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INTRODUCTION
Adenoviruses (AdVs; family Adenoviridae) are medium size, 
nonenveloped DNA viruses (70–90 nm in diameter).1 They are 
classified in five genera with all human AdV (HAdV) serotypes 
belonging to the genus Mastadenovirus (Figure 1).2 HAdVs are 
further grouped within species Human mastadenovirus A to G 
(HAdV-A to G) based on their phylogeny, genome organization, 
G+C content, hemagglutination pattern, and other biological 
properties. At present, 56 distinct serotypes belonging to HAdV-A 
to G have been described. Serotype-dependent, HAdV infections 
are tropic to the eye, respiratory system, kidney, or gastrointes-
tinal tract. Although HAdV infection poses a risk for immune-
compromised individuals, infections are mostly subclinical in 
immunocompetent subjects.3

The best studied member of the HAdV species is serotype 5 
(HAdV-5, species HAdV-C). Structural studies demonstrated that 
the HAdV-5 particle has an icosahedral capsid (~90 nm in diam-
eter) that protects a double-stranded linear single DNA genome 
~35 kb long.4,5 The capsid predominantly contains three proteins 
called hexon, penton base, and fiber which interact directly and 
are also held together by a defined number of so-called cement 
proteins.6,7 The hexon protein is the most abundant capsid 
 protein and contains the hypervariable regions (HVRs) which 
are  serotype-specific protein sequences and hence are considered 
major immune determinants.8 At each of the 12 icosahedron ver-
tices, 5 penton polypeptides form a base (penton base) from which 

a trimeric fiber protein protrudes away. The fiber protein is known 
to be the main determinant of serotype tropism.4,5 For  instance, 
for HAdV-5, it has been shown that the cellular coxsackievirus 
and adenovirus receptor (CAR), a tight junction protein, acts as 
its primary receptor whereby the HAdV-5 fiber protein binds 
CAR directly.9 It has been further shown that HAdV-5 virus  
internalization, upon binding to CAR, is promoted by the RGD 
protein motif present in the penton base by directly binding to 
 cellular αvβ5 integrins, a process that further involves clathrin-
coated vesicles and dynamin-dependent endocytosis.10,11 Studies 
with other HAdV serotypes have identified that receptor molecules 
other than CAR can be utilized, like the cellular CD46 protein or  
desmoglein-2 by HAdV-B species, as well as sialic acid moieties of 
relevance to members of the HAdV-D species.12 Upon cell entry, the 
virus is located in endosomes and endosomal  membrane  rupture,  
mediated by the viral pVI, liberates semi-uncoated viral particles 
into the cell cytoplasm,13 which are then dynein trafficked to the 
nucleus.11

HAdV-5 infects many cell types, including low-replicative or 
quiescent cell populations and professional antigen-presenting  
cells. Owing to decades of intensive research, the HAdV-5 
genome is now easy to engineer, yielding stable recombinant 
replication-deficient HAdV-5 particles with large foreign DNA 
cloning  capacity. The virus genome remains episomal summon-
ing a safer profile in comparison to many other viral vectors. 
Moreover, HAdV-5 vectors can be produced on an industrial 
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Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in 
preclinical models and clinical trials over the past two decades. However, the thorough understanding of the 
HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High 
vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede 
the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained 
working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehen-
sive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as 
well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the 
ongoing vectorization efforts to obtain vectors based on alternative serotypes.
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Figure 1 The Adenoviridae diversity tree. Maximum likelihood analysis of the full DNA-dependent DNA polymerase amino acid sequences to show 
the evolutionary distance of the fully sequenced adenovirus serotypes and certain not serotyped strains. Model selection by ProtTest proposed 
LG+I+G. User tree gained by distance matrix analysis (ProtDist by JTT, Fitch followed by global rearrangement). The PhyML calculated tree is visualized 
by Mega6. Nonrooted calculation. For visualization of the supposed evolutionary history, the fish adenovirus (AdV; white sturgeon AdV-1) was applied 
as outgroup. Vectorized types/strains (if published) are shown by red and bold letters. (Porcine AdV-4 and fowl AdV-10 are not shown on the tree as 
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scale under good manufacturing procedures achieving titers of 
up to 1013  replication-deficient virus particles per ml (VP/ml). 
All these attributes make HAdV-5 vectors the most preferred 
vector type used to date in vaccine, cancer, and gene therapy  
trials,14,15 and first in man products based on HAdV-5 have been 
approved.16 However, two decades of intensive research have also 
highlighted certain challenges associated with the use of HAdV-5 
vectors that limit their clinical application. These include both 
a high innate immune toxicity profile associated with a marked 
liver tropism when HAdV-5 vectors are delivered intravenously 
(i.v.), and a worldwide high preexisting adaptive immunity (PEI) 
against HAdV-5 in man, observed also for many other common 
HAdV serotypes. These biological findings and the subsequent 
disqualification of HAdV-5 vectors for certain product indica-
tions is  discussed. Also, ongoing research to find alternatives to 
HAdV-5 vectors usage is described, with special attention given to 
the  discovery and vectorization of novel AdV types isolated from 
human and nonhuman tissues.

