. The cultures of hCMEC/D3 (≤ passage number 35) were grown at 37ºC, 5% CO2 

in MCDB 131 medium (Pan Biotech) supplemented with 5 % fetal bovine serum (FBS), 

GlutaMAX (100 ×, Life Technologies, USA), lipid supplement (100 ×, Life Technologies, 

USA), 10 µg/ml ascorbic acid, 550 nM hydrocortisone, 100 µg/ml heparin, 1 ng/ml basic 

fibroblast growth factor (bFGF, Roche, USA), 5 µg/ml insulin-transferrin-selenium (ITS) 

supplement (100 ×, PanBiotech, Germany), 10 mM HEPES and gentamycin (50 µg/ml). 

Medium change was performed every two or three days. When cells reached a confluence of 

90% they were passaged for transendothelial electrical resistance (TEER) measurements and 

permeability assays to rat tail collagen-coated Transwell clear inserts (#3460, 0.4 µM pore 

size, polyester membrane, Corning Costar), for the zeta measurements to 60 mm Petri dishes 

(Corning Costar, USA) and for the viability assays to 96-well plates (E-plate, ACEA 

Biosciences, USA or Corning Costar, USA) Before each experiment the medium was 

supplemented with 10 mM LiCl for 24 h to improve BBB properties [28].  

 

2.5.1.2. Primary cell cultures 

The isolation of primary rat brain endothelial cells (RBEC), glial cells and pericytes 

and the construction of the in vitro BBB model were done according to the method described 

in our previous studies [29,30]. After isolation, primary brain endothelial cells were seeded 

on petri dishes (Corning Costar, USA) coated with 100 μg/ml collagen type IV and 100 μg/ml 

fibronectin in sterile distilled water. The cells were cultured in DMEM/F-12 (Gibco, Life 

Technologies, USA), 15% plasma derived bovine serum (PDS, First Link, UK), 100 μg/ml 

heparin, 5 μg/ml insulin, 5 μg/ml transferrin, 5 ng/ml sodium selenite (ITS), 1 ng/ml bFGF 

(Roche, USA), 10 mM HEPES and 50 μg/ml gentamicin. For the first 3 days of culture 

3 μg/ml puromycin was added to the base medium to eliminate P-glycoprotein negative, 

contaminating cell types [31]. 

The primary rat brain pericytes were isolated using the same method as described 

previously, except that pericytes were seeded to uncoated petri dishes (Corning, Costar, 

USA). Primary cultures of glial cells were prepared from one-day-old Wistar rats and 

passaged to 12-well plates (Corning, Costar, USA) coated with 100 μg/ml collagen type IV 

in sterile distilled water. Cultures of rat glial cells were maintained for 2 weeks before using 

them for the triple co-culture model. The pericytes and glial cells were kept in low glucose 

DMEM (Gibco, Life Technologies, USA) supplemented with 10% FBS (Gibco, Life 

Technologies, USA) and 50 μg/ml gentamicin. 

The triple co-culture of the primary cells was assembled as described before [29]. 

Briefly, pericytes at passage number two were seeded at a density of 1.5 × 104 / cm2 to the 

bottom of the membranes of Transwell clear cell culture inserts, while RBECs were passaged 

to the top of the membranes at a number of 7.5 × 104 / cm2. The inserts were placed into the 

12-well plates containing the glial cultures. The triple BBB co-culture model received 

endothelial culture medium supplemented with 550 nM hydrocortisone and it was cultured 

together for 4 to 5 days [29]. After the in vitro BBB model was established TEER 

measurements, permeability assays and immunohistochemistry were performed. One day 

before the permeability assay cells were treated with chlorophenylthio-adenosine-3,5-cyclic 

monophosphate (250 μM, CPT-cAMP) and phosphodiesterase inhibitor RO 201724 

(17.5 μM, Roche) to tighten junctions and elevate resistance [31,32]. 

 

2.5.2. PC-3 Human prostate cancer cell line  
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The PC-3 cell line was purchased from the American Type Culture Collection 

(ATCC, USA). The cells were cultured in RPMI medium (Gibco), supplemented with 

10% FBS and 1% penicillin-streptomycin solution. The cultures were kept in a 10 cm petri 

dish until reaching 80-90% of confluency, then they were trypsinized and used for the zeta 

measurements. 

 

2.6. Cell viability assays 

2.6.1. Impedance measurement  

Kinetics of the viability of brain endothelial cells after lidocaine treatment was 

monitored by real time impedance measurement (RTCA-SP, ACEA Biosciences, San Diego, 

CA, USA). Impedance measurement correlates linearly with cell number, adherence, growth 

and viability [30]. Brain endothelial cells (hCMEC/D3 and RBECs) were seeded at a cell 

number of 5×103 / well onto a 96-well E-plate (ACEA Biosciences) with golden electrodes 

at the bottom of the wells, and were kept in the CO2 incubator at 37ºC for 4-5 days, and 

treated at the beginning of the plateau phase of cell growth with 0, 1, 3, 10, 30, 100, 300 and 

1000 µM concentrations of lidocaine. Triton X-100 detergent was used to determine 100% 

toxicity. Effects of the treatment were followed for 24 h. 

 

2.6.2. MTT and lactate dehydrogenase release assays  

For these assays brain endothelial cells (hCMEC/D3 and RBECs) were seeded onto 

96-well plates (Corning Costar, USA) at a cell number of 5 × 103 / well. Confluent cultures 

were treated with 0 - 1000µM of lidocaine or for 30 min, Triton X-100 was used as a 100% 

cytotoxic control. 

