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Abstract We propose a data-driven approach to quantify the uncertainty of mod-
els constructed by kernel methods. Our approach minimizes the needed distribu-
tional assumptions, hence, instead of working with, for example, Gaussian pro-
cesses or exponential families, it only requires knowledge about some mild regu-
larity of the measurement noise, such as it is being symmetric or exchangeable. We
show, by building on recent results from finite-sample system identification, that
by perturbing the residuals in the gradient of the objective function, information
can be extracted about the amount of uncertainty our model has. Particularly, we
provide an algorithm to build exact, non-asymptotically guaranteed, distribution-
free confidence regions for ideal, noise-free representations of the function we try
to estimate. For the typical convex quadratic problems and symmetric noises, the
regions are star convex centered around a given nominal estimate, and have effi-
cient ellipsoidal outer approximations. Finally, we illustrate the ideas on typical
kernel methods, such as LS-SVC, KRR, ε-SVR and kernelized LASSO.
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1 Introduction

Kernel methods build on the fundamental concept of Reproducing Kernel Hilbert
Spaces (Aronszajn, 1950; Giné and Nickl, 2015) and are widely used in machine
learning (Shawe-Taylor and Cristianini, 2004; Hofmann et al., 2008) and related
fields, such as system identification (Pillonetto et al., 2014). One of the reasons of
their popularity is the representer theorem (Kimeldorf and Wahba, 1971; Schölkopf
et al., 2001) which shows that finding an estimate in an infinite dimensional space
of functions can be traced back to a finite dimensional problem. Support vector
machines (Schölkopf and Smola, 2001; Steinwart and Christmann, 2008), rooted in
statistical learning theory (Vapnik, 1998), are typical examples of kernel methods.

Besides how to construct efficient models from data, it is also a fundamental
question how to quantify the uncertainty of the obtained models. While standard
approaches like Gaussian processes (Rasmussen and Williams, 2006) or exponential
families (Hofmann et al., 2008) offer a nice theoretical framework, making strong
statistical assumptions on the system is sometimes unrealistic, since in practice we
typically have very limited knowledge about the noise affecting the measurements.
Building on asymptotic results, such as limiting distributions, is also widespread
(Giné and Nickl, 2015), but they usually lack finite sample guarantees.

Here, we propose a non-asymptotic, distribution-free approach to quantify the
uncertainty of kernel-based models, which can be used for hypothesis testing and
confidence region constructions. We build on recent developments in finite-sample
system identification (Campi and Weyer, 2005; Carè et al., 2018), more specifically,
we build on the Sign-Perturbed Sums (SPS) algorithm (Csáji et al., 2015) and its
generalizations, the Data Peturbation (DP) methods (Kolumbán, 2016).

We consider the case where there is an underlying “true” function that gener-
ates the measurements, but we only have noisy observations of its outputs. Since
we want to minimize the needed assumptions, for example, we do not want to
assume that the true underlying function belongs to the Hilbert space in which we
search our estimate, we take a “honest” approach (Li, 1989) and consider “ideal”
representations of the target function from our function space. A representation is
ideal w.r.t. the data sample, if its outputs coincide with the corresponding (hidden)
noise-free outputs of the true underlying function for all available inputs.

Despite our method is distribution-free, i.e., it does not depend on any param-
eterized distributions, it has strong finite-sample guarantees. We argue that, the
constructed confidence region contains the ideal representation exactly with a user-
chosen probability. In case the noises are independent and symmetric about zero,
and the objective function is convex quadratic, the resulting regions are star con-
vex and have efficient ellipsoidal outer approximations, which can be computed by
solving semi-definite optimization problems. Finally, we demonstrate our approach
on typical kernel methods, such as KRR, SVMs and kernelized LASSO.

Our approach has some similarities to bootstrap (Efron and Tibshirani, 1994)
and conformal prediction (Vovk et al., 2005). One of the fundamental differences
w.r.t bootstrap is, e.g., that we avoid building alternative samples and fitting
bootstrap estimates to them (since it is computationally challenging), but perturb
directly the gradient of the objective function. Key differences w.r.t. conformal
prediction are, e.g., that we want to quantify the uncertainty of the model and not
necessarily that of the next observation (though the two problems are related),
and more importantly, exchangeability is not fundamental for our approach.
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2 Preliminaries

A Hilbert space, H, of functions f : X → R, with inner product 〈·, ·〉H, is called a
Reproducing Kernel Hilbert Space (RKHS), if the point evaluation functional

δz : f → f(z), (1)

is continuous (or equivalently bounded) for all z ∈ X , at any f ∈ H (Giné and
Nickl, 2015). Then, by using the Riesz representation theorem, one can construct
a (unique) kernel, k : X × X → R, having the reproducing property, that is

〈k(·, z), f 〉H = f(z), (2)

for all z ∈ X and f ∈ H. In particular, the kernel satisfies for all z, s ∈ X that

k(z, s) = 〈k(·, z), k(·, s)〉H . (3)

Hence, the kernel of an RKHS is a symmetric and positive-definite function; more-
over, the Moore-Aronszajn theorem states that the converse is also true: for every
symmetric, positive-definite function there is a unique RKHS (Aronszajn, 1950).

Typical kernels include, e.g., the Gaussian kernel k(z, s) = exp(−‖z−s‖2/2σ2),
with σ > 0, the polynomial kernel, k(z, s) = (〈z, s〉 + c)p, with c ≥ 0 and p ∈ N,
and the sigmoidal kernel, k(z, s) = tanh(a 〈z, s〉+ b) for some a, b ≥ 0, where 〈·, ·〉
denotes the standard Euclidean inner product (Hofmann et al., 2008).

By a data sample, Dn, we mean a finite set of input-output measurements,

(x1, y1), . . . , (xn, yn) ∈ X × R, (4)

with X 6= ∅. We also introduce x
.
= (x1, . . . , xn)T ∈ Xn and y

.
= (y1, . . . , yn)T ∈

Rn. The Gram matrix of k(·, ·), w.r.t. input x, is denoted by Kx ∈ Rn×n, where

[ Kx ]i,j
.
= k(xi, xj). (5)

A kernel is called strictly positive definite if its Gram matrix, Kx, is (strictly)
positive definite for distinct inputs {xi} (Hofmann et al., 2008).

One of the fundamental reasons for the successes of kernel methods is the so-
called representer theorem, originally given by Kimeldorf and Wahba (1971), but
the generalization presented here is due to Schölkopf et al. (2001).

Theorem 1 Suppose we are given a sample, Dn, a positive-definite kernel k(·, ·),
an associated RKHS with a norm ‖ ·‖H induced by 〈·, ·〉H, and a class of functions

F .
=
{
f : X → R | f(z) =

∞∑
i=1

βik(z, zi), βi ∈ R, zi ∈ X , ‖f‖H <∞
}
, (6)

then, for any monotonically increasing regularization function, Λ : [0,∞)→ [0,∞),
and an arbitrary loss function L : (X × R2)n → R ∪ {∞}, the objective

g(f,Dn)
.
= L

(
(x1, y1, f(x1)), . . . , (xn, yn, f(xn))

)
+ Λ( ‖f‖H ), (7)

has a minimizer admitting the following representation

fα(z) =
n∑
i=1

αi k(z, xi), (8)

where α
.
= (α1, . . . , αn)T ∈ Rn is the vector of coefficients. If Λ is strictly mono-

tonically increasing, then each minimizer admits a representation having form (8).
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The theorem can be extended with a bias term (Schölkopf and Smola, 2001),
in which case if the solution exists, it also contains a multiple of the bias term.
For further generalizations, see (Yu et al., 2013; Argyriou and Dinuzzo, 2014).

