CORTICAL PROCESSING OF EMOTIONAL VALENCE AND INTENSITY IN HUMAN AND ANIMAL VOCALIZATIONS

Attila Andics^{1,2}, Márta Gácsi¹, Tamás Faragó¹, Anna Kis^{1,3}, Ádám Miklósi¹

¹MTA-ELTE Comparative Ethology Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, Budapest, Hungary ²MR Research Center, Semmelweis University, Budapest, Hungary ³Comparative Behavioural Research Group, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Budapest, Hungary

INTRODUCTION

Emotional voice processing involves superior temporal sulcus (STS), inferior frontal cortex (IFC) and amygdala bilaterally ^{1,2}, but their role is unclear.

Are emotional valence and intensity³ coded separately in voice regions?

- Are human and nonhuman (dog) vocal emotions processed similarly?
- Are there hemispheric asymmetries for emotional voice processing? Right-hemisphere hypothesis: emotional processing is right-lateralized. Valence hypothesis: POS and NEG emotions are left- and right-lateralized, respectively.⁴

METHODS

Participants. 22 human listeners (11 female; 12 dog owners)

Stimuli. 96 human vocalizations (nonlinguistic, emotional) 96 dog vocalizations (various contexts, emotional) 96 nonvocal sounds (familiar environmental) Human and dog stimuli rated for perceived emotional valence and intensity

Design. 8-s-long blocks of 4 stimuli (all < 2 s) with similar perceived emotional valence 24 blocks per condition (human, dog, nonvocal and silence) 3 runs of 6 mins (35 volumes each), passive listening Philips Achieva 3T, TR=10 s (2 s acquisition + 8 s silent gap)

Analysis. Standard preprocessing in SPM8 Group-level whole-volume random effects analyses Parametric modulation analyses to test valence and intensity effects ROI-based analyses for hemispheric asymmetry tests Regions: spheres with a 10 mm radius around local maxima of human vs nonvocal For amygdala: anatomical definition (wfupickatlas)

RESULTS

1. Perceived **emotional valence** of both human and dog vocalizations covaries with activity in bilateral STS (i.e., POS > NEG). p < .001 (uncorr)

Valence effect, cluster peaks Human L STS [-64 -14 -6] R STS [64 -12 -12] L STS [-52 -18 2] Dog R STS [52 -6 -6]

FWE cluster corrected p < .05

3. Hemispheric asymmetries in the covariation of valence and regional activity

Covariation with valence (beta)	0,0
	0,7
One-sample t-test per region (on bars)	0,6
Dairod t tasts within ragion	0,5
between hemispheres (above bars)	0,4
	0,3
**: p < .01, *: p < .05, ⁺ : p < .1	0,2
Error bars: S.E. of mean	0,1
	0

CONCLUSIONS

0,8

- ... no lateralization in the STS

REFERENCES

¹Fecteau et al. (2007) Amygdala responses to nonlinguistic emotional vocalization. Neuroimage 36:480–487 ²Ethofer et al. (2012) Emotional voice areas: anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cereb Cortex. 22:191–200 ³Russell et al. (1980). A circumplex model of affect. J Pers Soc Psychol 39:1161–1178 ⁴Killgore & Yurgelun-Todd (2007) The right-hemisphere and valence hypotheses could they both be right (and sometimes left)? Soc Cogn Affect Neurosci. 2:240–250

2. Perceived **emotional intensity** of human but not of dog vocalizations covaries with right IFC activity (peak at [46, 16, 20]. p < .001 (uncorr)

Emotional valence and intensity modulate distinct stages of the voice processing hierarchy The same neural network is used to process human and dog vocal emotional valence Valence-based lateralization effects differ across regions. More positive human vocalizations correspond to... ...a rightward bias in the IFC ... a stronger leftward bias in the amygdala

attila.andics@gmail.com

