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Abstract: Protein inhibitors of key DNA repair enzymes play an important role in deciphering
physiological pathways responsible for genome integrity, and may also be exploited in biomedical
research. The staphylococcal repressor StlSaPIbov1 protein was described to be an efficient inhibitor
of dUTPase homologues showing a certain degree of species-specificity. In order to provide insight
into the inhibition mechanism, in the present study we investigated the interaction of StlSaPIbov1 and
Escherichia coli dUTPase. Although we observed a strong interaction of these proteins, unexpectedly
the E. coli dUTPase was not inhibited. Seeking a structural explanation for this phenomenon,
we identified a key amino acid position where specific mutations sensitized E. coli dUTPase to
StlSaPIbov1 inhibition. We solved the three-dimensional (3D) crystal structure of such a mutant in
complex with the substrate analogue dUPNPP and surprisingly found that the C-terminal arm of
the enzyme, containing the P-loop-like motif was ordered in the structure. This segment was never
localized before in any other E. coli dUTPase crystal structures. The 3D structure in agreement with
solution phase experiments suggested that ordering of the flexible C-terminal segment upon substrate
binding is a major factor in defining the sensitivity of E. coli dUTPase for StlSaPIbov1 inhibition.
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1. Introduction

Preservation of genome integrity is of utmost importance for all living organisms. Several complex
pathways including numerous enzymes are involved in this duty. Among these, dUTPase and uracil
DNA glycosylase enzymes are responsible for keeping DNA uracil-free [1–3]. Absence of dUTPase
(in differentiated tissues, knock-out models or several microorganisms) [4–9] or its inhibition combined
with thymidylate synthase-targeted chemotherapies [10,11] is expected to lead to an increased level of
uracil in DNA. Under such circumstances, DNA polymerases may readily incorporate uracil into DNA
and uracil excision repair is activated. However, if dUTP levels are consistently high, repair cannot
be completed efficiently because uracils will again be built into DNA via repair synthesis. Therefore,
dUTPase inhibition leads to futile cycles of incomplete repair and may result in increased mutation
rate, double strand breaks and thymine-less cell death [12–14].

Thymine-less cell death is a clinically significant pathway in tumor chemotherapy where it is
usually induced by drugs acting on enzymes being involved in de novo thymidylate biosynthesis (eg.
thymidylate synthase or dihydrofolate reductase) [15,16]. Due to the suboptimal response rate of the
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presently used drugs, development of novel anti-cancer strategies acting on the thymidylate synthesis
route is of high significance [17]. The enzyme dUTPase is tightly connected to this pathway, as dUMP
is the sole precursor of de novo deoxythymidine triphosphate (dTTP) biosynthesis [14]. Targeting
dUTPase by small molecular drugs for cancer treatment has already been reported [13]. This enzyme
is also a potential target of future antimicrobiotics against important pathogens such as Mycobacterium
tuberculosis [7] or Plasmodium falciparum [18], as invading pathogen microorganisms require intensive
DNA synthesis before cell replication [19].

We recently discovered another potential route for perturbing dUTPase action via a protein
inhibitor, StlSaPIbov1 (referred to as Stl in our study) [20]. This protein was originally identified in
Staphylococcus aureus where its primary function is to repress the transcription of genes being responsible
for excision and replication of S. aureus pathogenicity islands (SaPi-s). Its protein interaction partners
in S. aureus are phage dUTPases such as the Φ11 and 80α phage trimeric dUTPases [21]. Upon binding
to each other, the primary function of the two proteins is mutually abolished. Namely, in the Φ11
phage dUTPase:Stl complex, Stl is not able to repress transcription of the pathogenicity island protein
genes and catalytic activity of the Φ11 phage dUTPase is practically abolished [20].