The power of the representer theorem comes from the fact that it shows that
computing the point estimate in a high, typically infinite, dimensional space of
models can be reduced to a much simpler (finite dimensional) optimization problem
whose dimension does not exceed the size of the data sample we have, that is n.

If the data is noisy, then of course, the obtained estimate is a random function
and it is of natural interest to study the distribution of the resulting function, for
example, to evaluate its uncertainty or to test hypotheses about the system.

3 Confidence Regions for Kernel Methods

Now, we turn our attention to a stochastic variant of the problem discussed above.
There are several advantages of taking a statistical point of view on kernel meth-
ods, including conditional modeling, dealing with structured responses, handling
missing measurements and building prediction regions (Hofmann et al., 2008).

Following a standard statistical viewpoint (Davies et al., 2009), we assume that
the outputs {yi} are generated by some noisy observations of an underlying “true”
function, denoted by f∗, that is for all i = 1, . . . , n, the outputs can be written as

yi
.
= f∗(xi) + εi, (9)

where {εi} are the noise terms. The entire noise vector is ε
.
= (ε1, . . . , εn)T. The

noiseless outputs of function f∗ will be denote by y∗i
.
= f∗(xi), for i = 1, . . . , n.

3.1 Ideal Representations

We aim at quantifying the uncertainty of our estimated model. A standard way to
measure the quality of a point-estimate is to build confidence regions around it.
However, it is not obvious what we should aim for with our confidence regions.
For example, since all of our models live in our RKHS, H, we would like to treat
the confidence region as a subset of H. On the other hand, we want to minimize
the assumptions, for example, we may not want to assume that f∗ is an element
of H. Furthermore, since unless we make strong smoothness assumptions on the
underlying unobserved function, we only have information about it at the actual
inputs, {xi}. Hence, we aim for a “honest” nonparametric approach (Li, 1989) and
search for functions which correctly describe the hidden function, f∗, on the given
inputs. Then, by the representer theorem, we may restrict ourselves to a finite
dimensional subspace of H. This leads us to the definition of ideal representations:

Definition 1 Let Hα ⊆ H denote the subspace of functions that can be repre-
sented as (8). A function f0 ∈ Hα, having coefficients α0 ∈ Rn, is called an ideal
or noise-free representation of the “true” unobserved function f∗, if we have

f0(xi) = y∗i
.
= f∗(xi), for all i ∈ { 1, . . . , n }. (10)

The set of all ideal representations, w.r.t. data sample Dn, is denoted by H0 ⊆ Hα,
and the set of their coefficients, called ideal coefficients, is denoted by A0 ⊆ Rn.
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An ideal representation does not simply interpolate the observed (noisy) out-
puts {yi}, but it interpolates the unobserved (noise-free) outputs, that is {y∗i }.

A natural question which arises is: when does such an ideal representation
exist? To answer this question, first note that since ideal representations have the
form (8), equation system (10) can be rewritten in a matrix form by using the
Gram matrix. That is, vector α is an ideal coefficient vector, if and only if

Kxα = y∗, (11)

where y∗
.
= (y∗1 , . . . , y

∗
n)T. If Kx is (strictly) positive definite, which is the case if

for example the kernel is Gaussian and all inputs are distinct, then rank(Kx) = n
and every f∗ : X → R has a unique ideal representation w.r.t. data sample Dn.

On the other hand, if rank(Kx) < n, then (11) places a restriction on the
functions which have ideal representations. For example, if X = R and ker(z, s) =
〈z, s〉 = zTs, then rank(Kx) = 1 and in general only functions which are linear
on the data sample have ideal representations. This is of course not surprising, as
it is well-known that the choice of the kernel encodes our inductive bias on the
underlying true function we aim at estimating (Schölkopf and Smola, 2001).

If rank(Kx) < n and there is an α which satisfies (11), then there are infinitely
many ideal representations, as for all ν ∈ null(Kx), the null space of Kx, we have
Kx(α+ν) = Kxα + Kxν = Kxα = y∗. The opposite is also true, if α and β both
satisfy (11), then Kx(α− β) = Kxα − Kxβ = 0, thus, α− β ∈ null(Kx). Hence,
to avoid allowing infinitely many ideal representations, we may form equivalence
classes by treating coefficient vectors α and β equivalent if Kxα = Kxβ. Then,
we can work with the resulting quotient space of coefficients to ensure that there is
only one ideal representation (i.e., one equivalence class of such representations).

All of our theory goes trough if we work with the quotient space of represen-
tations, but to simplify the presentation we make the assumption (cf. Section 4.2)
that Kx is full rank, therefore, there always uniquely exists an ideal representation
(for any “true” function), whose unique coefficient vector will be denoted by α∗.

3.2 Exact and Honest Confidence Regions

Let (Ω,A, {Pθ}θ∈Θ) be a statistical space, where Θ denotes an arbitrary index set.
In other words, for all θ ∈ Θ, (Ω,A,Pθ) is a probability space, where Ω is the
sample space, A is the σ-algebra of events, and Pθ is a probability measure. Note
that it is not assumed that Θ ⊆ Rd, for some d; therefore, this formulation covers
nonparametric inference, as well (and that is why we do not call θ a “parameter”).

In our case, index θ is identified with the underlying true function, therefore,
each possible f∗ induces a different probability distribution according to which
the observations are generated. Confidence regions constitute a classical form of
statistical inference, when we aim at constructing sets which cover with high prob-
ability some target function of θ (DeGroot and Schervish, 2012). These sets are
usually random as they are typically built using observations. In our case, we
will build confidence regions for the ideal coefficient vector (equivalently, the ideal
representation), which itself is a random element, as it depends on the sample.

Let γ be a random element (it corresponds to the available observations),
let g(θ, γ) be some target function of θ (which can possibly also depend on the
observations) and let p ∈ [ 0, 1 ] be a target probability, also called significance
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level. A confidence region for g(θ, γ) is a random set, C(p, γ) ⊆ range(g), i.e., the
codomain of function g. The following definition formalizes two important types
of stochastic guarantees for confidence regions (Davies et al., 2009).

Definition 2 A confidence region C(p, γ) for g(θ, γ) is called exact, if

∀ θ ∈ Θ : Pθ( g(θ, γ) ∈ C(p, γ) ) = p, (12)

and it is called honest, if it satisfies ∀ θ ∈ Θ : Pθ( g(θ, γ) ∈ C(p, γ) ) ≥ p.

In our case, γ is basically1 the sample of input-output pairs, Dn; and the target
object we aim at covering is g(θ, γ) = α∗θ , i.e., the (unique) ideal coefficient vector
corresponding to the underlying true function (identified by θ) and the sample.
Since the ideal coefficient vector uniquely determines the ideal representation (to-
gether with the inputs, which however we observe), it is enough to estimate the
former. The main question of this paper is how can we construct exact or honest
confidence regions for the ideal coefficient vector based on a finite sample without
strong distributional assumptions on the statistical space.