Viable cells convert the yellow MTT dye (3-(4,5-dimethylthiazol2-yl)-2,5-

diphenyltetrazolium bromide) to purple formazan crystals reflecting metabolic activity. After 

lidocaine treatment MTT solution (0.5 mg/ml) was added and cells were incubated for 3 h at 

37ºC. Formazan crystals produced by living cells were dissolved with dimethyl sulfoxide, 

and absorbance was measured at 570 nm by a multiwell microplate reader (Fluostar Optima, 

BMG Labtechnologies, Germany). Cytotoxicity was calculated as a percentage of the control 

where the maximum dye conversion was detected. 

In order, to investigate membrane damage the presence of intracellular lactate 

dehydrogenase (LDH) enzyme was determined from the supernatant using a commercially 

available kit [33]. After treatment, culture supernatants (50 µl) were collected into another 

96-well plate and were incubated with equal amounts of reaction mixture for 15 min on a 

horizontal shaker according to the manufacturer’s protocol (Cytotoxicity detection kit LDH, 

Roche). Enzyme reaction was stopped with 0.1 M of HCl and absorbance was measured at 

450 nm wavelength using a multiwell microplate reader (Fluostar Optima, BMG 

Labtechnologies, Germany). Cytotoxicity was calculated as a percentage of the total LDH 

release from cells treated with 1% Triton X-100 detergent. 

 

2.7. Zeta potential measurements  

The zeta potential (ζ) was measured by dynamic light scattering using a Zetasizer 

Nano ZS instrument (Malvern, UK) equipped with a He-Ne laser (λ = 632.8 nm). The zeta-

potential of the samples was measured at 25 ºC, from a minimum of 6 measurements 

(maximum 100 runs each), with an applied 20 or 40 V voltage, using disposable zeta potential 

cells with gold-coated platinum electrodes (DTS1070, Malvern, UK) [22]. Before 

measurements the zeta cuvettes were activated once with 100% ethanol and rinsed twice with 
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distilled water. After activation, the zeta cuvettes were calibrated with the zeta standard 

solution (Malvern, UK) as described in the manufacturer’s protocol. For purple membrane 

samples, the zeta potential measurements were performed at OD=0.1 diluted in 0.5 mM 

sulfuric acid. Treatment of purple membrane samples was performed with 10 mM lidocaine 

for 30 min. Cuvettes were always rinsed twice with distilled water between measurements. 

The hCMEC/D3 and RBEC brain endothelial cells, and PC-3 human prostate cancer cells 

were used for zeta measurements after cultures reached 90% confluency. Trypsinization of 

the cells was performed very quickly to minimize plasma membrane changes. After 

trypsinization, 105 cells were re-suspended in 1 ml of PBS with Ca2+ and Mg2+. Cells were 

treated with different concentrations of lidocaine (10, 100 and 1000 µM) for 30 min before 

the measurement at 37 ºC. The Zetasizer Software v.7.12. calculated the zeta potential values 

using the Smoluchowski equation [34]: 

ζ =
4πµη

ε
 

where μ represents the electrophoretic mobility, η the viscosity of the solvent and ε the 

dielectric constant.  

 

2.8. Evaluation of barrier integrity  

2.8.1. Transendothelial electrical resistance  

The BBB models (hCMEC/D3 and the primary cell based co-culture) prepared on 

inserts received fresh culture medium every second day. To follow the development of the 

barrier properties of the brain endothelial monolayers TEER was measured before every 

medium change with an EVOM voltohmmeter (World Precision Instruments Inc., USA) 

combined with STX-2 electrodes. TEER was expressed relative to the surface of the inserts 

(Ω × cm2). The TEER of cell-free inserts (100 Ω × cm2) was subtracted from the measured 

values. TEER before and after lidocaine treatment was measured in Ringer-Hepes buffer 

supplemented with 1 % BSA and ITS. This buffer had the same composition as used for the 

permeability measurements. To decrease fluctuations in the TEER due to temperature change 

measurements were performed by placing the culture plates to a heating pad set to 37 °C.  

 

2.8.2. Permeability measurement with marker molecules of different surface charge 

Permeability tests on the BBB models on inserts were performed when TEER values 

reached previously published values (86±9, n=24 for D3, 255±15 for RBEC n=24 co-culture; 

[35], showing the barrier properties for both models. For the permeability experiments inserts 

were transferred to 12-well plates containing 1.5 ml Ringer-HEPES buffer (118 mM NaCl, 

4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 5.5 mM D-glucose, 10 mM HEPES, pH 7.4) 

supplemented with 1 % BSA and ITS in the lower (basal/abluminal) compartment. In the 

upper (apical/luminal) compartment culture medium was replaced with 0.5 ml buffer 

containing 10 μM lidocaine and molecular markers with different surface charges: FITC-

dextran (10 µg/ml, FD, Mw: 10 kDa) with neutral charge, positively charged rhodamine123 

(10 µM, R123, Mw: 380 Da) and negatively charged Lucifer yellow (5 µM, LY, Mw: 

457 Da). Cells serving as control were only incubated with the fluorescent markers without 

any lidocaine treatment. The plates were kept in a CO2 incubator at 37 °C on a horizontal 

shaker (150 rpm) for 30 min. After incubation the samples were collected from the 

compartments and the concentrations of the marker molecules were determined by a 

spectrofluorometer (Horiba Jobin Yvon Fluorolog 3, Kyoto, Japan). Excitation/emission 
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values for the different markers were: 440 nm/516 nm for FD; 498 nm/525 nm for R123; 

420 nm/535 nm for LY. 

Transendothelial permeability coefficient (Pe) was calculated as previously described 

[29,30]. Briefly, clearance was calculated from the transport of the fluorescent marker 

molecule from the donor to the acceptor compartment expressed as μl of donor compartment 

volume from which the tracer was completely cleared. The average cleared volume was 

plotted vs. time, and permeability surface area product value for endothelial monolayer (PSe) 

was calculated by the following formula: 

inserttotallendothelia PSPSPS

111
  

PSe was normalized for the surface area of the Transwell insert (1.12 cm2) and was 

expressed as 10-6 cm/s. In measurements from the apical to basal (AB) direction the upper 

compartment served as the donor and the lower compartment as the acceptor. In the case of 

the basal to apical (BA) direction the donor compartment was the lower, while the acceptor 

compartment was the upper one. 