CHALLENGES WITH THE DEVELOPMENT OF  
HADV-5–BASED MEDICINAL PRODUCTS
Innate immunity-associated toxicity in response to 
HAdV-5 delivery
A high i.v. dose of vector (>1013 VP) has been shown to  overwhelm 
the innate immune mediators leading to a systemic cytokine 
shock which eventually resulted in the death of a patient enrolled 
in a clinical gene therapy trial.17 It was argued that administration  
of such huge systemic doses was needed to surpass the HAdV-5 
vector-sequestering pharmacological “sink” in human liver 
(see  next  section). Although other routes or ex vivo transgene 
delivery have been shown to be plausible approaches in some 
HAdV-5 applications,18–20 treatment of cardiovascular diseases or 
disseminated tumors requires the vectors to be delivered systemi-
cally.21 Moreover, vector bloodstream injection provides a more 
straightforward product application approach than, e.g., surgically 
invasive delivery methods.

A major disadvantage for the vectors’ interaction with host 
immunity is imposed by constraints in their genetic design, which 
in order to make them biologically safer (replication-deficient) and 
provide room for larger foreign DNA inserts, has crippled them 
from their inherent immune-evasive countermeasures (encoded 
by proteins transcribed from the viral E1, E3, and E4 regions).22 
For instance, a HAdV-5 vector that still expressed genes located 
in the E3 region demonstrated prolonged transgene expression as 
compared to its E3-deleted counterpart upon i.v. injection in rats, 
thus demonstrating the ability of the HAdV-5-E3+ vector to escape 
immune eradication.23 Next to these genetic changes and their 
impact on HAdV-5 in vivo interaction with the immune system, it 
has also been described that expression of a foreign transgene can 

limit the survival of the HAdV-5 vector in vivo, although this clearly 
will be a challenge for the use of AdVs vectors in general. Here, the 
use of less toxic regulatory sequences should as well be considered.24

The HAdV-5 vector capsid proteins, dsDNA, and VA-RNAs 
have been shown to trigger innate host immune responses.25,26 
From the first cell attachment event, through their endosomal 
trafficking, along their cytosolic presence, and final delivery of 
the viral genome into the cellular nucleus, HAdV-5 is exposed to 
cell molecular sensors (“pathogen recognition receptors”). Cell 
surface-located toll-like receptor 2 (and endosomal membrane-
located toll-like receptor 9 recognize and respond to HAdV-5 
capsid components.27,28 Nucleotide-binding oligomerization 
domain-like receptors were found to be involved in the recog-
nition of HAdV-5 dsDNA patterns,22 and the cytosolic retinoic 
acid-inducible gene I was described to induce type I interferons in 
response to HAdV-5–derived VA-RNAs.29 Activation of pathogen 
recognition receptors leads to the setting of a cellular antiviral state 
involving the secretion of proinflammatory cytokines (TNFα, IL6, 
IL12, IFNγ, IL1α, and IL1β) and chemokines (RANTES, MCP-1,  
KC, MIP-1α, MIP1β, and IP10).22 Notably, innate immune 
responses to AdV vectors have been shown to be dose dependent 
for HAdV-5, but more importantly, it has also been demonstrated 
that the host innate immune response can be strikingly different 
in response to different HAdVs, or AdVs in general for that matter, 
spurring the search for other AdVs which are less prone to trigger 
a systemic cytokine storm upon in vivo administration.

HAdV-5–associated hepatotoxicity
Whereas seemingly promising for hepatic gene therapy, liver 
sequestering of systemically delivered HAdV-5 vectors is a major 
problem when the vector needs to express the foreign transgene 
in other tissues. High doses (1012–1013 VP) of HAdV-5 have been 
administered in an attempt to counterbalance the liver seques-
tering, thereby risking hepatic injury and inflammatory shock 
syndrome as HAdV-5-damaged liver macrophages are a major 
source of proinflammatory cytokines.30 Before reaching the liver, 
HAdV-5 vectors interact with multiple blood components, i.e., 
erythrocytes, thrombocytes, and circulatory proteins like immu-
noglobulins, complement system, and blood coagulation factors.30  
For instance, HAdV-5 binding to erythrocytes was reported to 
take place directly via CAR and complement receptor 1.31,32  
As the most abundant blood cell type, erythrocyte interaction 
with HAdV-5 is of high pharmacological relevance. Hence, gen-
erally accepted mouse and nonhuman primate models may not 
accurately depict HAdV-5 vector biodistribution since their 
erythrocytes do not express CAR.32,33 Naturally occurring immu-
noglobulins have been described to influence HAdV-5 vector 
pharmacology too, gating vectors’ clearance by the liver,34–36 a pro-
cess that was shown to be favored by complement system factors.34