Henceforth, we will treat θ (the underlying true function) fixed, and omit the θ
indexes from the notations, to simplify the formulas. Therefore, instead of writing
Pθ or α∗θ , we will simply use P or α∗. The results are of course valid for all θ.

Standard ways to construct confidence regions for kernel-based estimates typ-
ically either make strong distributional assumptions, like assuming Gaussian pro-
cesses (Rasmussen and Williams, 2006), or resort to asymptotic results, such as
Donsker-type theorems for Kolmogorov-Smirnov confidence bands. An alterna-
tive approach is to build on Rademacher complexities, which can provide non-
asymptotic, distribution-free confidence bands (Giné and Nickl, 2015). Neverthe-
less, these regions are conservative (not exact) and are constructed independently
of the applied kernel method. In contrast, our approach provides exact, non-
asymptotic, distribution-free confidence sets for a user-chosen kernel estimate.

4 Non-Asymptotic, Distribution-Free Framework

This section presents the proposed framework to quantify the uncertainty of kernel-
based estimates. It is inspired by and builds on recent results from finite-sample
system identification, such as the SPS and DP methods (Campi and Weyer, 2005;
Csáji et al., 2015; Csáji, 2016; Kolumbán, 2016; Carè et al., 2018). Novelties with
respect to these approaches are, e.g., that our framework considers nonparametric
regression and does not require the “true” function to be in the model class.

4.1 Distributional Invariance

The proposed method is distribution-free in the sense that it does not presup-
pose any parametric distribution about the noise vector ε. We only assume some
mild regularity about the measurement noises, more precisely that their (joint)
distribution is invariant with respect to a known group of transformations.

1 We used the word “basically”, since there will also be some other random elements in the
construction, e.g., for tie-breaking, and those should also constitute part of observation γ.
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Definition 3 An Rn-valued random vector v is distributionally invariant with
respect to a compact group of transformations, (G, ◦), where “◦” is the function
composition and each G ∈ G maps Rn to itself, if for all transformation G ∈ G,
random vectors v and G(v) have the same distribution.

The two most important examples of the above definition are as follows.

– If {εi} are exchangeable random variables, then the (joint) distribution of the
noise vector ε is invariant w.r.t. multiplications by permutation matrices (which
are orthogonal and form a finite, thus compact, group).

– On the other hand, if {εi} are independent, each having a (possibly different!)
symmetric distribution about zero, then the (joint) distribution of ε is invari-
ant w.r.t. multiplications by diagonal matrices having +1 or −1 as diagonal
elements (which are also orthogonal, and form a finite group).

Both of these examples assume only mild regularities about the measurement
noises: for example, it is a standard assumption in statistical learning theory that
the sample is independent and identically distributed (i.i.d.) which immediately
implies exchangeability (which is a more general concept than i.i.d.). But even this
assumption can be omitted if we work with symmetric noises, which are widespread
as most standard distributions in statistics are symmetric, such as Gauss, Laplace,
Cauchy, Student’s t, uniform, plus a large class of multimodal ones.

Note that for these examples no assumptions about other properties of the
(noise) distributions are needed, e.g., they can be heavy-tailed, with even infinite
variance, skewed, their expectations need not exist, hence, no moment assumptions
are necessary. For the case of symmetric distributions, it is even allowed that the
observations are affected by a noise where each εi has a different distribution.

4.2 Main Assumptions

Before the general construction of our method is explained, first, we highlight the
core assumptions we apply. We also discuss their relevance and implications.

Assumption 1 The kernel, k(·, ·), is strictly positive definite and all inputs, {xi},
are distinct with probability one ( in other words, ∀ i 6= j : P(xi = xj ) = 0 ).

As we discussed in Section 3.1, this assumption ensures that rank(Kx) = n (a.s.),
hence there uniquely exists an ideal representation (a.s.), whose unique ideal co-
efficient vector is denoted by α∗. The primary choices are universal kernels for
which H is dense in the space of continuous functions on compact domains of X .

Assumption 2 The input vector x and the noise vector ε are independent.

Assumption 2 implies that the measurement noises, {εi}, do not affect the
inputs, {xi}; for example, the system is not autoregressive. It is possible to extend
our approach to dynamical systems, e.g., using similar ideas as in (Csáji et al.,
2012; Csáji and Weyer, 2015; Csáji, 2016), but we leave the extension for future
research. Note that Assumption 2 allows deterministic inputs, as a special case.

Assumption 3 Noise ε is distributionally invariant w.r.t. a known group of trans-
formations, (G, ◦), where each G ∈ G acts on Rn and ◦ is the function composition.
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Assumption 3 states that we known transformations that do not change the
(joint) distribution of the measurement noises. As it was discussed in Section 4.1,
symmetry and exchangeablity are two standard examples for which we know such
group of transformations. Thus, if the noise vector is either exchangeable (e.g., it
is i.i.d.), or symmetric, or both properties hold, then the theory applies. We also
note that the suggested methodology is not limited to exchangeabe or symmetric
noises, e.g., power defined noises constitute another example (Kolumbán, 2016).

Assumption 4 The gradient, or a subgradient, of the objective w.r.t. α exists and
it only depends on the output vector, y, through the residuals, i.e., there is ḡ,

∇α g(fα,Dn) = ḡ(x, α, ε̂(x, y, α)), (13)

where the residuals w.r.t. the sample and the coefficients are defined as

ε̂(x, y, α)
.
= y − Kxα. (14)

For Assumption 4, it is enough if a subgradient is defined for each coefficient
vector α, hence, e.g., the cases of ε-insensitive and Huber loss functions are also
covered. Even in such cases (when we work with subderivaties), we still treat ḡ as a
vector-valued function and choose arbitrarily from the set of possible subgradients.

This requirement is also very mild as it is typically the case that the objective
function is differentiable or convex and has subgradients (we will present several
demonstrative examples in Section 5); furthermore, the objective typically only
depends on y through the residuals, which immediately imply Assumption 4.

To see this assume that g is differentiable; then clearly, if the objective function
can be written as g(fα,Dn) = g0(x, α, ε̂(x, y, α)) for some function g0, then

∇α g(fα,Dn) = ∇α(g0(x, α, y −Kxα)))

= −Kx (∇α g0) (x, α, y −Kxα))

= ḡ(x, α, ε̂(x, y, α)), (15)

where during the derivation we applied the chain rule, used the fact that matrix
Kx is symmetric and the definition of the residuals, ε̂(x, y, α) = y −Kxα.

4.3 Perturbed Gradients

At first, the proposed method can be understood as a hypothesis testing approach.
Given coefficient vector α ∈ Rn we test the null hypothesis H0 : α = α∗, i.e., it is
the ideal coefficient vector; against the alternative hypothesis H1 : α 6= α∗. Under
H0, the residuals of fα coincide with the “true” (unobserved) noise terms, since
by definition (for ideal representations), we have

ε̂(x, y, α∗) = y − Kxα
∗

= [ f∗(x1) + ε1, . . . , f∗(xn) + εn ]T

− [ f∗(x1), . . . , f∗(xn) ]T = ε. (16)

Consequently, based on the group of invariant transformations, G, we know that
the (joint) distribution of the residuals does not change if we transform them by
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any G ∈ G (under H0). Then, we can generate alternative realizations of the resid-
uals, ε̂(x, y, α∗), by applying a random transformation G ∈ G, and the resulting
alternative realization, G(ε̂(x, y, α∗)), will behave “similarly” (in the statistical
sense) to the original residual vector (i.e., the true noise vector).