 

2.8.3. Immunohistochemistry 

After the permeability assays brain endothelial cells were stained for junctional 

associated proteins β-catenin and ZO-1 and for tight junction protein claudin-5 to assess the 

morphological changes after lidocaine treatment. Cells were fixed with cold acetone-

methanol solution (1:1) for 2 min, washed with phosphate buffered saline (PBS) and non-

specific binding sites were blocked with 3% bovine serum albumin (BSA) in PBS for 1 h at 

room temperature. Incubation with primary antibodies (dilution 1:200) polyclonal rabbit anti-

β-catenin (Sigma C2206), polyclonal rabbit anti-ZO-1 (Invitrogen, 61-7300) and polyclonal 

rabbit anti-claudin-5 (Sigma, SAB4502981) lasted overnight at 4 ºC. The next day cells were 

incubated with anti-rabbit secondary antibody labeled with Cy3 (Sigma C2306; dilution 

1:400), and bis-benzimide H33342 (Merck, Germany) to stain nuclei, for 1 h at room 

temperature. Between incubations cells were washed three times with PBS. Stainings were 

visualized by a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems, 

Germany). Pictures for the junctional-cytoplasm intensity ratio evaluations were taken with 

the exact same settings among cell types and stainings. 

 

2.9. Image analysis  

The fluorescently labeled images were analysed using Matlab software (R2019a, 

MathWorks, Inc.). In brain endothelial cells the fluorescent intensity of the immunostaining 

for junctional proteins in the cell membrane is higher than in the cytoplasm. First we 

determined the cytoplasmic intensity, from which binary images (BIs) were created. The 

complementary BIs were considered as the junctional staining in the plasma membrane. The 

pixels in the two BIs were used as masks, and the intensities of the original pixels were 

summed in both the junctional BIs and the cytoplasmic BIs separately. The ratio of the cell 

membrane and cytoplasm intensities for each image was determined and used for the 

statistical analysis. The number of images were 11-15 in each group. 

 

2.10. Measurement of efflux pump activity 

The activity of the P-glycoprotein efflux pump was measured by R123, a ligand of 

this transporter, similarly to the permeability assay, but both in the AB and BA directions. 
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For measurements in the BA direction the donor compartment was the lower, while the 

acceptor compartment was the upper one. As a reference Pgp pump inhibitor, cyclosporin A 

(10µM) was used (30 min pre-treatment of cells). During the assay cells were incubated for 

30 min with 10 µM R123 with or without 10 µM lidocaine in Ringer-HEPES buffer. After 

the incubation samples were collected from the upper and lower compartments and the 

concentration of R123 in the samples was determined by a spectrofluorometer (Horiba Jobin 

Yvon Fluorolog 3; excitation/emission: 498/525 nm).  

 

2.11. Statistics 

Data are presented as means ± SD. Statistical significance between treatment groups 

was determined using t-test, one-way or two-way ANOVA followed by Dunnett or 

Bonferroni multiple comparison post-tests (GraphPad Prism 5.0; GraphPad Software, USA). 

All experiments were repeated at least twice, and the number of parallel samples was 

minimum three. Changes were considered statistically significant at p < 0.05. 

 

3. Results  

3.1. Effect of lidocaine on the purple membranes  

The chromophore of the bR is sensitive to the absence of divalent cations bound to 

the purple membrane at neutral pH: upon removal of divalent cations by deionizing the 

membrane suspension, the color of bR changes from purple to blue, which is accompanied 

by inactivation of the proton pump [14]. Purple membrane also turns blue, and the proton 

pump is inhibited in sulfuric acid solution with pH below 3.1-3.2 [15]. This condition is 

shown on Fig. 1A when no lidocaine treatment is present and the gels containing purple 

membrane turn blue due to the acidic pH. Lidocaine treatment at 1 and 10 mM concentrations 

reversed this color change (Fig. 1A), an effect that was concentration dependent.  

Fig. 1B shows the absolute spectra of the samples with and without 10 mM lidocaine 

treatment at pH 3.0. As observed also visually, the sample without lidocaine was blue (pure 

blue) as expected at this pH due to the protonation of the proton acceptor Asp85 already in 

the resting state of the pigment. The sample treated with 10 mM lidocaine at pH 3.0 turned 

purple. The absorption spectrum of the latter has a maximum close to the position expected 

at neutral pH, whereas that of the blue membrane is substantially red shifted. As both spectra 

appeared wider than the spectrum of bR at higher pH, we estimate that both are mixtures of 

the pure purple and pure blue forms. An estimate of 25/75% and 75/25% contribution of the 

purple and blue forms to the zero and the 10 mM lidocaine samples, respectively, yields 

narrower calculated spectra of the two pure forms (Fig. 1B). Representative time resolved 

difference spectra measured on the purple membrane containing gel samples at pH 3.0, with 

and without 10 mM lidocaine treatment, are shown in Fig. 1C and D. The purple samples in 

10 mM lidocaine display a regular photocycle typical at higher pH with consecutive L, M 

and O intermediates, with characteristic absorption peaks seen at 6.3 μs after excitation at 

410 nm (L); 400 μs, 410 nm (M) and 16 ms, 640 nm (O), followed by the recovery of the 

initial bR state in about 100 ms. The amount of accumulated O in the 10-100 ms range is 

relatively high as expected for the “normal” photocycle below the pKa=5.8 of the proton 

release cluster[37], where proton release is delayed to the very end of the cycle, coinciding 

with the decay of the O intermediate. On the other hand, the photocycle without lidocaine is 

characteristic of the truncated cycle of the blue membrane. Here M does not accumulate since 

the proton acceptor Asp85 is already initially protonated so that the Shiff base cannot 
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deprotonate. After the accumulation of a small amount of L-like intermediate the photocycle 

terminates faster than in the case of the purple membrane.  