Previous publications of our research group showed that protein Stl has a potent cross-species
inhibitory effect on some other trimeric dUTPase homologues from Mycobacteria, Drosophila and human
sources as well [22–24]. Efficiency of Stl-induced inhibition on dUTPase activity varies among the
complexes with different trimeric dUTPase homologues, and the exact structural background of
these species-specific differences in Stl binding are yet to be investigated in details. The in-depth
structural explanation for the alterations in inhibitory capacity would present a major step forward in
the future development of species-specific dUTPase inhibitory peptides or peptide-mimicking small
molecules [19]. Stl may also be a useful tool for an in vivo study of the effects of the elimination of
dUTPase activity. The understanding of the structural background of species-specific inhibitory effect
of Stl on different dUTPases would make it possible to predict whether Stl will be applicable as a tool
to study a given dUTPase in vivo.

In our previous studies, we reported insights into Stl-inhibition of dUTPases from staphylococcal,
human, mycobacterial and Drosophila sources [20,22–24]. We observed a generally valid inhibition
pattern characterized by a strong dUTPase:Stl complex with dissociation constant in the nanomolar
range, and provided a detailed elucidation of the molecular mechanism of interaction and inhibition
for the Φ11 dUTPase:Stl system [20]. However, a full understanding of the structural biology of the
Stl-dUTPase complex is not yet available, since on the one hand crystallization trials of the complex
have not yet been successful, and on the other hand the molecular size of the complex prevents
high-resolution nuclear magnetic resonance (NMR) studies. For the protein Stl, no experimentally
determined three-dimensional (3D) structure has yet been published. In silico homology modelling
of the Stl structure accompanied by synchrotron radiation circular dichroism studies suggested a
protein fold mostly containing alpha-helices [25]. For the protein dUTPase, there are numerous
high-resolution dUTPase crystal structures deposited in the Protein Data Bank (PDB) (reviewed eg.
in [2]). These structures all show the well-conserved dUTPase jelly-roll fold; however, there are some
structural variations. Interestingly, in the Escherichia coli dUTPase structures deposited so far very few
residues from the C-terminal arm of the enzyme can be localized, probably due to high conformational
flexibility in this region [26]. The dUTPase C-terminal arm was previously shown to play some,
although not essential role in Stl binding [20,27]. In the present work, we extended our Stl inhibition
studies to E. coli dUTPase, since from this aspect it seems to be different from the Φ11 bacteriophage,
human or mycobacterial enzymes for which Stl inhibition was observed [28–30].

Here we show that E. coli dUTPase and protein Stl form a strong protein complex associated with
nanomolar dissociation constant. Unexpectedly, we also found that Stl inhibition of E. coli dUTPase in
steady-state activity measurements could not be observed, therefore this enzyme presents a potentially
useful model for further understanding of the governing factors leading toward dUTPase inhibition by
Stl. Based on previous structural data we initiated a series of rationally designed mutations to reveal
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the key components involved in inhibition. Two such mutations were successfully identified (mutation
of the 93rd glutamine to either histidine or arginine, abbreviated as EcDUTQ93H and EcDUTQ93R,
respectively). We found that both of these mutant E. coli dUTPases were significantly inhibited by
Stl. We have also crystallized the EcDUTQ93H mutant in complex with a non-hydrolysable substrate
analogue, α,β-imido-dUTP (dUPNPP) and solved the 3D structure of this complex. The detailed
structural information combined with solution experiments provided insights into the potential role of
C-terminal arm flexibility and Stl-induced inhibition.

2. Materials and Methods

2.1. Site-Directed Mutagenesis

Site-directed mutagenesis was carried out based on either the original QuikChange mutagenesis
protocol (Agilent Technologies, Santa Clara, CA, USA) or on a modified version using only partially
overlapping primers [31]. The sequence of the primers used in our polymerase chain reactions (PCRs)
is listed in Table 1.

Table 1. List of primers used for site-directed mutagenesis. Mismatched nucleotides are marked with
red letters.