However, under H1, if coefficient vector α does not define an ideal represen-
tation, ε̂(x, y, α), in general, will not coincide with the true noises. Therefore, the
distributions of their randomly transformed variants will be distorted and will
statistically not behave “similarly” to the original residuals.

Of course, we need a way to measure “similar behavior”. Since we want to
measure the uncertainty of a model constructed by using a certain objective func-
tion, we will measure similarity by recalculating (the magnitude of) its gradient
(w.r.t. α) with the transformed residuals and apply a rank test (Good, 2005).

Let us define a reference function, Z0 : Rn → R, and m−1 perturbed functions,
{Zi}, with Zi : Rn → R, where m is a user-chosen hyper-parameter, as follows

Z0(α)
.
= ‖Ψ(x) ḡ(x, α,G0(ε̂(x, y, α))) ‖2, (17)

Zi(α)
.
= ‖Ψ(x) ḡ(x, α,Gi(ε̂(x, y, α))) ‖2, (18)

for i = 1, . . . ,m − 1, where Ψ(x) is some (possibly input dependent) positive
definite weighting matrix, G0 is the identity element of G (w.l.o.g. the identity
transformation), and {Gi} are i.i.d. random transformations from G, sampled using
the uniform distribution on G. They are generated independently of the other
random elements of the system, such as the input vector x and the noise vector ε.

For symmetric noises, transformation Gi ∈ G is basically a random n × n
diagonal matrix whose diagonal elements are +1 or −1, each having 1/2 probability
to be selected, independently of the other elements of the diagonal.

On the other hand, for the case of exchangeable noise terms, each transforma-
tion Gi ∈ G is a randomly (uniformly) chosen n× n permutation matrix.

Weighting matrix Ψ(x) is included in the construction to allow some additional
flexibility, e.g., if we have some a priori information on the measurement noises.
We will see an example for the special case of quadratic objectives in Section 4.6.
In case no such information is available, Ψ(x) can be chosen as identity.

We can observe that for the ideal coefficient vector α∗, we have

Z0(α∗) = ‖Ψ(x) ḡ(x, α∗, ε) ‖2

d
= ‖Ψ(x) ḡ(x, α∗, Gi(ε)) ‖2

= Zi(α
∗), (19)

for i = 1, . . . ,m − 1, where ,,
d
=” denotes equality in distribution. Therefore, the

{Zi(α∗)}m−1
i=0 variables have the same (marginal) distribution, though, they are

of course not independent. It can be shown, however, that they are conditionally
independent, and therefore all of their possible orderings are equally likely, with
possible tie-breakings, which can be used to measure similar behavior.

On the other hand, for α 6= α∗, this distributional equivalence does not hold,
and we expect that if ‖α− α∗ ‖ is large enough, the reference element Z0(α) will
dominate the perturbed elements, {Zi(α)}m−1

i=1 , with high probability, from which
we can detect (statistically) that coefficient vector α is not the ideal one, α 6= α∗.
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4.4 Normalized Ranks

Now, we make our argument, including possible tie-breakings, more precise by
introducing the concept of normalized ranks. Formally, the normalized rank of the
reference element, Z0(α), among all {Zi(α)}m−1

i=0 elements is defined as follows

R(α)
.
= Rm(α)

.
=

1

m

[
1 +

m−1∑
i=1

I (Z0(α) ≺π Zi(α))

]
, (20)

where I(·) is an indicator function, namely, its value is 1 if its argument is true and
0 otherwise; m ∈ N is a user-chosen hyper-parameter; and binary relation “≺π” is
the standard “<” with random tie-breaking (according to a fixed, pre-generated
random order). More precisely, let π be a random (uniformly chosen) permutation
of the set {0, . . . ,m − 1}. Then, given m arbitrary real numbers, Z0, . . . , Zm−1,
we can construct a strict total order, denoted by “≺π”, by defining Zk ≺π Zj if
and only if Zk < Zj or it both holds that Zk = Zj and π(k) < π(j).

4.5 Exact Confidence

Parameter m influences the resolution of the confidence probability we can achieve.
Namely, a probability p ∈ (0, 1) is admissible if it can be written in the form of
p = 1− q/m, where q is an integer satisfying 0 < q < m. On the other hand, since
both m and q are (hyper) parameters, their values are user-chosen. Hence, every
rational probability p ∈ (0, 1) is admissible, by choosing m and q appropriately.
Then, a confidence set for an admissible probability p = p(m, q) is

Ap
.
= {α : R(α) ≤ p } = {α : Rm(α) ≤ 1− q/m } . (21)

One of the main questions is: what kind of stochastic guarantees do such con-
fidence regions have? The following theorem states that they are exact.

Theorem 2 Under Assumptions 1, 2, 3 and 4, the coverage probability of the
constructed confidence region with respect to the ideal coefficient vector α∗ is

P
(
α∗ ∈ Ap

)
= p = 1− q

m
, (22)

for any choice of the integer hyper-parameters satisfying 0 < q < m.

Proof Following (Csáji et al., 2015), the core idea is to show that variables

Z0(α∗), Z1(α∗), . . . , Zm−1(α∗) (23)

are uniformly ordered, which means that each ordering of them, with respect to
the strict total order ≺π, has the same probability, that is 1/m!, formally,

P
(
Zi0(α∗) ≺π Zi2(α∗) ≺π · · · ≺π Zim−1(α∗)

)
=

1

m!
, (24)

where (i0, i1, . . . , im−1) is an arbitrary permutation of (0, 1, . . . ,m − 1). This or-
dering property is not obvious, since they are not independent, even though we
already observed that they are identically distributed (for ideal coefficients).
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By definition, α∗ ∈ Ap if and only if R(α∗) ≤ 1− q/m, i.e., if the reference ele-
ment, Z0(α∗) takes one of the positions 1, . . . ,m−q in the ordering of {Zi(α∗)}m−1

i=0

variables, w.r.t. the strict total order ≺π. Then, assuming they are uniformly or-
dered (yet to be shown), we know that Z0(α∗) takes each position in the ordering
with probability exactly 1/m. Therefore, for i ∈ {1, . . . ,m}, we have

P
(
R(α∗) =

i

m

)
=

1

m
, (25)

from which it follows that P
(
α∗ ∈ Ap

)
= 1 − q/m by taking into account that

events {R(α∗) = i/m } and {R(α∗) = j/m } are disjoint, if i 6= j.
In order to show that {Zi(α∗)}m−1

i=0 are indeed uniformly ordered, we can apply
Theorem 2.17 of (Kolumbán, 2016). Our proposed approach can be interpreted as
a variant of a DP method, even though formally the DP “performance measures”
can depend on the parameters, α, the inputs, x, and the perturbed outputs, y(i),
but not directly on the perturbed residuals. Nevertheless, in our case, y(i) is

y(i) .
= fα(x) + Gi(ε̂(x, y, α)), (26)

where fα(x)
.
= [ fα(x1), . . . , fα(xn)]T. Then, obviously we can compute the trans-

formed residuals, Gi(ε̂(x, y, α)), from α, x, and y(i) by using that Gi(ε̂(x, y, α)) =
y(i) − fα(x). Hence, the DP performance measure in our case is defined as