 

3.2. Modulation of surface charge of purple membranes 

Due to the absence of a direct measurement for the surface charge, to evaluate the 

electrostatic properties of membrane surface, zeta potential can be determined [22]. We 

measured the zeta potential of purple membranes in 0.5 mM sulfuric acid and found it highly 

negative (-36.4 ± 0.4 mV, Fig. 2). Lidocaine treatment for 30 min changed this value to more 

positive (-21.9 ± 0.3 mV), indicating a direct action of the cationic drug on the charge of 

membranes containing bR. This shift in the charge can explain the changes we observed in 

the purple membrane color (Fig. 1A) and the shift in the bR spectrum (Fig. 1B).  

 

3.3. Effect of lidocaine on cell viability in the BBB models 

First, the effect of lidocaine on the viability, metabolic activity and membrane 

integrity was studied using the hCMEC/D3 cell line and primary RBECs. Lidocaine at 1–

300 µM concentrations did not cause any drop in the cell impedance after 30 min (Fig. 3A-

B). At the 1000 µM lidocaine treatment concentration impedance decreased after 30 min, but 

this decrease was temporary, reversible and cells recovered to the viability level of the control 

within 2 h. 

Incubation of the cell monolayers for 30 min with lidocaine in the concentration range 

of 1-1000 µM did not cause any alteration in the metabolic activity of the cells indicating no 

cell damage by the MTT conversion assay (Fig. 3C-D). To determine if lidocaine damages 

the plasma membrane integrity LDH assay was performed. As shown in Fig. 3E-F, the release 

of LDH from the brain endothelial cells did not increase compared to the control. Triton X-

100 detergent was used as a reference compound to elicit 100% toxicity in all the assays (Fig. 

3). 

 

3.4. Lidocaine as a modulator of surface charge in living mammalian cells  

We hypothesized that lidocaine can change the surface charge of biological 

membranes which was confirmed in our measurements of zeta potential of purple 

membranes. To further investigate this phenomenon, we tested the effects of lidocaine on the 

zeta potential of living mammalian cells. In this study we used single cell suspensions from 

the hCMEC/D3 human brain endothelial cell line, primary RBECs and the PC-3 prostate 

cancer cell line with or without 10, 100 and 1000 μM lidocaine treatment. The base zeta 

potential for all three cells types was negative, -11.4 ± 1.3 mV for the hCMEC/D3 cells (Fig. 

4A); -12.3 ± 1.2 mV for the RBECs (Fig. 4B) and -20.1 ± 0.9 mV for the PC-3 cell line (Fig. 

4C). Since lidocaine is metabolized very quickly in the body by the liver, we chose the 30 min 

treatment window. The background zeta values became more positive after treatment with 

increasing lidocaine concentrations in the case of all three cell types (Fig. 4) proving that 

lidocaine interferes with the surface charge of living cells as well.  

 

3.5. Integrity of the BBB models after lidocaine treatment 

In clinical patients toxic side effects were only seen above 5 μg/ml (21.7 μM) plasma 

concentration of lidocaine [38]. To use a clinically relevant, but not toxic concentration of 

lidocaine, we selected the 10 μM for the barrier experiments. 

The BBB restricts the movement of not only cells and large molecules, but also ions 

[32]. The most common method to determine the tightness of the barrier is to measure the 
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TEER. Therefore, to investigate the effect of lidocaine on the barrier properties of the BBB 

models we first measured resistance. There was a three times difference between the TEER 

values of the BBB models showing that the primary co-culture model better restrict the 

movement ions as compared to the simplified BBB model (Fig. 5A-B). Lidocaine treatment 

(10 μM, 30 min) decreased the TEER on both models. The TEER drop in hCMEC/D3 cells 

was 35% (84±6 to 55±10 Ω×cm2) while on the triple co-culture BBB model it was only 17% 

(252±19 to 211±6 Ω×cm2). 

Since lidocaine modified the surface charge of biological membranes, we 

hypothesized that the permeability of charged molecules across the BBB models might also 

change. We used three differently charged fluorescent markers to determine their 

permeability across brain endothelial cells after lidocaine treatment. In the hCMEC/D3 cell 

line model the permeability for the water soluble negatively charged marker LY and neutral 

marker FD did not change as compared to the control group but the cationic molecule R123 

showed an increased flux after lidocaine treatment (Fig. 5C). For the primary BBB co-culture 

model (Fig. 5D), also no change was observed for the LY and FD, although the Papp values 

of the markers were much smaller (LY: 1/10, FD: 1/3 of the Papp in hCMEC/D3 model) 

showing once more that the integrity of the barrier is stronger in the co-culture model. As 

compared to the cell line model the permeability of the cationic marker, R123, decreased 

after lidocaine treatment (Fig. 5D). This result is in accordance with our hypothesis, which 

presumes that the interference of lidocaine with the membrane charge decreases the 

permeability of a lipophilic cationic marker across the BBB if the paracellular pathway is 

closed. 

To confirm the effects of lidocaine on brain endothelial barrier integrity, 

immunostainings were performed for junctional proteins β-catenin, ZO-1 and claudin-5 (Fig. 

6A-B). We evaluated the subcellular expression of junctional proteins after lidocaine 

treatment with fluorescent intensity measurements (Fig. 6C-D). In the control groups of both 

BBB models the immunostainings were mainly located at the cell borders, where the cell 

junctions are found. RBECs showed elongated morphology with close cell-cell contacts (Fig. 