Q93H _FW 5’ GATCGATTCTGACTATCATGGCCAGTTGATGATTTCC 3’

Q93H_REV 5’ GGAAATCATCAACTGGCCATGATAGTCAGAATCGATC 3’

Q93R_fw 5’ GACTATCGGGGCCAGTTGATGATTTCCGTGTGG 3’

Q93R_rev 5’ CTGGCCCCGATAGTCAGAATCGATCAATCCTACCAGG 3’

E114D_fw 5’ CATTCAACCTGGCGATCGCATCGCCCAG 3’

E114D_rev 5’ CTGGGCGATGCGATCGCCAGGTTGAATG 3’

R115K_fw 5’ CCTGGCGAAAAAATCGCCCAGATGATTTTTGTTCCGGTAGTACAGGCTGAATTTAATCTGGTGG 3’

R115K_rev 5’ CTGGGCGATTTTTTCGCCAGGTTGAATGGTGAAGCTGTCCTGACCACGG 3’

ER114-5DK_fw 5’ CAACCTGGCGATAAAATCGCCCAGATGATTTTTGTTCCGGTAGTACAGGCTGAATTTAATCTGGTGG 3’

ER114-5DK_rev 5’ CATCTGGGCGATTTTATCGCCAGGTTGAATGGTGAAGCTGTCCTGACCACGG 3’

F145W_fw 5’ GAAGGCGGCTGGGGTCACTCTGGTCGTCAGTAACACATACGGATCCGGC 3’

F145W_rev 5’ AGAGTGACCCCAGCCGCCTTCACCGCGGTCGGTGGCGTC 3’

H147S_fw 5’ CCGCGGTGAAGGCGGCTTTGGTAGCTCTGGTCGTCAGTAACAC 3’

H147S_rev 5’ GTGTTACTGACGACCAGAGCTACCAAAGCCGCCTTCACCGCGG 3’

2.2. Molecular Cloning, Protein Expression and Purification

The gene encoding protein Stl was expressed from a pGEX-4T-1 vector (GE Healthcare, Chicago,
Illinois, USA) as a glutathione S-transferase (GST)-fused construct. The GST-tag was cleaved from
the protein via overnight thrombin digestion during its purification process [24]. The E. coli dUTPase
gene was inserted into a pET-15b vector (Merck KGaA, Darmstadt, Germany) between the BamHI and
NdeI cleavage sites to enable its expression with an N-terminal His-tag which was used in further
purification steps [32]. Both protein Stl and our E. coli dUTPase constructs were expressed in E. coli BL21
(DE3) Rosetta cells (Novagen) and they were purified according to our previously used protocol [24].

2.3. Size Exclusion Chromatography

For this measurement, an AKTA FPLC purification system with a Superose 12 10/300 GL column
(GE Healthcare) was used. EcDUT, protein Stl and their 1:1 monomeric molar ratio mixture were injected
on the column in dUTPase buffer (20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid),
300 mM NaCl, 5 mM MgCl2, 10mM β-mercaptoethanol, pH = 7.5). Peak elution volumes of the three
separate injections were compared and plotted on the same graph.



Biomolecules 2019, 9, 221 4 of 15

2.4. Differential Scanning Fluorimetry (Thermofluor)

Samples were heated from 25 to 85 ◦C in a BioRad CFX96 Touch instrument (Hercules, CA, USA)
using three parallels of each measurement in 25 µL volumes. EcDUT and protein Stl were used in
1:1 molar ratio in their mixture and single protein concentrations were set to 40 µM, corresponding
to monomeric protein subunits. Sypro Orange dye (ThermoFisher Scientific, Waltham, MA, USA)
was added to the samples in 1000-fold dilution to follow protein unfolding. Melting points were
determined as the extremum values corresponding to the first negative derivate of the melting curve
(cf. [24]).

2.5. Multiple Sequence Alignment Based Mutational Screen

The dUTPase protein sequences were obtained from the Protein Data Bank and the UniProt
database [33,34]. Sequence alignments were carried out using the Clustal Omega server [35]. Conserved
dUTPase sequence motifs were identified based on earlier studies on dUTPases [2,26]. Recent hydrogen
deuterium exchange-mass spectrometry (HDX-MS) measurements on the interaction surface of human
dUTPase and protein Stl were also taken into consideration in the sequence alignment [23].