their DNA polymerase genes have not been published. Neither are shown rhesus AdV-51 to -53 as their DNA polymerase sequences in GenBank are 
shorter than those of other adenoviruses most probably due to not recognizing their spliced nature). Vectors that have reached human clinical trials 
are designated by a red arrow. The HAdV-5 recombinants engineered with fibres of other AdV types are shown by green bold letters. The several 
human adenoviruses that have been both vectorized and their fibers pseudotyped on human adenovirus 5 are shown with their name in green and 
the number in red. When the hexon hypervariable regions were pseudotyped onto HAdV-5, the serotype number is shown by lilac letters. Branches 
of AdVs that have two fiber genes are shown by blue and thicker lines. Official species are shown in italics; proposed but not yet accepted species are 
in normal letters. Genera are shown in italics and bold. The scale bar shows the evolutionary distance of 0.1 aa substitution per position. The word of 
“adenovirus” is removed from the type and strain names. Abbreviated names after the type numbers show the hosts of the simian adenoviruses; bo: 
bonobo, ch: chimpanzee, cr: crab eating macaque; go: gorilla; gr: grivet; rh: rhesus macaque.
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Of great relevance in HAdV-5 vector liver tropism, a high-
affinity interaction between HAdV-5 hexon HVRs and blood 
coagulation factor X (FX) was demonstrated.37–40 This interac-
tion proved not to be exclusive for HAdV-5 since it also occurs 
with other HAdV serotypes (members of species HAdV-A, B, C, 
and D) indicating a conserved trait in HAdV biology,37 that may 
have further relevance in AdV infections as it was  suggested for 
both factor IX (FIX) and FX.41,42 At present, there is  controversy 
on whether the interaction between HAdV-5 and FX pro-
motes the innate immune response43 or protects HAdV-5 vec-
tors from it.44 In  this regard, it is relevant to comment that no  
significant activation of innate immune-relevant primary human 
 mononuclear phagocytes by HAdV-5 loaded with human FX has 
been observed.45

At the liver site, Kupffer cells (KC) and liver sinusoidal endo-
thelial cells act as principal sinks for i.v.-injected HAdV-5 vectors, 
preventing efficient hepatocyte transduction.30,46 The HAdV-5 
engulfment by phagocytic KC occurs by several mechanisms 
including charge-dependent scavenger receptor-A (SR-A),47,48 
bridging natural IgM antibodies and complement factors.35 
Nonphagocytic liver sinusoidal endothelial cells are thought 
to capture HAdV-5 vectors by pinocytosis in a process that 
may involve scavenger receptor expressed on endothelial cells 
(SREC-I).46,48 In order to attempt liver de-targeting of HAdV-5 
vectors, saturation of liver macrophages by pharmacological treat-
ments (i.e., clodronate liposomes) or predosing with a HAdV-5 
empty backbone vector has been attempted.49 As described earlier, 
these procedures should be carefully studied in preclinical models 
as profound damage to liver cells could severely impact overall 
innate toxicity. Recently, Piccolo et al.50 showed that KC and liver 
sinusoidal endothelial cell barriers could be surpassed by helper 
dependent HAdV-5 (HD HAdV-5) vectors in a mouse model by 
pretreating the animals with peptides designed to block the scav-
enger receptors SR-A and SREC-I, increasing hepatocytes trans-
duction and keeping IL-6 levels steady. In addition, a prominent 
role of the hexon protein in liver entrapment has been illustrated 
by the reduced liver tropism of HAdV-5 vectors carrying hexon 
HVRs from either HAdV-6 or HAdV-48 serotypes.51,52 As such, 
research is progressing to find alternative and safer means to de-
target HAdV-5 vectors from the liver.

HAdV preexisting host immunity
Immunological host memory determines the third major issue 
encountered with HAdV-5 vectors as at early adulthood a large 
percentage of the humans worldwide carry potent neutralizing 
antibodies (nAbs) against HAdV-5 and many other HAdV sero-
types. Circulating anti-HAdV-5 antibodies have been shown to 
significantly dampen the ability of HAdV-5 vectors to transfer the 
gene of interest to the target tissue.53,54 Although geographically 
dependent, anti-HAdV-5 nAbs prevalence have been reported to 
be over 50% worldwide and even higher in sub-Saharan regions, 
which is an important region for many AdV-based vaccine strate-
gies including efforts to develop vaccines against human immu-
nodeficiency virus (HIV), Plasmodium falciparum (malaria) 
and Mycobacterium tuberculosis (TB).55,56 Moreover, high anti-
HAdV-5 nAbs titres have been found in human individuals 
worldwide.56 In-depth research demonstrated that the majority 

of nAbs are targeted to the hexon HVR protein sequences and 
to a much lesser extent to the fiber knob protein domains.57 As a 
consequence, swapping the HAdV-5 HVRs with HVRs selected 
from a different AdV serotype suffices to bypass HAdV-5 vector 
neutralization in vivo.58 Of note, this neutralization bypass strat-
egy was not achieved when the HAdV-5 fiber knob domain was 
swapped using a knob domain from a different AdV serotype.59 
However, the role of anti-fiber nAbs in vector neutralization needs 
to be further researched as studies to date were performed with 
animals pre-immunized only once with the AdV vector towards 
which the acquired immunity was to be overcome.60 It has been 
demonstrated that anti-fiber nAbs are more abundant after two 
or more immunizations which may better resemble what is actu-
ally encountered in nature.61 Furthermore, a prominent role in 
intracellular trafficking has been assigned to the HAdV-5 fiber 
protein,62 a process that has been recently related to the enhance-
ment of cellular antiviral innate immune responses.63 Thus, chime-
ric HAdV-5 vectors with swapped hexon HVRs and fiber could be 
considered optimal and this strategy warrants further research.57