6B). After 10 µM lidocaine treatment a slight morphology change was visible in both models. 

The β-catenin showed a cytoplasmic rearrangement both in the hCMEC/D3 and the RBEC 

models. Similar change was observed for ZO-1 in the hCMEC/D3 cells. Claudin-5 was not 

detectable in this cell line (see Fig. S1 in Supplementary material). RBEC showed a 

redistribution of the claudin-5 tight junction protein after lidocaine treatment which is also 

reflected by the modest TEER decrease (Fig. 5).  

 

3.6. Lidocaine is not an efflux pump blocker 

Since R123 is not only a positively charged lipophilic compound, but also a ligand of 

the Pgp efflux pump, we wanted to further investigate, whether lidocaine interferes with the 

activity of the Pgp function. Bidirectional permeability assay was performed, which showed 

that cyclosporin A by blocking Pgp increased the R123 flux in AB direction and decreased 

it in the opposite direction across the primary cell based BBB model (Fig. 7). In contrast, 

lidocaine treatment (10 µM, 30 min) decreased the permeability of R123 across RBECs from 

the AB direction and did not change the flux from the BA direction, indicating that lidocaine 

does not inhibit the activity of the Pgp efflux pump. 

 

4. Discussion 
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The BBB has special defense systems constituted by the TJs, the efflux pumps and 

the metabolic enzymes of brain endothelial cells [19,39]. This line of defense is strengthened 

by the negative surface charge of brain endothelial cells which regulates the entrance of 

charged molecules through the BBB [21,40,41], but this area is not extensively studied. In 

our experiments we investigated the effects of lidocaine on the surface charge of brain 

endothelial cells, which gets into the systemic circulation as an antiarrhythmic drug [6], and 

can have a direct effect on the vascular system. Previous in vivo studies have shown that 

lidocaine protects the BBB in high blood pressure caused barrier opening [42] or in peripheral 

nerve damage [43]. However, its effect on the surface charge and the barrier properties of 

brain microvessel endothelial cells have not yet been described. This study is the first to 

reveal the direct effects of lidocaine on the surface charge of biological membranes and its 

effects on the permeability of BBB models contributing to a wider knowledge on the 

interaction of cationic molecules at the level of BBB. To generalize the effects on surface 

charge and function, in addition to the hCMEC/D3 human brain endothelial cell line and a 

primary rat brain endothelial cell based culture models we also used purple membrane as a 

simple membrane system. According to our hypothesis, lidocaine can influence the surface 

charge of the brain endothelial cell membrane and by this it can also affect BBB function.  

 

4.1. The effect of lidocaine on purple membranes as a simple model system 

The lipid content in the isolated purple membrane is about 25%. Sulphated 

glycolipids are exclusively found in the purple membrane, and they are responsible for the 

negative charge [44]. Lidocaine treatment for 30 min had a direct action on the bR: a shift in 

both the purple membrane charge and the bR spectrum occurred (Fig. 1A and Fig. 1B). The 

blue color of the gels containing purple membrane was triggered by the low pH that also 

inhibits bR function (Fig. 1A). When the pH is low, the large amount of protons compensate 

the negative surface charge of purple membranes and provoke protonation of a crucial side 

chain of bR stopping its pumping action [15]. When lidocaine is added, it substitutes protons 

at the membrane surface, and allows bR to function again. The absorption spectrum and the 

photocycle of bR at pH 3.0 were typical for the acid blue membrane [13]. This result is similar 

to previous observations on deionized bR, where the deactivation of the proton pump was 

achieved at pH 7 by the removal of the divalent metal ions bound to the membrane, and the 

effect was reversed by cationic amine anaesthetics, including lidocaine [17]. Note, however, 

that in the latter caser purple color can be restored by any other common cations as well [14]. 

Based on the zeta potential measurements and the spectral data one can conclude that 

lidocaine acts as a local factor increasing the pH close to the membrane surface by at least 1-

2 units, thereby affecting the protonation state of even buried residues of the protein. The 

decay of O intermediate, that coincides with the recovery of the initial state is nevertheless 

substantially slower than the recovery at neutral pH, indicating that this step involves the 

direct extracellular proton release from Asp85 rather than the internal proton transfer from 

Asp85 to the proton release cluster. Hence the latter remains protonated during the 

photocycle as expected at effective pH values below the pKa=5.8 of the proton release cluster 

[37].  

 

4.2. The effect of lidocaine on the viability of brain endothelial cells 

After we confirmed our hypothesis that lidocaine can influence the surface charge, 

hence the function, of a simple biological membrane, we were interested in the effects of 

lidocaine on living cells. Lidocaine is used in the pharmacotherapy as a local anesthetic and 
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has a clinically important role in the treatment of abnormal heart rhythm [8,38]. When given 

intravenously, it can act directly on brain endothelial cell membranes and might affect barrier 

properties of the BBB. To avoid the side effects of lidocaine, such as heart attack or 

neurologic symptoms, the concentration of the lidocaine treatment should be optimized [38]. 

The therapeutic plasma concentration of lidocaine is between 1.5 and 5 μg/ml (6.5-22 μM). 

In order to determine the direct effect of lidocaine on the viability of brain endothelial cells, 

toxicity tests were performed. No change was seen in any of the assays for the tested 

concentrations, except for a reversible reduction of the impedance value at the highest, 

suprapharmacological concentration of 1000 μM (Fig. 3). These data are in accordance with 

the low toxicity and the safe applicability of lidocaine as a therapeutic drug [6]. Since 

lidocaine is metabolized by the liver within 2 h and the half-life of the drug is short in the 

blood [6,38], we selected the clinically relevant 10 µM concentration and the 30-min 

treatment time to study the surface charge and barrier function of the BBB models.  

