
ON ALTERNATING POWER SUMS OF ARITHMETIC
PROGRESSIONS

A. BAZSÓ

Abstract. Depending on the parity of the positive integer n, the
alternating power sum

T k
a,b (n) = bk−(a + b)

k
+(2a + b)

k− . . .+(−1)n−1 (a (n− 1) + b)
k
.

can be extended to a polynomial in two ways, say as Tk+a,b(x) and

Tk−a,b(x). In this note we classify all the possible decompositions of
these polynomials.

1. Introduction

We denote by C[x] the ring of polynomials in the variable x with
complex coefficients. A decomposition of a polynomial F (x) ∈ C[x] is
an equality of the following form

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ C[x]),

which is nontrivial if

degG1(x) > 1 and degG2(x) > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are
said to be equivalent if there exists a linear polynomial `(x) ∈ C[x] such
that G1(x) = H1(`(x)) and H2(x) = `(G2(x)). The polynomial F (x)
is called decomposable if it has at least one nontrivial decomposition;
otherwise it is said to be indecomposable.

It is well known (see e.g [1]) that the alternating power sum

Tk (n) := −1k + 2k − . . .+ (−1)n−1(n− 1)k

can be expressed by means of the classical Euler polynomials Ek(x) via
the identity:

Tk (n) =
Ek(0) + (−1)n−1Ek(n)

2
, (1)

2010 Mathematics Subject Classification. 11B68, 11B25.
Key words and phrases. Euler polynomials, decomposition.

1



2 A. BAZSÓ

where the classical Euler polynomials Ek(x) are usually defined by the
generating function

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
(|t| < π).

The motivation for studying the decomposition of alternating power
sums is the lack of results in this direction as well as the long history
of the investigation of the decomposition of the related power sum

Sk(n) := 1k + 2k + . . .+ (n− 1)k.

It started in the 16th century when Johann Faulhaber [6] discovered
that for odd values of k, Sk(n) can be written as a polynomial of the
simple sum N given by

N = 1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Analogously to (1), there exists a relation between Sk(n) and the clas-
sical Bernoulli polynomials Bk(x) (those defined by their generating
function

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π)),

namely, we have

Sk(n) =
1

k + 1
(Bk+1(n)−Bk+1) (2)

with of course the classical Bernoulli numbers Bn given by Bn = Bn(0).
Using this connection (2), one can extend Sk(n) appropriately to a
polynomial

Sk(x) =
1

k + 1
(Bk+1(x)−Bk+1) (x ∈ R)

In [8], Rakaczki proved that the polynomial Sk(x) is indecomposable
for even values of k. Further, he observed that, for k = 2v − 1, all the
decompositions of Sk(x) are equivalent to the following decomposition:

Sk(x) = S̃v

((
x− 1

2

)2
)
,

where S̃v(x) is a rational polynomial of degree v. His result is a conse-
quence of a theorem of Bilu et al. [5], which states that the Bernoulli
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polynomial Bk(x) is indecomposable for odd k, while if k = 2m is even,
then any nontrivial decomposition of Bk(x) is equivalent to

Bk(x) = B̃m

((
x− 1

2

)2
)
,

with a rational polynomial B̃m(x) of degree m.
In a recent paper, Bazsó et al. [3] considered the more general power

sum

Sk
a,b (n) := bk + (a+ b)k + (2a+ b)k + . . .+ (a (n− 1) + b)k

for positive integers n > 1, a 6= 0, b with gcd(a, b) = 1. In particular,
Sk
1,0(n) = Sk(n). Again, by (2), the above definition of Sk

a,b (n) can be
extended to hold true for every real value of x as

Ska,b (x) =
ak

k + 1

(
Bk+1

(
x+

b

a

)
−Bk+1

(
b

a

))
.

Bazsó et al. [3] observed that the polynomial Ska,b (x) is indecomposable
for even k. If k = 2v − 1 is odd, then any nontrivial decomposition of
Ska,b (x) is equivalent to the following decomposition

Ska,b (x) = Ŝv
a,b

((
x+

b

a
− 1

2

)2
)
,

where Ŝv
a,b is a rational polynomial of degree v.