2.6. Measurement of Steady-State Enzyme Activity and Inhibition

The by-product of dUTP hydrolysis is a proton released which causes a change in the pH of the
reaction mixture. Adding phenol-red indicator to the reaction buffer (1 mM HEPES, 150 mM KCl, 5 mM
MgCl2, 40 µM phenol red, pH = 7.5) enables quantification of dUTP hydrolysis. Change in absorbance
upon dUTP addition was followed at 559 nm at 20 ◦C. Quasi steady-state velocity (v0) was determined
by fitting a curve to the linear phase of the progress line. Stl inhibition measurements were carried out
after 5 min pre-incubation of the Stl-dUTPase mixture at 20 ◦C. The concentration of dUTPase was
kept constant at 50 nM, while Stl concentration varied between 0 and 400 nM. Always 30 µM dUTP
was used to initiate the enzymatic reaction after pre-incubation of the proteins. Three parallels were
measured in each cases [24]. For plotting relative kcat values, propagation of standard errors was taken
into consideration according to the following formula:

SD2
F =

k2
cat, 400

k2
cat, 0

∗ (
SD2

400

k2
cat, 400

+
SD2

0

k2
cat, 0

) (1)

where SDF is the propagated standard deviation, kcat,0 and kcat,400 is the catalytic rate constant in absence
and presence of 400 nM Stl, and SD0 and SD400 are their respective standard deviations.

A quadratic equation was fitted on the Stl inhibition curves of the EcDUTQ93H and EcDUTQ93R

mutants according to the following formula:

y = s +
A[(c + x + K) −

√
(c + x + K)2

− 4cx]

2c
(2)

where y is the (relative) steady-state enzyme activity, x is protein Stl’s concentration, s is the (relative)
steady-state enzyme activity without Stl addition, A is the total decrease in (relative) steady-state
activity, c is dUTPase concentration (kept constant) and K is the Ki (IC50) value which is the output
parameter obtained from curve fitting.

2.7. Isothermal Titration Calorimetry

Isothermal tritation calorimetry (ITC) experiments were carried out at 20 ◦C on a Microcal ITC200
instrument (Malvern Instruments, Malvern, UK). The proteins were dialysed against a buffer pH = 7.5
comprising 20 mM HEPES, 300 mM NaCl and 1 mM TCEP. We used 22–57 µM Stl in the cell and
330–550 µM enzyme (EcDUT, EcDUTQ93H, EcDUTQ93R) in the syringe. Both protein concentrations
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correspond to monomeric subunits. The titrations were performed with the injection syringe rotating
at 750 rpm (revolutions per minute) and included a series of 20 injections spaced 180 s apart from each
other, with injection volumes of 0.5µL for the first titration and 2µL for the subsequent 19 titrations.
The data were analyzed using Microcal Origin software following the directions of the manufacturer
(Malvern Panalytical Ltd, Malvern, UK). The one set of independent sites binding model was applied
to data for determination of thermodynamic parameters: dissociation constant (Kd), stoichiometry
(N), enthalpy (∆H) and entropy (∆S). The mean and standard deviation (SD) of the parameters were
calculated from three independent experiments.

2.8. Protein Crystallization and Structural Refinement

EcDUTQ93H was gel filtrated in 20 mM HEPES, 100 mM NaCl, 5 mM MgCl2, pH = 7.5 (gel
filtration buffer) and then immediately concentrated to 43 mg/mL and mixed with 5 mM dUPNPP
before crystallization. The enzyme–dUPNPP complex was incubated on ice for at least 30 min before
being mixed with the reservoir solution (0.1 M TRIS, 18–33.75 % polyethylene glycol 3350, 400 mM
NaAc, pH = 7.5) in 2:1 or 1:1 protein-reservoir ratios. Crystals were grown with hanging drop vapor
diffusion method at 295 K. Data were collected at the European Synchrotron Radiation Facility (ESRF,
Grenoble, France) at Beamline ID30A-3. For data collection, a cryoprotectant containing 12% glycerol
was used. For data processing and scaling, the XDS program package was used [36].