 

4.3. The effect of lidocaine on the surface charge of the brain endothelial cells  

While the hydrophobic interaction of lidocaine with the lipid bilayer of the cell 

membrane, including membrane fluidity, and its influence on protein channels has been 

studied [8,45], our study is the first to measure the effect of this drug on surface charge of 

living cells. In the vascular system the surface charge of brain endothelial cells is more 

negative than that of peripheral endothelial cells [22]. This can be explained by the special 

lipid composition of the plasma membrane of brain microvascular endothelial cells [22] and 

the denser structure of glycocalyx in the luminal surface of brain capillaries [46]. In 

concordance with the first measurement of the zeta potential of bovine brain endothelial cell 

suspension [22], we also found that the surface charge of human and rat brain endothelial 

cells are negative and in the same range (Fig. 4). Lidocaine treatment, as we measured it on 

the simple model system, made the zeta values of the cells more positive, indicating a direct 

effect on the surface charge in both models. The surface charge elevation in mammalian cells 

after 1 mM lidocaine treatment (~40% from the control) was similar to the bR zeta potential 

change caused by 10 mM lidocaine. Since treatment of bR purple membranes with the same 

concentration of lidocaine already resulted in a considerable color change, we suggest a 

similar effect in both model systems. We have also tested lidocaine on a different type of 

cell, a human prostate cancer cell line, and found a similar effect. Our data on lidocaine and 

surface charge is supported by previous findings with a cationic lipid probe, TMA-DPH. This 

probe, which inserts into the plasma membrane of cells, made the zeta potential of brain 

endothelial cells also more positive [22]. The role of the surface charge of molecules, 

especially cationic ones, to cross the BBB has been long known [21], but only recently 

measured [41]. The positively charged ibuprofen-kyotorphinamide derivative not only 

increased the zeta potential of brain endothelial cells, but the molecule had an increased 

analgesic effect in mice indicating higher penetration to brain [41]. 

 

4.4. The effect of lidocaine on the barrier function of brain endothelial cells 

The BBB restricts the transport of substrates, from ions to large molecules, between 

the blood and the CNS [19]. The two major pathways for molecules and cells to cross the 

BBB are the paracellular (junctional) and the transendothelial routes [32,39]. The TJs are 

important in permeability regulation, because they not only restrict paracellular flux, but also 

maintain polarity of enzymes and receptors on the luminal and abluminal membrane domains 

[47]. The measurement of TEER is the most sensitive method to assess the tightness of TJs 
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in BBB models [32,48]. The resistance of brain endothelial cell layers was slightly, but 

significantly decreased by lidocaine (Fig. 5A) suggesting an increased paracellular ionic 

permeability. This change was reflected by the redistribution of the immunostaining for three 

junctional proteins, β-catenin, ZO-1 and claudin-5 in brain endothelial cells from the plasma 

membrane to the cytoplasm after lidocaine treatment (Fig. 6A-B) which was quantified by 

image analysis (Fig. 6C-D).  

There was no significant difference between the control and the lidocaine treated 

groups in the permeability of the negatively charged and hydrophilic markers, LY and FD 

(Fig. 5C-D). This result indicates that lidocaine treatment affects the paracellular pathway 

for ions, but not for larger water-soluble molecules (for a more detailed explanation and 

drawings see Fig. S2 and S3 in Supplementary material). The other marker molecule, R123 

is positively charged and lipophilic, therefore it crosses a tight barrier by the transcellular 

pathway. If the barrier is not tight, R123 is diffusing by both the trans- and the paracellular 

pathways. On the cell line BBB model the permeability of the R123 after lidocaine treatment 

was increased (Fig. 5C). This can be explained by the weaker barrier properties and the more 

dominant paracellular pathway of the hCMEC/D3 cell line as compared to the primary cell 

based BBB models [28,48], and as we confirmed by the TEER data (Fig. 5A). In the case of 

the primary brain endothelial cell co-culture model, where TJs are tighter and the paracellular 

pathway is more closed, as reflected by the several fold higher TEER, the permeability of the 

cationic R123 was decreased by the positively charged lidocaine (Fig. 5D). We suppose that 

there can be a physicochemical interaction between lidocaine and R123, two positively 

charged molecules, at the surface of brain endothelial cells decreasing the transcellular 

permeability of R123 in the apical to basal direction (Fig. 8). In accordance with our data, 

lidocaine decreased the permeability of cationic drugs pentazocine and naloxone across the 

BBB in rats, but influx drug transport systems may participate in the brain uptake of these 

molecules [49,50]. We cannot exclude the possibility, that other mechanisms than membrane 

interactions also participate in the effect of lidocaine on BBB permeability. 

Since R123 is a ligand of the Pgp efflux pump [29], one of the most important efflux 

transporter at the BBB [19,48], we studied if lidocaine has an effect on Pgp activity. The 

action of lidocaine was opposite to cyclosporine A, our reference inhibitor, suggesting that it 

does not inhibit the Pgp efflux pump (Fig. 8). Inhibition of Pgp did not change brain/plasma 

concentration of lidocaine in rats [51] indicating that lidocaine does not interact with the 

efflux pump, in agreement with our finding. 