Next to the detrimental effect on gene transfer effi-
ciency of nAbs against HAdV-5 vectors, several studies have  
demonstrated a widespread existence of HAdVs cross- 
reactive T cells epitopes.64–66 Their presence within a majority  
of the human population, their demonstrated effector and  
memory  poly-functionality, and cross-reactivity among sero-
types  emphasize their significant role in PEI.67 Again, the hexon 
protein is a major immunological target as it contains the most 
potent epitopes identified to date,68–70 although the E2b encoded 
viral DNA polymerase is also abundantly recognized by cyto-
toxic T cells at high frequency.71,72 Notably, cytotoxic T cell 
responses have been described to be conserved between diverse 
HAdV serotypes but also to a certain extent among AdVs  
isolated from hosts other than humans.67,73

Based on the challenges with HAdV-5 vectors described 
above, strategies to circumvent the observed limitations are 
being actively researched and include: (i) temporarily altering the 
host immune system in an attempt to dampen the anti-HAdV-5 
immune response, (ii) change the vectors’ genomic design, and 
(iii) modify or shield the HAdV-5 vector capsids.74 With regard to 
strategies that dampen the host immune response, suppression of 
the host immune system before HAdV-5 vector delivery has been 
attempted in mouse and nonhuman primate models.75,76 Although 
these strategies achieved some success, they are inherently risky 
given the fact that eligible patients for gene therapy approaches 
likely should not be exposed to immune suppressive agents.

With respect to the second strategy, stripping the HAdV-5 
vector genome of viral genetic sequences permitted the produc-
tion of less immunologically visible vectors with larger clon-
ing capacities. For instance, HAdV-5 vectors further deleted of 
the viral DNA polymerase gene (E2b), and the so-called gutless 
or helper-dependent vectors, that lack all viral genes and can fit 
in up to 36 kb of exogenous DNA, have proved advantageous in 
comparison to E1/E3 deleted HAdV-5 antecedents. Yet, the fun-
damental role of the capsid itself was shown when HD HAdV-5 
recalled early innate immune responses,77 and their systemic 
delivery to baboons resulted in inflammatory shock.78 As described 
earlier, insertion of the viral E3-region back into an E1/E3 deleted 
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HAdV-5 significantly diminished the immune response against 
the HAdV-5 vector and resulted in prolonged in vivo transgene 
expression.23 Similarly, a significant reduction in the anti-HAdV-5 
vector innate immune response was accomplished by insertion 
of the human complement inhibitor decaying-accelerating factor 
into the HAdV-5 capsid.79

The third strategy, i.e., capsid shielding, has been researched 
for both reduction of hexon HVR-antigen exposure as well as for 
HAdV-5 vector tropism retargeting.80–82 However, unless fused 
to the amino terminus of pIX, the insertional size of shield-
ing moieties is limited, and this approach has demonstrated to 
severely impact the manufacturability of such “shielded” and/or 
“re-targeted” vectors given the low yield of replication-deficient 
HAdV-5 vectors obtained.83 Another strategy to shield the anti-
genic HAdV-5 vector sites is being investigated whereby coating 
of HAdV-5 capsids using diverse materials, like polymers and 
lipidic envelopes is attempted.84 Less toxic profiles and increased 
half-life of the vectors in blood were described on i.v. delivery 
of HAdV-5 vectors shielded with poly[N-(hydroxypropyl)meth-
acrylamide] or polyethylene glycol.85,86 Circumvention of HAdV-5 
PEI in experimental mouse and nonhuman primate models using 
this strategy was also described.87 Given that polymers interaction 
with capsid components is noncovalent and unspecific, efforts to 
determine a more controlled conjugation have been researched, 
like using the FX protein as a PEGylation adapter88 or insertion of 
a biotin-containing tag in the HVR5-loop of the HAdV-5 hexon 
protein.89 However, these studies also clearly demonstrated that 
transgene expression was negatively affected by the coat and 
therefore most recent advances focus on a polymer formulation 
that can be lost upon vector entry.90

Due to the challenges described above with HAdV-5 vectors 
and the overwhelming evidence that HAdV-5 innate toxicity and 
PEI are inextricably linked to the capsids protein composition, 
the research community is actively seeking strategies to alter or 
exchange HAdV-5 capsid proteins from those of other serotypes 
and explore the use of vectors based on other AdVs from either 
human or nonhuman origin.

ALTERNATIVES TO HADV-5 VECTORS
HAdV-5–based capsid chimeras
Two decades of intense research have resulted in a thorough 
 understanding of adenovirus biology, cell propagation require-
ments, genome engineering, and a wealth of basic tools to 
 facilitate the construction of HAdV-5 capsid chimeric vectors.  
Initially, efforts to pseudotype HAdV-5 focused on the fiber 
 protein to change tropism.91–94 Indeed, fiber-pseudotyped 
HAdV-5 was  demonstrated to alter in vitro transduction profiles 
and for instance create HAdV-5 vectors capable of infecting cell 
types with low level or no CAR.95 For instance, ex vivo transduc-
tion of human airway epithelium was significantly improved 
with HAdV-5 vectors pseudotyped with the fiber protein derived 
from HAdV-35 (HAdV-5F35).96 This vector, further engineered 
to carry the HAdV-35–derived penton base, also proved highly 
capable of transducing human primary vascular tissue.97 Likewise, 
in vivo transduction of muscle cells was significantly improved 
upon intramuscular injection of a chimeric HD HAdV-5F3 as 
compared to the standard HAdV-5 vector.98 However, despite 

a clear re-targeting of such vectors in  vitro, ex vivo, and upon 
local  delivery in vivo, upon i.v. injection of HAdV-5-based vec-
tor mutants, it was clearly demonstrated that other determinants 
were influencing the in vivo tropism.99,100