The crystal structure was solved by molecular replacement using a wild-type E. coli dUTPase
crystal structure in complex with dUPNPP (PDB-ID:1RN8) as a template [26]. For structural refinement,
the program packages PHENIX and CCP4 were used [37–40]. Data collection and refinement statistics
are summarized in Table 2. Three monomers are present in the asymmetric unit. Coordinates and
crystal factor data are deposited in Protein Data Bank with the identification code 6HDE. Figures were
created using PyMOL [41].

Table 2. Data collection and refinement statistics for the EcDUTQ93H structure (PDB-ID:6HDE).

Data Collection Parameters

Space group P 21 21 21

Unit-cell parameters (A◦) a = 63.20, b = 66.50, c = 95.30

Unit-cell parameters (angles) α = β = γ = 90◦

Resolution range (A◦) 45.811-1.8

Total No. of reflections 113402

No. of unique reflections 36491

Completeness (%) 99.2

<I/σ(I)> 1.64 (at 1.82 Å)

Rmeas 0.043

Refinement

No. of dUTPase subunits in asymmetric unit 3

No. of protein atoms 3257

No. of ligand atoms 84

No. of waters 162

No. of Mg2+ ions 3

Rcryst/Rfree‡ 0.1806/0.2209

Average B factors (Å2) (all atoms) 33.0

Wilson B factor (Å2) 27.4
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Table 2. Cont.

Data Collection Parameters

Protein atoms 3257

Ligand atoms 84

Water 162

Mg2+ ions 3

R.m.s. deviations from ideal values

Bond lengths (A◦) 0.007

Bond angles (◦) 1.01

Ramachandan plot analysis, residues in (%)

Favoured region 96.97

Allowed region 3.03

Disallowed region 0.00

2.9. Tryptophan Fluorimetry

Samples of 3 µM dUTPase in 20 mM HEPES, 300 mM NaCl, 5 mM MgCl2, pH = 7.5 were prepared.
Protein Stl or dUPNPP were added in 4.5 µM or 100 µM final concentration, respectively. Tryptophan
fluorescence spectra were recorded at 293 K on a Jobin Yvon Spex FluoroMax-3 spectrofluorometer
(Horiba France SAS, Palaiseau, France) between 300 nm and 400 nm, using 295 nm excitation wavelength.
Excitation and emission slits were set to 1 nm and 5 nm, respectively. Fluorescence spectrum of the
assay buffer was subtracted from all protein spectra to eliminate additional fluorescence or inner
filter effects.

2.10. Acrylamide Quenching and Statistical Analysis

Acrylamide quenching was measured on a BioTek Synegry MX plate reader (BioTek Instruments,
Inc. Winooski, Vermont, USA) on 96-well plates in 25 µL final volumes using 4 µM dUTPase
concentration. Both the EcDUTF145W and EcDUTQ93H,F145W enzymes were measured in order to
compare their C-terminal arm movements. A titration of the enzyme, enzyme-dUPNPP, enzyme-Stl
or N-acetyl-L-tryptophanamide (NATA) solutions was carried out with high purity acrylamide
(Sigma-Aldrich, cat. no.: A9099, subsidiary of Merck KGaA, St. Louis, Missouri, USA) in 0–0.40 µM
concentration range on three parallel plates ensuring three independent titration curves of the compared
protein samples. Samples were excited at 295 nm and their emission was measured at 338 nm. Protein
Stl or dUPNPP was added to the respective samples in 6µM or 1.5 mM final concentration. Fluorescence
of the acrylamide solution itself was subtracted from all titration curves. A modified Stern-Volmer
equation was fitted to the titration curves (Equation (3)).

F0

F
= 1 + KSV ∗ [Q] ∗ eV[Q] (3)

In the equation F0 is the unquenched and F is the quenched tryptophan fluorescence, Q is the
quencher (acrylamide), Ksv is the dynamic (bimolecular) quenching constant and V is the static (sphere
of action) component of quenching [42–44].