 

5. Conclusion 

Lidocaine, a cationic drug, made the surface charge of biological membranes more 

positive in simple model membranes and in living mammalian cells. This physical membrane 

effect restored the proton pump activity at acidic pH in purple membranes and altered the 

function of endothelial cells forming the barrier protecting the brain. Lidocaine increased the 

ionic permeability of brain endothelial cell layers, but the paracellular pathway did not 

change to water-soluble marker molecules. In contrast, the permeability of a cationic 

lipophilic marker was decreased, suggesting interaction of the cationic molecules at the 

membrane level. Lidocaine had no effect on the function of the Pgp efflux pump. From these 

data, we can conclude that lidocaine can change the surface charge, an important element of 

the defense function of the BBB. The more positive surface charge of brain endothelial cells 

does not influence the permeability of the paracellular pathway for hydrophilic molecules, 

but can restrict the permeability of lipophilic cationic molecules via the transcellular 
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pathway. Our observations on one hand can help to understand the biophysical background 

of lidocaine action, on the other hand draw attention to the drug interactions at the level of 

the BBB. 
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Fig. 1. Effects of lidocaine on the purple membrane. A: Photos of the gels containing purple 

membrane in 0.5 mM sulfuric acid (pH=3.2) without and after 1 mM and 10 mM lidocaine 

treatment. B: Absorption spectra of purple membrane containing gels incubated with and 

without lidocaine (10 mM; pH=3.0) as well as the calculated spectra for the pure purple and 

blue forms (see text). The arrows indicate the wavelength of the exciting laser pulses for the 

two samples. C, D: Time resolved difference spectra of purple membranes in polyacrylamide 

gel at pH 3.0, without (C) and with (D) 10 mM lidocaine.  
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Fig. 2. Modulation of surface charge of purple membrane. Zeta potential of purple membrane 

in 0.5 mM H2SO4 (pH=3.2) without and with 10 mM lidocaine treatment (30 min). Values 

of each group are presented as mean ± SD, n = 10. Data were analysed by unpaired t-test. 

****p<0.0001, compared to the untreated control. 
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Fig. 3. Cell viability assays on the effects of lidocaine on brain endothelial cells. Treatments 

were performed for 30 min with concentrations of 1-1000 μM. TX: Triton X-100 detergent 

served as positive control. A-B: Impedance measurements on hCMEC/D3 human brain 

endothelial cell line and on primary rat brain endothelial cells (RBEC). C-D: The effects of 

lidocaine on MTT dye conversion reflecting metabolic activity. E-F: Lactate dehydrogenase 

(LDH) release after lidocaine treatment reflecting membrane integrity. Values of each group 

are presented as mean ± SD, n=6-8. Data were analysed by one-way ANOVA followed by 

Bonferroni post-test. ***p<0.001, ****p<0.0001 compared to the untreated control. 
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Fig. 4. Effects of lidocaine on the surface charge of living mammalian cells. Cell cultures of 

the human brain endothelial cell line hCMEC/D3 (A), rat primary brain endothelial cells 

(RBEC) (B), and human PC-3 prostate cancer cell line (C) were treated with different 

concentrations of lidocaine for 30 min to measure changes in the surface zeta potential. 

Values of each group are presented as mean ± SD, n=10-29. Data were analysed by one-way 

ANOVA followed by Bonferroni post-test. #p<0.05, **;##p<0.01, ***p<0.001, 

****p<0.0001 compared to the untreated control and between treatments. 
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Fig. 5. Evaluation of the blood brain barrier (BBB) integrity on Transwell insert models of 

the BBB using hCMEC/D3 human brain endothelial cell line and rat primary cell based triple 

co-culture model consisting of brain endothelial cells (RBEC) with pericytes and astroglia 

after lidocaine treatment (10 μM, 30 min). A and B: TEER measurements right before and 

30 min after the lidocaine treatment. Values of each group are presented as mean ± SD, n=5-

12. Data were analysed by two-way ANOVA followed by a Bonferroni post-test. 

***p<0.001, ****p<0.0001, compared to the 0 min. C and D: Endothelial permeability 

coefficient (Pe) of cells treated with lidocaine for three differently charged tracers: Lucifer 

Yellow (LY, -, negatively charged), Rhodamine 123 (R123, +, positively charged) and FITC-

Dextran (FD, 0, no charge). Values are presented as mean ± SD, n=4. Data were analysed by 

unpaired t-test, where **p<0.01; ***p<0.001.  
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Fig. 6. A and B: Effects of lidocaine treatment (10 μM, 30 min) on β-catenin, ZO-1 and 

claudin-5 immunostaining in hCMEC/D3 human brain endothelial cell line and rat primary 

brain endothelial cells. Red: staining for junctional proteins. Blue: H33342 staining of cell 

nuclei. Bar: 20 μm. C and D: Intensity ratio of the junctional and the cytoplasmatic 

immunostainings. Values are presented as mean ± SD, n=11-15. Data were analysed by 

unpaired t-test. *p<0.05, **p<0.01, ***p<0.001, compared to the untreated control of the 

respective group. 
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Fig. 7. Effects of lidocaine on the P-glycoprotein efflux pump activity in primary rat brain 

endothelial cells (RBEC). Permeability of Rhodamine 123 (R123) was measured from the 

abluminal to the luminal (A to B) and from the luminal to the abluminal (B to A) 

compartment after 30 min treatment with lidocaine or 1 hour with P-glycoprotein pump 

inhibitor cyclosporin-A (CyA). Values are presented as mean ± SD n=4. Data were analysed 

by one-way ANOVA followed by a Bonferroni post-test. *p<0.05, **p<0.01, ****, 

####p<0.0001, compared to the control and between groups. C: Control, L: Lidocaine.  
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Fig. 8. A schematic figure summarizing the effects of lidocaine on cationic model molecule 

rhodamine 123 permeability across a tight BBB model. Rhodamine 123 under physiological 

conditions is pumped back to the luminal surface by the P-glycoprotein (Pgp) efflux pump, 

which action can be blocked by the inhibitor of the pump, cyclosporin A (CyA). Lidocaine 

treatment decreases the flux of rhodamine 123 through the cell layer by intercalating to the 

lipid bilayer and modifying the endothelial surface charge.  
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Supplementary Material 

 

Supplementary Figure 1. 

 

 

Fig. S1. Effect of lidocaine treatment (10 μM, 30 min) on TJ protein claudin-5 immuno-

staining in hCMEC/D3 human brain endothelial cell line. Red: staining for claudin-5. Blue: 

H33342 staining of cell nuclei. Bar: 20 μm.  