Z(α, x, y(i))
.
= ‖Ψ(x) ḡ(x, α, y(i) − fα(x)) ‖2, (27)

which now fits the DP framework. Our Assumption 4 ensures that this function is
well-defined and, together with Assumption 2, it also guarantees that we do not
need to compute {y(i)} to evaluate the perturbed functions. Our Assumption 3
directly states that the noise, ε, is invariant under a compact group of transforma-
tions, which is a requirement of Theorem 2.17, and we already observed that true
errors coincide with the residuals of ideal representations, ε̂(x, y, α∗) = ε. ut

Theorem 2 shows that the confidence region contains the ideal coefficient vector
exactly with probability p that statement is non-asymptotically guaranteed, despite
the method is distribution-free. Since m and q are user-chosen (hyper-parameters),
the confidence probability is under our control. The confidence level does not
depend on the weighting matrix, but it influences the shape of the region. Ideally,
it should be proportional to the square root of the covariance of the estimate.

4.6 Quadratic Objectives and Symmetric Noises

If we work with convex quadratic objectives, which have special importance for
kernel methods (Hofmann et al., 2008), and assume independent and symmetric
noises, we get the Sign-Perturbed Sums (SPS) method (Csáji et al., 2015) as a
special case (using the inverse square root of the Hessian as a weighting matrix).

The SPS method uses the classical least-squares (LS) objective function,

g(fα,Dn) = ‖ z − Φα ‖2, (28)

where z denotes the vector of outputs and Φ is the regressor matrix. Objective
(28) can be seen the canonical form of many quadratic functions (cf. Section 5).
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When using the SPS method, we make the following assumptions: the noise
terms, {εi}, are independent and have symmetric distributions about zero; and
the regressor matrix, Φ, has independent rows, it is skinny and full rank.

For SPS, the reference and the perturbed functions are defined as

Zi(α)
.
= ‖ (ΦTΦ)−

1/2ΦTGi(z − Φα) ‖2, (29)

for i = 0, . . . ,m − 1, where Gi = diag(σi,1, . . . , σi,n), for i 6= 0, where random
variables {σi,j} are i.i.d. having Rademacher distribution, i.e., they take values
+1 and −1 with probability 1/2 each; and G0 = In is the identity matrix.

It is easy to see that (29) is a special case of construction (17)-(18), where
z are the outputs and Φ is computed from the inputs. Besides being exact, the
confidence regions of SPS have additional important properties, such as they are
star convex with the LS estimate, α̂, as a star center (Csáji et al., 2015). Moreover,
they have ellipsoidal outer approximations, that is there are regions of the form

A◦p
.
=
{
α ∈ Rn : (α− α̂)T 1

n
ΦTΦ(α− α̂) ≤ r

}
, (30)

where Ap ⊆ A◦p and radius of the ellipsoid, r, can be computed (in polynomial
time) by solving semi-definite programming problems (Csáji et al., 2015).

Hence, for quadratic problems, the obtained regions are star convex, thus con-
nected, have ellipsoidal outer approximation, thus bounded. These properties en-
sure that it is easy to work with them. For example, using star convexity and
boundedness, we can efficiently explore the region by knowing that every point of
it can be reached from the given star center by a line segment inside the region.
Moreover, the ellipsoidal outer approximation provides a compact representation.

5 Applications and Experiments

In this section, we show specific applications of the proposed uncertainty quantifi-
cation (UQ) approach for typical kernel methods, such as LS-SVC, KRR, ε-SVR
and KLASSO, in order to demonstrate the usage and the power of the framework.

We also present several numerical experiments to illustrate the family of confi-
dence regions we get for various confidence levels. We always set hyper-parameter
m to 100 in the experiments. The figures were constructed by Monte Carlo sim-
ulations, i.e., evaluating 1 000 000 random coefficients and drawing the graphs of
their induced models with colors indicating their confidence levels.

5.1 Uncertainty Quantification for Least-Squares Support Vector Classification

We start with a classification problem and consider the Least-Squares Support
Vector Classification (LS-SVC) method (Suykens and Vandewalle, 1999). LS-SVC
under the Euclidean distance is known to be equivalent to hard-margin SVC using
the Mahalanobis distance (Ye and Xiong, 2007). It has the advantage that it can
be solved by a system of linear equations, in contrast to a quadratic problem.

We assume that xk ∈ Rd and yk ∈ {+1,−1}, for all k ∈ {1, . . . n}, as well as
that the slack variables, i.e., the algebraic (signed) distances of the objects from
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the corresponding margins, are independent and distributed symmetrically, for the
ideal representation; which we will identify with the best possible classifier.

For simplicity, we consider linear classification, that is models of the form

hα(xk)
.
= sign(wTxk + b ) = sign(αTx̃k ), (31)

where xk is an input vector, α
.
= [ b, wT ]T and x̃k

.
= [ 1, xT

k ]T.
The standard (primal) formulation of (soft-margin) LS-SVM classifcation is

minimize
1

2
wTw + λ

n∑
k=1

ξ2
k (32)

subject to yk(wTxk + b) = 1− ξk (33)

for k = 1, . . . , n, where λ > 0 is fixed. Variables {ξi} are called the slack variables.
The convex quadratic problem above can be rewritten as minimizing

g(fα,Dn)
.
=

1

2
‖Bα ‖2 + λ ‖1n − y � (Xα) ‖2, (34)

where 1n ∈ Rn is the all-one vector, � denotes the Hadamard (entrywise) product,
X

.
= [ x̃1, . . . , x̃n ]T and the role of matrix B is to remove the bias, b, from α, i.e.,

B
.
= diag(0, 1, . . . , 1). Note that the reformulated problem (34) is unconstrained.
Observe that the objective function, g(fα,Dn), can be further reformulated to

take the canonical form of ‖ z − Φα ‖2 by using the following Φ and z,

Φ =

[√
λ (y1T

d )�X
(1/
√

2)B

]
, and z =

[√
λ1n

0d

]
, (35)

where 0d ∈ Rd is the all-zero vector. Then, we can apply SPS to the obtained (or-
dinary) LS formulation. However, we should be a careful with the transformations,
as the new problem has some auxiliary output terms, the zero part of z, for which
there are no slack variables. The residuals corresponding to that part are not even
stochastic, therefore, the last d terms of the residual vector, z − Φα, should not
be perturbed. Consequently, the transformation matrices {Gi} are defined as

Gi
.
=

[
Ḡi 0

0 I

]
, (36)

for i = 0, . . . ,m− 1, where Ḡ0 = In is the identity, and Ḡi
.
= diag(σi,1, . . . , σi,n),

for i 6= 0, where {σi,j} are i.i.d. Rademacher random variables, as before.
Then, (exact) confidence regions and (honest) ellipsoidal outer approximations

can be constructed for the best linear classifier in the domain of coefficients by the
SPS method, i.e., (29), with regressor matrix and output vector as defined in (35)
and transformations as in (36). The regions will be centered around the LS-SVM
classifier, i.e., for all (rational) p ∈ (0, 1), the coefficients of LS-SVC are contained
in Ap, assuming it is non-empty. As each coefficient vector uniquely identifies a
classifier, the obtained region can be mapped to the model space, as well.