Analysis of variance (ANOVA) was carried out on the obtained Ksv data by using Statistica 13
software. The ANOVA was followed by two planned comparisons (t tests) between the apo and
dUPNPP-bound states of the EcDUTF145W and EcDUTQ93H,F145W enzymes. Significance level was set
at 5% using two-sided p values.
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3. Results and discussion

3.1. Stl Binds to Escherichia coli dUTPase but Does Not Show Inhibitory Potential in Steady-State
Kinetic Experiments

To decide whether Stl may bind to E. coli dUTPase (EcDUT) we have performed a size-exclusion
chromatographic experiment. Figure 1A shows that a mixture of Stl and EcDUT elutes from the
size-exclusion chromatographic column in a symmetric single peak, clearly separate from the elution
peaks of Stl or EcDUT alone. This peak is associated with a lower elution volume (i.e. higher molecular
weight) arguing for the formation of a protein-protein complex. Complexation of these two proteins
was also investigated using differential scanning fluorimetry for both the components (Stl and EcDUT)
and their mixture (complex). Differential scanning fluorimetry (also known as thermofluor) is a
straightforward method to follow the thermal denaturation profile of proteins on their own or in
complexes and to determine their melting temperature (Tm) [45]. As shown on Figure 1B, EcDUT
and Stl show different Tm values (70.5 ◦C and 52.0 ◦C, respectively), whereas the Tm observed in their
complex is 57.0 ◦C.
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Figure 1. Complex formation between EcDUT and Stl. Data and symbols for EcDUT, Stl and
their mixtures are shown in green, grey, and yellow colors, respectively. Pictograms show the
oligomeric assembly characteristic for each species. (A) Size-exclusion chromatography. Peak elution
volumes are marked with numbers (data in mL) above the elution peaks. (B) Differential scanning
fluorimetry. Melting points are plotted as mean values with standard deviations (less than 0.5 ◦C for all
measurement replicates).

Having established the potential of complex formation between EcDUT and Stl, we next
investigated if the enzymatic activity of dUTPase is inhibited in the protein complex. For several
dUTPases from different sources, Stl was reported to show an inhibitory effect on dUTPase
activity [20,22–24]. It was therefore unexpected to observe that addition of Stl to the reaction
mixture during steady-state enzyme activity measurements did not result in an inhibitory pattern (see
data on Figure 2A,B).

3.2. Searching for Key Residues in Inhibition and Identification of Such a Position

It was of immediate interest to determine the structural background for this unexpected lack
of inhibition of EcDUT by Stl. Towards this end we started with investigation of differences in the
primary structure of EcDUT as compared to all the other dUTPases where Stl was shown to be a protein
inhibitor (Figure 2C). Our rational was to locate residues that are conserved in all the other dUTPases
which are inhibited by Stl, but not in EcDUT. We also included residues suggested to be relevant in this
aspect from comparisons between the complexes formed by Stl and different phage dUTPases (80α and
Φ11 phage dUTPases) [27]. These residues are indicated on a green background on Figure 2C. We then
performed rationally designed mutations where the residue in the EcDUT protein was exchanged for
the residue observed in another dUTPase inhibitable by Stl. Results are shown on Figure 2A and are
also summarized on the inset table of Figure 2B.
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Figure 2. Identification of key residues in dUTPase inhibition upon Stl binding. (A) Stl inhibits
the EcDUTQ93H and EcDUTQ93R point mutants but not the wild-type EcDUT. Steady-state activities
of EcDUT (green), EcDUTQ93R (blue) and EcDUTQ93H (red) against Stl concentration are plotted
on the graph. A quadratic equation was fitted on the inhibitable enzymes, from which Ki (IC50)
values were calculated. Ki was measured to be 4.83 ± 3.46 nM for EcDUTQ93H and 5.90 ± 0.73 for
EcDUTQ93R, respectively. (B) Relative kcat values of EcDUT constructs upon 400 nM Stl addition,
referred to the activity measured without Stl addition. For standard deviation values, propagation of
uncertainty upon normalization was taken into consideration (cf. Materials and Methods). (C) Multiple
sequence alignment comparing the non-inhibitable (Escherichia coli) and inhibitable (Φ11 phage,
Mycobacterium tuberculosis, Drosophila melanogaster, human) dUTPases. Conserved dUTPase sequence
motifs contributing for active site architecture are numbered (I–V) and shown on grey background.
Altered side-chain characteristics of EcDUT compared to the inhibitable dUTPases are shown on
green background. Interaction surface of human dUTPase with protein Stl determined by recent
hydrogen/deuterium exchange-mass spectrometry (HDX-MS) measurements is highlighted on the
human dUTPase sequence with the same color code as it was published in ref. [23].