As described earlier, identifying the prominent role of the 
hexon protein HVR domains in anti-HAdV-5 vector responses 
and liver targeting led to the successful construction of HAdV-5 
vectors with HVR domains derived from less prevalent HAdV 
serotypes.58,101 Here, the identification of a single suppressor muta-
tion in the hexon sequence that allowed for HAdV-5 vector HVR 
chimeras to be manufactured with near wild-type vector yields has 
fueled the generation of HVR chimeric vectors.102 At present, a vac-
cine candidate against HIV, based on a HAdV-5 vector carrying the 
HVR domains from HAdV-48, has been shown to be both safe and 
immunogenic.103 The i.v. delivery of this HAdV-5HVR48 chime-
ric vector in mice induced high inflammatory cytokine levels that 
subsequently drove hepatic injury, an effect not observed when the 
vector was delivered in the muscle.104 Data obtained thus far war-
rant the further development of capsid chimeric HAdV-5 vectors 
and owing to two recent molecular biology breakthroughs, it can 
be foreseen that many chimeric vectors will be pushed forward 
into the clinical product pipeline. These breakthroughs include 
a high-throughput system for the production of capsid chimeric 
vectors based on recombination-mediated genetic modification of 
bacterial artificial chromosomes,105 and the demonstration of AdV 
genome editing by the CRISPR-Cas9 system.106 Although promis-
ing, capsid exchange strategies significantly impacted folding and 
assembly of nascent particles giving rise to poor functional titers or 
complete failure to rescue viable recombinants.105 It is therefore that 
the research community also started to exploit the natural diversity 
within the Adenoviridae family. This has resulted in a number of 
novel vectors that have been and are being built from AdVs of dif-
ferent serotypes of human and nonhuman origin. Encouragingly, 
the first data on the safety and efficacy profiles of some of these 
vectors, including serotypes isolated from either human or nonhu-
man tissues, have been described107,108 (Figure 1).

Alternative human AdV vectors. Research on HAdV serotypes 
other than HAdV-5 ignited when the limitations of HAdV-5 re-
petitive in vivo gene transfer protocols and prime-boost vaccina-
tion strategies with the same backbone were observed.109 In pursue 
of vectors that would not cross-react, the first non-HAdV-C se-
rotype to be constructed was E1a-deleted HAdV-7 (HAdV-B),110 
which was successfully produced in a HEK293 cell line stably  
expressing the HAdV-5 derived E4-ORF6 protein.111 Since then, 
several other members of HAdV-B species were vectorized owing to  
their tropism profile and low seroprevalence in the human popula-
tion.112 These include vectors based on HAdV-3, -11, -35, and -50 
(refs. 107,113–115). Of these, HAdV-3 and HAdV-35 have been tested  
in human subjects as oncolytic vector (replication-competent)  
and as candidate malaria vaccine expressing Plasmodium falci-
parum circumsporozoite surface antigen (replication-deficient), 
respectively.116,117 Further development of HAdV-B vectors 
included the engineering of a HAdV-35 providing high trans-
gene expression of two products,118 and an improved oncolytic  
vector based on serotypes 3 and 11 (ColoAd1) obtained by directed 
 evolution.119 The ColoAd1  vector demonstrated higher potency 
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and selectivity than the clinically tested ONYX-015 in vitro and 
in vivo in a xenograft mouse model.119 Importantly, the ColoAd1 
vector demonstrated an acceptable biological activity threshold in 
whole human blood in contrast to the HAdV-5 vector.120