UQ for LS-SVC is illustrated in Figure 1. The observations were generated by
adding Laplace noises to the coordinates of the corresponding class centers. The
constructed confidence regions are shown both in the coefficient and model spaces,
without the bias term, for simplicity. The possibility of constructing (honest) el-
lipsoidal outer approximations of the (exact) regions is also illustrated.
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Fig. 1 Exact, non-asymptotic, distribution-free confidence regions for ideal RKHS representa-
tions. Parts (a) and (b) present UQ for Least-Squares Support Vector Classification (LS-SVC)
with λ = 0.1 in the model and coefficient spaces, respectively. The ellipsoidal outer approx-
imations of the regions having probabilities 10 %, 50 % and 90 % are also presented in the
coefficient space. There were n = 100 observations, 50 for each class. The centers of the classes
were (0, 0.5) and (−0.5, 0). For each observation i.i.d. Laplace noises were added to the coor-
dinates of the corresponding centers. The parameters of the noises were µ = 0 (location) and
b = 1/2 (scale). The confidence level of each color can be interpreted by using the scale bars.
The regions are increasing, i.e., Ap ⊆ Aq if p ≤ q, thus, only the smallest levels are shown.

5.2 Uncertainty Quantification for Kernel Ridge Regression

Our next example is Kernel Ridge Regression (KRR) which is a kernelized version
of Tikhonov regularized LS (Shawe-Taylor and Cristianini, 2004). The KRR esti-
mate minimizes a quadratic loss function with a Hilbert space norm regularizer,

f̂KRR ∈ argmin
f∈H

1

n

n∑
i=1

wi(yi − f(xi))
2 + λ ‖f‖2H, (37)

where λ > 0, wi > 0, i = 1, . . . , n, are some a priori given (constant) weights.
After using the representer theorem, the objective function can be rewritten as

g(fα,Dn)
.
=

1

n

n∑
i=1

wi(yi − fα(xi))
2 + λ ‖f‖2H

=
1

n
‖ y − fα(x) ‖2W + λ ‖f‖2H

=
1

n
(y −Kxα)TW (y −Kxα) + λαTKxα, (38)

where fα(x)
.
= [ fα(x1), . . . , fα(xn)]T, W

.
= diag(w1, . . . , wn), and we used the

reproducing property to replace the Hilbert space norm with a quadratic term.
We can reformulate (38) in the canonical form, ‖ z − Φα ‖2, by using

Φ =

[
(1/
√
n)W

1
2 Kx

√
λK

1
2
x

]
, and z =

[
(1/
√
n)W

1
2 y

0n

]
, (39)
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where W
1
2 and K

1
2
x denote the square roots of matrices W and Kx, respectively.

Note that the square roots exist as these matrices are positive semidefinite.
Then, assuming symmetric and independent measurement noises, formula (29),

with regressor matrix and output vector defined by (39), can be applied to build
confidence regions. As in the case of LS-SVM classifier, the canonical reformulation
also contains some auxiliary terms, the zero part of z, for which there are no real
noise terms, therefore, they should not be perturbed. Thus, we should again use
the transformations defined by (36) to get guaranteed confidence regions.

Experiments illustrating the family of (exact, non-asymptotic, distribution-
free) confidence regions of KRR with Gaussian kernels and Laplacian measurement
noises, and comparing the results with that of support vector regression, are shown
in Figure 2. The discussion of the comparison is located in Section 5.3.

5.3 Uncertainty Quantification for Support Vector Regression

The previous examples were quadratic and therefore, for symmetric noises, their
uncertainty could be quantified with SPS. This may be no more true if we change
the applied norms. In this section we study support vector regression, particularly,
ε-SVR (Hofmann et al., 2008; Schölkopf and Smola, 2001; Steinwart and Christ-
mann, 2008). A well-known advantage of ε-SVR, for example, over KRR, is that it
ensures sparse representations through the ε-insensitive loss function. In order to
avoid confusion with the true noise vector, ε, we denote the tolerance parameter
of the loss function by ε̄. The primal objective function of ε-SVR is defined as

h(f,Dn)
.
=

1

2
‖ f ‖2H +

c

n

n∑
k=1

max{ 0, | 〈f, φ(xk)〉H − yk | − ε̄ }, (40)

where f ∈ H, c > 0, and φ(z)
.
= k(z, ·) is the feature map. Function (40) can be

reformulated by applying slack variables, then using standard arguments based on
the Lagrangian and the Karush–Kuhn–Tucker (KKT) conditions, we arrive at the
Wolfe dual of ε-SVR (Schölkopf and Smola, 2001), where we have to maximize

g(fα+,α− ,Dn) = yT(α+ − α−)−

− 1

2
(α+ − α−)TKx (α+ − α−)− ε̄ (α+ + α−)T

1, (41)

subject to the (linear) constraints: α+, α− ∈ [ 0, c/n ]n and (α+ − α−)T
1 = 0.

One can work directly with the quadratic dual objective, but then the confidence
region will be constructed for α+, α−. Since, α = α+ − α−, the region could be
mapped to a confidence region in the space of coefficient vectors. Alternatively,
one can reformulate (41) directly for coefficient vector α as

g(fα,Dn) = yTα− 1

2
αTKxα− ε̄ ‖α‖1, (42)

where ‖ · ‖1 is the 1-norm. A subgradient of (42) w.r.t. α is given by

∇α g(fα,Dn) = y − Kxα − ε̄ sign(α), (43)

where sign(·) denotes the signum function and it is understood component-wise.
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(a) UQ for KRR (λ = 0.1), SPS
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(b) UQ for ε-SVR (ε̄ = 0.2), sign-changes

Fig. 2 Exact, non-asymptotic, distribution-free confidence regions for ideal RKHS represen-
tations. Parts (a) and (b) show UQ for Kernel Ridge Regression (KRR) with λ = 0.1 and
ε-Support Vector Regression (ε-SVR) with c = 250 and ε̄ = 0.2, respectively. The same data
was used for both regression problems, namely, the true function was f∗(x) = x sin(x), there
were n = 20 observations having i.i.d. Laplace noise with parameters µ = 0 (location) and
b = 1/2 (scale), and Gaussian kernels were applied with σ = 1/2. Part (a) was built by the
Sign-Perturbed Sums (SPS) method, (29), and formula (44) was used with sign-change matri-
ces for part (b). The confidence level of each color can be interpreted by using the scale bars.
The regions are increasing, i.e., Ap ⊆ Aq if p ≤ q, thus, only the smallest levels are shown.

Then, building on the subgradient of the dual objective, i.e., (43), reference
and perturbed evaluation functions can be defined, for i = 0, . . . ,m− 1, as

Zi(α)
.
= ‖Gi (y −Kxα) − ε̄ sign(α) ‖2 , (44)

where G0 is the identity matrix and Gi is a (uniformly chosen) element of the
applied compact transformation group, such as a diagonal matrix with ±1 entries,
for symmetric noises (or permutation matrices for exchangeable noises, etc.).