Several of these mutations (EcDUTE114D, EcDUTE114D, R115K, EcDUTH147S) did not lead to any
observable inhibition by Stl. However, we could successfully locate one specific position (EcDUTQ93)
where mutation of the glutamine side-chain either into histidine or arginine led to strong inhibition
of dUTPase activity by Stl (Figure 2A,B). Histidine at this position was found in the Φ11 dUTPase,
whereas in M. tuberculosis, Drosophila melanogaster and Homo sapiens dUTPases, arginine is present at
this site. Interestingly, as shown in recent HDX-MS experiments [23], this side-chain position is located
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within a peptide segment involved in formation of the interaction surface of the human dUTPase-Stl
protein complex.

The successful modification of the E. coli enzyme structure clearly resulted in a character being
inhibitable by Stl, arguing for the key importance of the mutated residue position in the inhibitory
mechanism. The two resulting mutant constructs (EcDUTQ93H and EcDUTQ93R) were both clearly
inhibited by Stl and the inhibition resulted in a decrease of the steady-state velocity by 58% and
47%, respectively.

We also wished to quantify the strength of interaction of the complexes of wild-type EcDUT and the
mutant EcDUT constructs with Stl. Figure 3 shows the results of isothermal titration microcalorimetric
experiments. Based on these data we observe that mutation of the 93rd glutamine position into either
arginine or histidine increases the strength of interaction by approximately two-three fold. Although
the dG values for the complexes involving the wild-type and the mutant dUTPases are very similar, it
is important to note that dH values are significantly higher for the EcDUTQ93H:Stl and EcDUTQ93R:Stl
complexes. This finding indicates the creation of additional favorable enthalpic interactions for these
complexes (potential H-bonds, polar or Van der Waals interactions).
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3.3. Understanding the Structural Background of Inhibitablity

It was of clear interest to understand the exact changes in the enzyme structure caused by the point
mutations at the 93rd amino acid position. Therefore, we crystallized the EcDUTQ93H dUTPase mutant
in the presence of the non-hydrolysable substrate analogue dUPNPP and compared its structure to the
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already deposited wild-type E. coli dUTPase structures (Figure 4). The 3D structure of the EcDUTQ93H

dUTPase mutant (PDB ID 6HDE) is shown on Figure 4B–G.Biomolecules 2019, 9, 221 10 of 15 
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as a template in our molecular replacement. Missing parts of the C-terminal arms are indicated with 
empty arrows. Only F145, R150 and Q151 are visible out of the last 15 C-terminal residues of the 1RN8 
model, visualized by line representation. (B) The presently determined EcDUTQ93H crystal structure 
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mutant H93 side-chain can establish aromatic contacts with the C-terminal arm of the neighboring 
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Figure 4. Structural insights into mutation-induced conformational changes. Subunits of the enzyme
are color coded (orange, green, blue). The three dUPNPP molecules at the active sites are highlighted
with wheat-colored sticks. (A) Wild-type EcDUT crystal structure (PDB-ID:1RN8) [26] that was used as
a template in our molecular replacement. Missing parts of the C-terminal arms are indicated with empty
arrows. Only F145, R150 and Q151 are visible out of the last 15 C-terminal residues of the 1RN8 model,
visualized by line representation. (B) The presently determined EcDUTQ93H crystal structure (PDB
ID:6HDE). Positions of the mutated H93 residues are marked with boxes. (C), (D), (E) The point-mutant
H93 side-chain can establish aromatic contacts with the C-terminal arm of the neighboring subunit.
(F) The EcDUTQ93H crystal structure from side-view. (G) A water-linked hydrogen-bonding contact
between the mutated H93 residue and the Q142 side-chain of the C-terminal arm.
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A novelty of our structure is that the whole C-terminal arm of the enzyme is visible in one of the
subunits, whereas major parts of the segment are also visible in the other two subunits. This part
of the enzyme has central role in catalysis, however it was so far missing from all existing E. coli
dUTPase structures, even if they were crystallized in the presence of a substrate analogue. Our crystal
structure provides a strong implication for existing interactions among the histidine point mutation at
the 93rd position and the C-terminal arm of the enzyme, serving with a straightforward explanation
for increased visibility of the C-terminal arm section.