A major technological discovery facilitating the rapid con-
struction and production of vectors other than HAdV-5 was the 
introduction of the HAdV-5–derived ORF6 protein into the viral 
backbone of the selected serotype. This finding allowed efficient 
production of non-HAdV-5 replication-deficient vectors (derived 
either from human or nonhuman tissues) using existing HAdV-5 
E1-complementing cells such as HEK293 and PER.C6.121 Whereas, 
HAdV-28 was produced still in the HEK293 ORF6-expressing 
cells,122 the research community rapidly adapted the novel 
 technology resulting in the development of vectors of HAdV-D 
serotypes 26, 48, and 49.107,123,124 Subsequent studies with the novel 
vectors suggested that they may bind the cellular CD46 protein 
instead of CAR and that HAdV-26, HAdV-48, as well as HAdV-35 
(HAdV-B) induce significantly higher innate immune responses as 
compared to HAdV-5 in rhesus macaques, a finding that further 
fueled their development as vaccine vectors.125 To date, the HAdV-
35 and HAdV-26 have been tested in several phase 1 clinical  
trials as  candidate vaccine component against Mycobacterium 
tuberculosis, Plasmodium falciparum, HIV, and Ebola.126–130 In 
healthy adults and toddlers, both vectors have demonstrated 
excellent safety profiles and their ability to elicit efficient T- and 
B-cell responses specific against the inserted antigens. As a con-
sequence, a HAdV-26–based anti-HIV vaccine candidate carrying 
a mosaic HIV envelope antigen that successfully passed phase 1 
clinical studies129,131 has recently been moved forward to phase 2 
trials. The same HAdV-26 vector is also utilized in an experimental 
two-component vaccine against the highly-lethal Ebola virus Zaire 
strain that caused the West Africa epidemic in 2014 (ref. 132). As 
described above, a replication- deficient HAdV-28 vector has also 
been developed and was shown not to utilize the CD46 receptor. 
The HAdV-28 vector outperformed the HAdV-35 vector at both 
moderate and high doses and proved comparable to the HAdV-5 
vector in its ability to elicit specific potent T-cell responses to a sur-
rogate influenza virus antigen in mice.122 The application of repli-
cation-deficient HAdV-48 and HAdV-35 as vaccine vectors needs 
careful further studying given the observation that they trigger 
host IFN-α responses which may exert a negative impact on their 
capability to elicit potent host immune responses.133 Yet another 
vector under study is based on HAdV-49, which utilizes CD46 as 
primary cellular receptor. In vivo experiments demonstrated that 
the HAdV-49 vector did not trigger a potent CD8+ T-lymphocyte–
specific response when compared to a HAdV-5  carrying the 
same SIV Gag antigen. Nonetheless, the HAdV-49  vector clearly 
remained immunogenic in animals that were preimmunized with 
a HAdV-5 vector in an attempt to mimic the situation in human 
individuals.124 Furthermore, the HAdV-49 vector, aside from its 
vaccine vector potential, shows promise as cardiovascular gene 
therapy vector as it has been shown to transduce primary  vascular 
tissues in vitro and ex vivo with remarkable efficiency.134

Finally, the potential of two other vectors derived from human 
species HAdV-E (HAdV-4) and HAdV-F (HAdV-41) as  vaccine 
vectors is also being explored. Based on the excellent safety 
track record of the wild-type HAdV-4 vaccine (given orally in 

combination with wild-type HAdV-7 as vaccine to US military 
personnel), the HAdV-4 vaccine vector has the unique feature of 
being replication-competent with its foreign transgenes cloned 
into the E3 region instead of the commonly used E1 region.135,136 
Upon successfully reaching preclinical set points, the HAdV-4 
replication-competent vector expressing the influenza H5N1 
hemagglutinin protein was tested as an oral vaccine in a phase 1 
clinical study in combination with an inactivated H5N1 booster 
vaccine.137 With regard to HAdV-41, it is known that this virus 
displays two fiber proteins and its penton-base lacks the RGD 
motif,138 which are deemed important characteristics that link this 
virus to subclinical disease in the human gastrointestinal tract. 
Given these properties, even though a relatively high seropreva-
lence had been reported (40–50%),139,140 a HAdV-41 vector was 
constructed. Thus far, the HAdV-41 vector has been shown to 
enhance intestinal immunity on its own as well as in prime-boost 
regimes with a HAdV-5 vector carrying the HIV-Env antigen.141

The substantial research efforts in recent years in understand-
ing human mastadenovirus biology (clinical and subclinical pro-
file, tropism, seroprevalence, etc.) have exhausted the number of 
vectors that are potentially capable of circumventing the chal-
lenges observed with HAdV-5. As such, the research community 
has turned its attention to developing vectors from AdVs derived 
from tissues of nonhuman origin, and results of these scientific 
efforts will be discussed next.

Adenoviral vectors derived from nonhuman tissues extracted 
AdVs. Nonhuman AdV (NH AdV) vectorization dates back to the 
1990s, and many mammalian and avian vectors have since been 
tested in their homologous hosts142 (Figure 1). For instance, bovine 
AdV-3 (BAdV-3), porcine AdV-3 (PAdV-3) and -5, canine AdV-2 
(CAdV-2), fowl AdV-1 (FAdV-1), -8, -9, and -10 have been modi-
fied to respectively express homologous host-relevant antigens in 
an attempt to build affordable and effective vaccines.143–148 In spite 
of this research effort, none of these approaches have led to the 
market introduction of any recombinant AdV-based veterinary 
vaccines. Currently, the only promising such vaccine candidate 
is a replication-deficient HAdV-5 vector expressing the relevant 
genes of the foot and mouth disease virus.149

The application of NH AdV vectors in human subjects has 
received strong impetus as many NH AdV abortively infect 
human cells and do not cross-react with HAdVs.150 However, their 
propagation on existing cell platforms and purification demands 
might complicate their product development trajectory. Also, 
it has been described that such serotypes can potentially still 
share cytotoxic T cell epitopes with HAdV-5 or other HAdV vec-
tors.66,67,73 The development process of the canine derived AdV-2 
vector (CAdV-2) illustrates the challenges that can be met when 
developing a nonhuman serotype into a vector that is prone to 
undergo clinical testing.151 Here, the ability of the CAdV-2 vec-
tor to transduce neurons, affording durable transgene expression 
in vivo, demonstrated its potential as product to target neurologi-
cal disorders.152,153 Fundamental in vector development has been 
the development of a good manufacturing procedure-compliant  
CAdV-2 manufacturing process.154,155 Besides, high quality 
helper-dependent CAdV-2 vectors are under development too.156 
Such advancement is of striking importance as leaky viral gene 