No immunostaining is visible in the junctional area. 
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Supplementary Figure 2. 

 

 
 

Fig S2. Drawings representing the passage of fluorescent marker molecules across the hCMEC/D3 

cell culture monolayers before and after lidocaine treatment. The flux of the negatively charged 

marker molecule Lucifer yellow (LY, diameter ~1 nm, yellow circles); positively charged rhodamine 

123 (R123, diameter ~1 nm, red circles) and neutral FITC-dextran 10 kDa (FD, diameter ~4 nm, 

green circles) are indicated. Luminal surface charge is marked by blue lines: indicating negative 

charge and red crosses: positive charge caused by the insertion of lidocaine; Small dots: Na+ ions, 

diameter ~0.2 nm; Light blue transporter: P-glycoprotein effux pump on the luminal side. Tight 

junctions between the cells are marked by grey.  

 

The hCMEC/D3 cell line forms a less tight barrier compared to the primary cell based BBB 

models (Veszelka et al., 2018, PMID 29872378). This was represented by the bigger space 

(grey) indicating wider intercellular clefts in the cell line model (Fig. S1) as compared to the 

primary BBB model (Fig. S2). 

Lidocaine affected the junctional permeability as measured by TEER: the flux of sodium ions 

(diameter ~0.2 nm) increased across the paracellular cleft during the measurement 

conditions. On Fig. S1 this change is indicated by the increased thickness of the space 

between cells and the higher number of sodium ions (small dots) in the paracellular cleft. 

The negatively charged, water soluble Lucifer yellow (LY, median axial diameter ~1 nm) 

crosses cell layers at the interendothelial junctions, that is the reason it is considered a 

paracellular permeability marker. The positive charge of the lidocaine in the cell membrane 

is not changing the transcellular passage, because for a hydrophilic molecule this is 
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negligible. The change in the junctional tightness is enough in the case of the small sodium 

ion to be detected, but for the 5-times larger LY, we can only see a trend for a higher transfer. 

A negligible transmembrane and restricted paracellular passage is true for the neutral marker 

FITC-dextran with a diameter of 4 nm, 20-times bigger than that of sodium ions, resulting in 

no change in the transfer of the molecule even after lidocaine treatment. 

In the case of the positively charged and lipophilic rhodamine 123 (diameter ~1 nm), there 

are three pathways influencing its passage: it can cross both the paracellular and transcellular 

routes, and in addition the P-glycoprotein efflux pump pumps back the marker to the luminal 

side. The hCMEC/D3 cell line expresses less Pgp than the primary BBB model (Veszelka et 

al., 2018, PMID 29872378). We hypothesize that the two main factors in the increased R123 

flux across the cell layers are the wider tight junctions and the lower pumping efficiency of 

the Pgp, which is highly dependent on cell polarization caused by junctional tightness. This 

effect cannot be balanced by the more positive surface charge in the hCMEC/D3 cell 

membrane. 

 

 
 

Supplementary Figure 3.  

 
 

Fig S3. Drawings representing the passage of fluorescent marker molecules across primary rat brain 

endothelial model (RBEC) before and after lidocaine treatment. The flux of the negatively charged 

marker molecule Lucifer yellow (LY, diameter ~1 nm, yellow circles); positively charged rhodamine 

123 (R123, diameter ~1 nm, red circles) and neutral FITC-dextran 10 kDa (FD, diameter ~4 nm, 

green circles) are indicated. Luminal surface charge is marked by blue lines: indicating negative 

charge and red crosses: positive charge caused by the insertion of lidocaine; Small dots: Na+ ions, 
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diameter ~0.2 nm; Light blue transporter: P-glycoprotein effux pump on the luminal side. Tight 

junctions between the cells are marked by grey.  

 

The primary BBB model forms a tighter paracellular barrier than the hCMEC/D3 cells 

(Veszelka et al., 2018, PMID 29872378) as indicated by the higher TEER and lower 

permeability values for all the marker molecules. This was represented by the smaller space 

(grey) between cells indicating narrower intercellular clefts in the BBB model (Fig. S2) as 

compared to the cell line model (Fig. S1). 

The passage of the negatively charged, water soluble Lucifer yellow (LY, diameter ~1 nm) 

across the interendothelial junctional space is more restricted than in the case of the cell line. 

The positive charge of the lidocaine in the cell membrane does not change the transcellular 

passage, because for a hydrophilic molecule this is negligible. The change in the junctional 

tightness is enough to detect a higher sodium ion flux, but in the case of LY, with a 5-times 

bigger diameter, no change is seen. In the case of the neutral marker FITC-dextran (diameter: 

4 nm, 20-times bigger than that of sodium ions) a negligible transmembrane and a restricted 

paracellular passage result in unchanged flux of the molecule even after lidocaine treatment. 

In the primary BBB model two from the three pathways influencing R123 flux is different as 

compared to the cell line model: the paracellular route is more restricted due to the tighter 

junctions, and the P-glycoprotein efflux pump expression and activity are also higher 

(Veszelka et al., 2018, PMID 29872378). As a result, in the control condition the R123 

passage across the BBB model is much lower than in the hCMEC/D3 model. Lidocaine alters 

the junctional cleft as measured by the increased sodium ion flux during TEER measurement, 

but we hypothesize that this change is not enough to increase the paracellular R123 passage 

based on data with LY which has a similar molecular diameter. With the Pgp pumps actively 

working in the BBB model, as shown by the vectorial transfer of R123, from the three 

pathways it is the transmembrane flux that is changed most by lidocaine. In the presence of 

a restricted paracellular flux and active efflux, the more positive surface charge in the 

membrane caused by lidocaine results in a decreased transfer of R123 due to physicochemical 

interference. 

 