A numerical experiment illustrating the obtained family of confidence regions
of the ε-SVR estimate for various significance levels is shown in Figure 2.

The same data sample was used for all regression models, to allow their com-
parison. The noise affecting the observations was Laplacian, thus heavy-tailed.
Since the coefficient space is high-dimensional, and there is a one-to-one corre-
spondence between coefficient vectors and kernel models, the confidence regions
are mapped and shown in the model space, i.e., in the space of RKHS functions.

Note that it is meaningful to plot the confidence regions even for unknown
input values, because the confidence regions are built for the ideal representation,
which belongs to the chosen RKHS, unlike the underlying true function.

We can observe that the uncertainty of ε-SVR was higher than that of KRR,
which can be explained as the price of using ε-insensitive loss. As the experiments
with KLASSO show (cf. Figure 3), the higher uncertainty of ε-SVR is not simply a
consequence of sparse representations, as KLASSO also ensures sparsity. Naturally,
the confidence regions are also influenced by the specific choice of hyper-parameters
which should be taken into account when the confidence regions are compared.
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5.4 Uncertainty Quantification for Kernelized LASSO

Our last example covers the LASSO (least absolute shrinkage and selection oper-
ator) method, which ensures sparsity via 1-norm regularization. Let us consider
the kernelized version of LASSO with objective (Wang et al., 2007):

g(fα,Dn)
.
=

1

2
‖ y −Kxα ‖2 + λ ‖α ‖1, (45)

were ‖ · ‖1 is the L1 (or Manhattan) norm. Though, function (45) cannot be
written as ‖ z − Φα ‖2, the proposed framework, i.e., construction (17)-(18), can
still be applied. A sub-gradient of the KLASSO objective (45) is given by

∇α g(fα,Dn) = Kx(Kxα− y) + λ sign(α), (46)

where the sign(·) function is applied component-wise. Then, using the construction
of (17)-(18), the reference and perturbed functions can be defined as

Z0(α)
.
= ‖Kx(Kxα− y) + λ sign(α) ‖2 , (47)

Zi(α)
.
= ‖KxGi (Kxα− y) + λ sign(α) ‖2 , (48)

were {Gi} are from a suitable transformation group, e.g., diagonal matrices with
Rademacher random variables as diagonal elements for symmetric noises.

Numerical experiments illustrating the confidence regions we get for KLASSO
are presented in Figure 3. The figure also presents the confidence regions con-
structed by applying the standard Gaussian Process (GP) regression with esti-
mated parameters. Note that the GP confidence regions are only approximate,
namely, they do not come with strict finite-sample guarantees unless the noise
is indeed Gaussian. Moreover, during our experiment the noise had a Laplace
distribution, which has a heavier tail than Gaussians, therefore even if the true
covariance of the noise was known, the confidence regions of GP regression would
underestimate the uncertainty of the estimate (would be too optimistic), while the
confidence regions of our framework are always non-conservative, independently of
the particular distribution of the noise, assuming it has the necessary invariance.

Also note that for our method the noises can even have different (marginal)
distributions for each input. Therefore, even though the confidence regions gener-
ated by GP are smaller than the ones our framework produces, the GP regions are
imprecise and underestimate the uncertainty of the model, while ours come with
strict finite-sample guarantees for a broad class of noises (e.g., symmetric ones).

6 Conclusions

In this paper we addressed the problem of quantifying the uncertainty of kernel
estimates by using minimal distributional assumptions. The main aim was to mea-
sure the uncertainty of finding the (noise-free) ideal representation of the underly-
ing (hidden) function at the available inputs. By building on recent developments
in finite-sample system identification, we proposed a method that delivers exact,
distribution-free confidence regions with strong finite-sample guarantees, based on
the knowledge of some mild regularity of the measurement noises. The standard
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(a) UQ for KLASSO with Gaussian kernel

0 2 4 6 8 10

Input (X)

-10

-8

-6

-4

-2

0

2

4

6

8

10

O
u

tp
u

t 
(Y

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true function

GPR estimation

ideal representation

(b) UQ with Gaussian Process Regression

Fig. 3 Exact, non-asymptotic, distribution-free confidence regions for ideal RKHS representa-
tions obtained using our framework and approximate confidence regions obtained by Gaussian
Process (GP) regression (Rasmussen and Williams, 2006). Part (a) shows UQ for Kernelized
LASSO with λ = 1, and part (b) shows UQ with GP. The applied transformations were
sign-change matrices. The same data was used for both regression problems, namely, the true
function was f∗(x) = x sin(x), there were n = 20 observations having i.i.d. Laplace noise with
parameters µ = 0 (location) and b = 1/2 (scale), and Gaussian kernels were applied with σ = 1.
The confidence level of each color can be interpreted by using the scale bars. The confidence
regions are increasing, i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels are shown.

examples of such regularities are exchangeable or symmetric noise terms. Note that
either of these properties in itself is sufficient for the theory to be applicable.

The needed statistical assumptions are very mild, as for example, no particular
(parametric) family of distributions was assumed, no moment assumptions were
made (the noises can be heavy-tailed, and may even have infinite variances); more-
over, for the case of symmetric noises, it is allowed that each noise term affecting
the observations has a different distribution, i.e., the noise can be nonstationary.

The core idea of the approach is to evaluate the uncertainty of the estimate
by perturbing the residuals in the gradient of the objective function. The norms of
the (potentially weighted) perturbed gradients are then compared to that of the
unperturbed one, and a rank test is applied for the construction of the region.

The proposed method was also demonstrated on specific examples of ker-
nel methods. Particularly, we showed how to construct exact, non-asymptotic,
distribution-free confidence regions for least-squares support vector classification,
kernel ridge regression, support vector regression and kernelized LASSO.

Several numerical experiments were presented, as well, demonstrating that the
method provides meaningful regions even for heavy-tailed (e.g., Laplacian) noises.
The figures illustrate whole families of confidence regions for various standard
kernel estimates. Ellipsoidal outer approximations are also shown for LS-SVC.
Additionally, the method was compared to Gaussian Process (GP) regression, and
it was found that although the (approximate) GP confidence regions are smaller in
general than our (exact) confidence sets, but the GP regions are typically imprecise
and they underestimate the real uncertainty, e.g., if the noises are heavy-tailed.
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Our approach to build non-asymptotic, distribution-free, non-conservative con-
fidence regions for kernel methods can be a promising alternative to existing con-
structions, which arch-typically either build on strong distributional assumptions
or on asymptotic theories or only bound the error between the true and empirical
risks. As our approach explicitly builds on the constructions of the underlying
kernel methods, it can provide new insights on how the specific methods influ-
ence the uncertainty of the estimates, and therefore, besides being vital for risk
management, it also has the potential to inspire refinements or new constructions.

There are several open questions about the framework which can facilitate
future research directions. For example, finding efficient outer-approximations for
cases when the objective function is not convex quadratic should be addressed. Also
the consistency of the method should be studied to see whether the uncertainty
decreases as the sample size tends to infinity. Finally, it would be interesting,
as well, to extend the method to (stochastic) dynamical systems and to formally
analyze the size and shape of the constructed regions in a finite-sample setting.
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A. Additional Numerical Experiments

In this appendix we provide additional numerical experiments supporting the pre-
sented framework. The effects of various measurement noises, kernel functions and
sample sizes on the obtained (families of) exact, non-asymptotic, distribution-free
confidence regions were studied. The true function was always f∗(x) = x sin(x)
and the inputs were chosen equidistantly from [ 0, 10 ]. The regions were evaluated
by the same methodology (Monte Carlo simulations) as in Section 5.