Molecular Therapy vol. 24 no. 1 jan. 2016 11



Official journal of the American Society of Gene & Cell Therapy
Adenoviral Vectors to Overcome Challenges With HAdV-5–based Constructs

expression in cells transduced with AdV vectors bears the risk 
of the development of broad T-cell responses. In the case of vac-
cination vectors, this may shadow the specific response against 
the vaccination antigen, whereas regarding a gene therapy vector 
application, this phenomenon could involve a reduced expres-
sion of the therapeutic product in terms of potency and duration. 
The development of HD vectors derived from novel serotypes 
is,  generally, problematic because the corresponding packaging 
signals have not been systematically mapped. In this respect, the 
work with CAdV-2 HD vector development makes this serotype a 
flagship for the field.

The success with CAdV-2 renewed the interest in bovine, 
porcine, and murine AdV vectors (genus Mastadenovirus; 
Figure 1), although most of these programs are at a very early 
developmental stage. It will be very exciting to see these vectors 
developed given the observation that no cross-reactivity with 
anti-HAdV nAbs has been observed and the data indicating 
these vectors can efficiently transduce human cells.157–160 At pres-
ent, their E1-complementation has been described,161–163 as well 
as E3 transgene replacement.164–166 They respectively rely on sialic 
acids, integrins, and heparin  sulphate proteoglycans for in vitro 
cell entry.158,167,168 Both BAdV-3 and PAdV-3 preclinical data  
indicate the induction of potent innate immune responses which 
in the absence of cross- reactivity to HAdV-5 make these vectors 
potentially potent as antigen carriers in vaccine development.169,170 
Again, further research is required before a conclusion can be 
obtained as to their vaccine vector utilization as it was also shown 
for BAdV-3 vector for instance that despite it bypassed HAdV-5 
immunity in mouse in vivo models, still damaged the liver.157

Simian AdVs (SAdVs) are the closest relatives to HAdVs 
(Figure 1), and as a consequence, replication-deficient SAdVs can 
be manufactured efficiently in existing mammalian cells express-
ing HAdV-5 E1.171 It has been described that some SAdVs can 
utilize CAR,172 but certainly many serotypes are expected to uti-
lize cellular receptors other than CAR. In addition, it has been 
described that SAdVs differ markedly from HAdV-5 in their anti-
genic determinants (HVRs and fiber protein domains), and much 
lower seroprevalences in human individuals worldwide have been 
reported.55,173,174 First-generation SAdV vectors were based on 
SAdV-25 (chimpanzee, C68), SAdV-22 (Pan 5), SAdV-23 (Pan 6), 
and SAdV-24 (Pan 7).175,176 Given the promising preclincial results 
with these vectors, characterization of hundreds of novel chim-
panzee AdV (“ChAd”) isolates was undertaken and promising 
candidates, i.e., low seroprevalence in the human population and 
lack of cross-neutralization with HAdVs, are being selected for 
further vector development.177 Recently, three rhesus monkey-
derived AdVs related to Human mastadenovirus G were isolated, 
vectorized, and characterized for their immunogenic properties.108 
These vectors outperformed an existing ChAd vector as candi-
date HIV vaccine vectors in a nonhuman primate SHIV chal-
lenge study (Dan Barouch, personal communication). To date, at 
least three vectors based on ChAds have reached clinical trials: 
strains ChAd3 and ChAd63, respectively, engineered to express 
hepatitis C virus and Plasmodium falciparum antigens,178,179 and 
a chimpanzee AdV strain Y25 construct (vector ChAdOx1) car-
rying influenza virus derived nucleoprotein and matrix protein 
antigens.180 Like for the HAdV-26 vector described earlier, also a 

ChAd3-derived vector that expresses an Ebola virus glycoprotein 
was shown to afford durable protection against lethal challenge 
in macaques.181 Notably, data obtained to date demonstrate that 
SAdV-derived vectors are capable of triggering potent antigen-
specific CD8+ T cell responses and thus provide an exciting novel 
vaccine technology platform.

The aforementioned SAdVs are all members of genus 
Mastadenovirus, hence cell lines, genome manipulation  
strategies, and test assays could all be easily adapted from the 
HAdV-5 vectors toolbox and know-how. More “exotic” NH 
AdVs from other genera lack that benefit but still represent  
interesting vectors and as such warrant vector development 
efforts.  For instance, fowl AdVs (FAdVs) from the genus 
Aviadenovirus carry an average ~10 kb larger viral DNA genomes 
as compared to mastadenoviruses and as such could presumably 
have larger packaging capacity.1 Furthermore, FAdVs display 
two fibers protruding from the same vertex, which in FAdV-1 
(FAdV-A) and FAdV-C serotypes FAdV-4 and -10 are encoded 
by two genes giving rise to distinct long and short fibers that 
could offer cell-targeting advantages.182 Four FAdV serotypes 
have been vectorized and successfully propagated in avian cells: 
FAdV-1, -8, -9, and -10.148,183–185 FAdV-1 (CELO, Chicken Embryo 
Lethal Orphan) and FAdV-9 (FAdV-D) have been  further stud-
ied as they abortively infect human cells while  yielding high 
transgene expression unaffected by PEI.183,186 Based on these 
findings, CELO vectors have been constructed to express IL-2, 
HSV-1 tyrosine kinase, or p53 and have demonstrated long-term 
gene expression in preclinical models.187–189