We hypothesized that the increased sensitivity of the EcDUTQ93H and EcDUTQ93R mutants for
inhibition by protein Stl and their stronger Stl binding ability compared to the wild-type E. coli dUTPase
is in connection with the restricted conformational freedom of the C-terminal arm of the enzyme.

To find further explanation for the fact that the EcDUTQ93H and EcDUTQ93R point mutants can
be readily inhibited by Stl, and to test our arm-flexibility hypothesis, we were intended to establish
a technique to follow C-terminal arm movements upon substrate or Stl binding. Towards this end,
we introduced a tryptophan point mutation into the C-terminal arms of the wild-type, EcDUTQ93H

and EcDUTQ93R mutant dUTPases, obtaining three additional enzyme variants, namely EcDUTF145W,
EcDUTQ93H, F145W and EcDUTQ93R, F145W.

The engineered Trp residue indeed allowed us to follow substrate analogue and Stl binding of the
three arm-tryptophan mutant enzyme variants (Figure 5 and cf. Figure 2B) [28]. In comparison with
earlier published studies we therefore confirm here that binding of the cognate ligand to the dUTPase
active site is readily transmitted to decreased fluorescence intensity of the tryptophan fluorophore
within the C-terminal arm [28,30,46] (cf. Figure 2A).
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Figure 5. The active site tryptophan sensor reports on ligand binding to EcDUT. (A) Binding of the
substrate analogue dUPNPP. (B) Binding of protein Stl. (C) Comparison of peak relative fluorescence
values. Black dashed lines stand for the EcDUTF145W, EcDUTQ93H,F145W and EcDUTQ93R,F145W

apoenzyme constructs. Ligand bound EcDUTF145W, EcDUTQ93H,F145W and EcDUTQ93R,F145W are
represented by grey, red and blue straight lines, respectively.

To enable a more direct comparison of the arm movement behavior of our tryptophan sensor
containing mutants, acrylamide quenching experiments were planned. The Ksv constant values
obtained by this method revealed that the quasi wild-type EcDUTF145W and EcDUTQ93H,F145W mutant
enzymes are remarkably different in their arm movements upon dUPNPP substrate analogue binding
(Figure 6A,B). Data from the quenching experiments clearly argue that solvent accessibility of the
tryptophan residue in the EcDUTQ93H,F145W dUTPase – dUPNPP complex is decreased as compared to
the complex formed with EcDUTF145W. Difference in solvent accessibility (Ksv values) between the
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apo and dUPNPP-bound state of the EcDUTQ93H,F145W mutant enzyme was proved to be statistically
significant (p = 0.0073, cf. Figure 6A), while in the case of the EcDUTF145W enzyme no significant
difference was observed (p = 0.5957). We therefore conclude that the quenching experiments in the
solution state provide re-enforcement for the restricted conformational flexibility of the C-terminus
observed in the crystal structure.
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4. Conclusions

In conclusion, we have demonstrated that specific side-chain mutations dramatically alter the
character of interaction between Stl and E. coli dUTPase. Namely, we have found that changing the
wild-type glutamine into either arginine or histidine at the 93rd position leads to an enzyme variant
which is strongly inhibited by Stl. We also found that these mutations alter the extent of orderliness
in the C-terminal segment which is achieved by substrate binding to the E. coli enzyme. These data
suggest a link between C-terminal arm flexibility and inhibition characteristics of E. coli dUTPase.
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