A.1 Various Noise Distributions

First, we investigated how the distribution of the noise affects the regions. Par-
ticularly, we applied Gaussian, Laplacian, Uniform and Binomial noises on the
outputs of the true function and built the regions for Kernel Ridge Regression
(KRR). All noises had zero mean (for the Binomial case the theoretical mean was
subtracted from the generated noises), and the parameters of the distributions
were set in a way to ensure that all of their variances were the same (i.e., one).

Figure 4 illustrates the obtained families of confidence sets. It can be observed
that their shapes and sizes show only small fluctuations indicating that the par-
ticular choice of the distribution has a limited effect on the confidence regions
(assuming it has zero expectation and we keep the variance of the noise fixed).

A.2 Different Kernel Functions

Next, the effect of the applied kernel was studied. Figure 5 illustrates UQ for ker-
nelized LASSO with Gaussian, Laplacian, truncated parabolic (k(x, y) = max{1−
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(a) UQ for KRR, Gaussian noise
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(b) UQ for KRR, Laplace noise
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(c) UQ for KRR, Uniform noise
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(d) UQ for KRR, Binomial noise

Fig. 4 Exact, non-asymptotic, distribution-free confidence regions for ideal representations
w.r.t. various noise distributions. The figure shows UQ for Kernel Ridge Regression (KRR)
with λ = 0.1 and Gaussian kernels with σ = 1/2. Parts (a), (b), (c) and (d) demonstrate
the obtained family of confidence regions for i.i.d. Gaussian, Laplace, Uniform and Binomial
noises, respectively. The parameters of all distributions were set to ensure that each of them
has zero mean and unit variance. For the Binomial case, the “number of trials” parameter was
20, and so the “success probability” p was set to satisfy 20p(1 − p) = 1 (thus, p ≈ 0.052786).
Then, from each Binomial observation 20p was subtracted to ensure zero mean. In all cases
n = 20 outputs were measured at equidistant inputs. The Sign-Perturbed Sums (SPS) method
was applied to construct the regions, hence, the applied transformations were sign-changes.
The confidence levels can be interpreted by using the scale bars. The regions are increasing,
i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels are shown.

c‖x− y‖2, 0}) and rectangular kernels (k(x, y) = I(‖x− y‖ ≤ c), where the noises
were Laplacian. The results show that the choice of the kernel has a significant
effect on both the obtained point-estimate (regression model) and the correspond-
ing confidence sets, e.g., the Laplacian kernel was more sensitive to outliers and
the regions for the rectangular kernel were much larger than the other ones.



Distribution-Free Uncertainty Quantification for Kernel Methods 21

0 2 4 6 8 10

Input (X)

-10

-8

-6

-4

-2

0

2

4

6

8

10

O
u

tp
u

t 
(Y

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true function

kLASSO & Gaussian

ideal representation

(a) UQ for kLASSO, Gaussian kernel
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(b) UQ for kLASSO, Laplacian kernel
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(c) UQ for kLASSO, Parabolic kernel
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(d) UQ for kLASSO, Rectangular kernel

Fig. 5 Exact, non-asymptotic, distribution-free confidence regions for ideal representations
w.r.t. different kernel functions. The figure shows UQ for kernelized LASSO with λ = 1. There
were n = 20 observations having i.i.d. Laplace noises with parameters µ = 0 (location) and
b = 1/2 (scale). Parts (a), (b), (c) and (d) demonstrate the obtained family of confidence regions
when using Gaussian, Laplacian, truncated parabolic and rectangular kernels, respectively. For
the Gaussian and Laplacian kernels σ = 1/2, for the truncated parabolic kernel c = 1, and for
the rectangular kernel c = 1/38. The same data was used for all regression problems, and
the applied transformations were sign-changes. Observe that the Laplacian kernel was more
sensitive to the outlier between 4 and 5. The obtained regions for the rectangular kernel are
much larger than the other regions, indicating a high uncertainty of such an overly localized
approach. The confidence levels can be interpreted by using the scale bars. The regions are
increasing, i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels are shown.

A.3 Increasing the Sample Size

Finally, we have experimented with kernelized LASSO to see how increasing of the
sample size affects the obtained confidence regions. The measurement noises were
Laplacian (hence heaviy-talied), and the applied sample sizes were n = 10, 20, 50,
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(a) UQ for kLASSO, n = 10
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(b) UQ for kLASSO, n = 20
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(c) UQ for kLASSO, n = 50
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(d) UQ for kLASSO, n = 100

Fig. 6 Exact, non-asymptotic, distribution-free confidence regions for ideal representations
w.r.t. increasing sample sizes. The figure shows UQ for kernelized LASSO with λ = 1 and
using Gaussian kernels with σ = 1/2. The observations had i.i.d. Laplace noises with parameters
µ = 0 (location) and b = 1/2 (scale). Parts (a), (b), (c) and (d) demonstrate the obtained family
of confidence regions when using samples of size n = 10, 20, 50, and 100, respectively. The
applied transformations were sign-changes. Observe that the confidence regions shrink around
the ideal representations, despite the number of coefficients also increases with the sample size.
This is indicative of the phenomenon that the regions have a consistency property. This may
be especially true if we apply a universal kernel, such as the Gaussian one, for which the ideal
representations can approximate arbitrary well any continuous functions on a compact domain.
The confidence levels can be interpreted by using the scale bars. The regions are increasing,
i.e., Ap ⊆ Aq if p ≤ q, therefore, only the smallest levels are shown.

and 100. The results are shown in Figure 6 and are indicative of the phenomenon
that the confidence regions, and hence the uncertainties, shrink as the sample size
tends to infinity, even though the number of coefficients increases with the sample
size. This experiment supports that the approach is “consistent”, nevertheless, we
leave the theoretical investigation of this phenomenon for further study.
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24 Balázs Csanád Csáji, Krisztián Balázs Kis

Schölkopf B., Herbrich R., Smola A. J. (2001) A generalized representer theorem.
In: Annual Conference on Learning Theory (COLT), Springer, pp. 416–426

Shawe-Taylor J., Cristianini N. (2004) Kernel Methods for Pattern Analysis. Cam-
bridge University Press

Steinwart I., Christmann A. (2008) Support Vector Machines. Springer Science &
Business Media

Suykens J. A. K., Vandewalle J. (1999) Least squares support vector machine
classifiers. Neural Processing Letters 9(3):293–300

Vapnik V. N. (1998) Statistical Learning Theory. Wiley-Interscience
Vovk V., Gammerman A., Shafer G. (2005) Algorithmic Learning in a Random

World. Springer Science & Business Media
Wang G., Yeung D.-Y., Lochovsky F. H. (2007) The kernel path in kernelized

LASSO. In: Proceedings of the Eleventh International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 580–587

Ye J., Xiong T. (2007) SVM versus least squares SVM. In: 11th International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 644–651

Yu Y., Cheng H., Schuurmans D., Szepesvári Cs. (2013) Characterizing the repre-
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