The prototype member of the genus Atadenovirus, ovine 
AdV-7 (OAdV-7), has also been vectorized.190 The viral genome 
of OAdV-7 is A+T-rich and lacks a distinguishable E1 region.191 
OAdV-7  vectors have the capacity to efficiently deliver foreign 
transgenes in  vitro and in vivo through abortive infection of a 
variety of  nonovine cells.192 Furthermore, OAdV-7–based  vectors 
were shown to overcome anti-HAdV PEI in vivo, where liver 
sequestering is not a dominant biological landmark.193,194 These 
preclinical characteristics supported the further development of 
OAdV-7 as oncolytic and vaccine vector and to ensure clinical-
grade production, a good manufacturing procedure-compliant 
ovine packaging cell line has been developed.195 The preclinical 
data package, obtained with the OAdV-7 vector further includes 
several preclinical studies that demonstrate significant induction 
of antitumor immunity and tumor mass reduction in mice.196,197 
As vaccine vector, OAdV-7 carrying the NS3 antigen derived 
from hepatitis C virus elicited a strong T-cell response in mice 
independent of anti-HAdV-5 PEI. Its performance in prime-boost 
regimes with recombinant fowlpox virus198 and MVA is currently 
being explored.199

Discovery of novel AdV types. The promising results thus far 
obtained with NH AdVs have fuelled the appetite of the research 
community to isolate novel adenoviruses, and this has triggered 
substantial discovery programs. Although currently the number 
of known AdV types in a given host is still the largest for HAdVs, 
more and more new animal AdVs are rapidly being discov-
ered.200,201 Given the variety observed in known adenovirus hosts, 
the potential of discovering novel AdVs is very high.
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In order to classify newly isolated strains, researchers tradi-
tionally serotyped them by means of serum neutralization tests.202 
However, with the rapidly growing number of types, these tests 
became tedious and time consuming, and they require reliable 
prototype virus strains and hyperimmune serum collections. For 
instance, to appropriately serotype a FAdV isolate, 12 standard 
reference antiserums are needed. Furthermore, to determine 
whether a novel FAdV serotype has been isolated, the 12 refer-
ence FAdV strains are also needed as a serotype is defined as 
“one that either exhibits no cross-reaction with others or shows a 
homologous:heterologous titer ratio greater than 16 (in both direc-
tions).”1 Rapid advances in molecular DNA techniques facilitated 
the discovery of novel AdVs. For instance, restriction endonucle-
ase analysis of the viral genome was found to be appropriate for 
differentiating numerous “genotypes” among the isolated HAdV 
strains.203,204 Also, different DNA hybridization techniques have 
been successfully applied.205 However, such techniques became 
quickly outdated when PCR technology appeared. To date, several 
PCR systems to detect AdVs have been described, some of which 
yield positive results only for the specific AdVs they had been 
designed for.206,207 However, the nested PCR that targets the most 
conserved part of the viral DNA-dependent DNA polymerase gene 
has proven to be extremely useful even in the recognition of previ-
ously unknown AdVs.208

As the cost of DNA sequencing decreases owing to rapid 
technology improvements, full genome sequence analysis has 
become a routine technique allowing characterization of micro-
organisms at their full genome level. Clearly, such technologies 
have taken the speed at which novel adenoviruses can be discov-
ered, typed, characterized, and vectorized to an unprecedented 
level. These technologies and recent advances in deep sequenc-
ing, which can yield useful results even if a pathogen is present 
in a very small quantity in a clinical sample,209 will undoubtedly 
aid in understanding the complexity of the adenovirus family, its 
evolution, and how to develop novel vectors that can be used to 
battle human diseases.

CONCLUDING REMARKS
The Adenoviridae represents a large and varied family with mem-
bers present in representatives of most species looked at today be 
it mammalian, avian, or reptilian, and we may have only started 
to understand its complexity. The wealth of results generated, 
mainly on HAdV-5 as model, significantly contributed to mas-
ter their biology and develop tools to enable vector production, 
purification, and genetic engineering for medicinal purposes. 
Building on such knowledge, nowadays AdV vectors are the most 
represented in ongoing clinical trials and a rapidly expanding 
portfolio of vectors for biomedical application in gene therapy, 
oncotherapy, and vaccination is being developed. Understanding 
their weaknesses and strengths allows for the rational reengi-
neering of AdVs to ensure safe and efficient delivery of foreign 
DNA to target tissues and cells with the purpose to trigger potent 
immune responses or long-term gene expression. With first 
products based on AdVs already approved in man, it can be envi-
sioned that in the foreseeable future, a generation of novel safe 
and potent therapeutic and preventive medicines based on them 
will be available to battle human disease.
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