Recently, Rakaczki and Kreso [9] proved the following result, which
will be used in the proof of our main result below, about the decom-
position of Euler polynomials:

Proposition 1. Euler polynomials Ek(x) are indecomposable over C
for all odd k. If k = 2m is even, then every nontrivial decomposition
of Ek(x) over C is equivalent to

Ek(x) = Ẽm

((
x− 1

2

)2
)
, where Ẽm(x) =

m∑
n=0

(
2m

2n

)
E2n

22n
xm−n,

and Ej = 2jEj(1/2). In particular, the polynomial Ẽm(x) is indecom-
posable over C for any m ∈ N.

Proof. This is Theorem 1 in [9]. �

For a positive integer n > 1, and for a 6= 0, b coprime integers, let

T k
a,b (n) := bk − (a+ b)k + (2a+ b)k − . . .+ (−1)n−1 (a (n− 1) + b)k .



4 A. BAZSÓ

Clearly, T k
1,0 (n) = Tk(n). Using generating functions, Howard [7]

showed that T k
a,b (n) can be written as follows by means of Euler poly-

nomials:

T k
a,b (n) =

ak

2

(
Ek

(
b

a

)
+ (−1)n−1Ek

(
n+

b

a

))
. (3)

Thus, depending on the power of −1 in (3), we can extend T k
a,b (n) to

a polynomial in the following two ways:

Tk+a,b(x) :=
ak

2

(
Ek

(
b

a

)
+ Ek

(
x+

b

a

))
,

Tk−a,b(x) :=
ak

2

(
Ek

(
b

a

)
− Ek

(
x+

b

a

))
.

In this work, our goal is to determine all the possible decompositions
of the polynomials Tk+a,b(x) and Tk−a,b(x) defined above.

We note that the decomposition properties of a polynomial with
rational coefficients play an important role in the theory of separable
Diophantine equations of the form f(x) = g(y) (see [4]). For related
results on such equations involving the above mentioned power sums
we refer to [5], [8], [2] and [9].

2. The main result

In this section we apply Proposition 1 in order to derive a refinement
of Faulhaber’s theorem [6] and an analogue of the results of Bazsó et al.
[3] in the case of alternating sums of powers of arithmetic progressions.

Theorem 1. The polynomials Tk+a,b(x) and Tk−a,b(x) are both indecompos-
able for any odd k. If k = 2m is even, then any nontrivial decomposi-
tion of Tk+a,b(x) or Tk−a,b(x) is equivalent to

Tk+a,b(x) = T̂m+
a,b

((
x+

b

a
− 1

2

)2
)

or Tk−a,b(x) = T̂m−
a,b

((
x+

b

a
− 1

2

)2
)
,

respectively, where

T̂m+
a,b (x) =

a2m

2

(
E2m

(
b

a

)
+ Ẽm(x)

)
,

T̂m−
a,b (x) =

a2m

2

(
E2m

(
b

a

)
− Ẽm(x)

)
with Ẽm(x) specified in Proposition 1.



ON ALTERNATING POWER SUMS OF ARITHMETIC PROGRESSIONS 5

Proof. We detail the proof for Tk+a,b(x). For the polynomial Tk−a,b(x), the
proof is essentially the same.

Let k be an odd positive integer and put

t := x+
b

a
.

Suppose that there exists polynomials f1(t), f2(t) ∈ C[t] such that

deg f1(t) > 1 and deg f2(t) > 1,

and

Tk+a,b(x) =
ak

2

(
Ek

(
b

a

)
+ Ek (t)

)
= f1(f2(t)). (4)

From the second equality in (4) we obtain

Ek(t) =
2

ak
f1(f2(t))− Ek

(
b

a

)
. (5)

Now putting f(t) := 2
ak
f1(t)− Ek

(
b
a

)
, (5) implies that

Ek(t) = f(f2(t)). (6)

Thus we obtained a nontrivial decomposition of the kth Euler polyno-
mial, which contradicts Proposition 1.

If k ∈ N is even, then similarly we have relation (6), whence by
Proposition 1 it follows that

f2(t) = `

((
t− 1

2

)2
)

= `

((
x+

b

a
− 1

2

)2
)
,

where `(x) is a linear polynomial. This completes the proof of Theorem
1.

�

As an example, we consider the alternating sum of the squares of the
arithmetic progression b, a+ b, 2a+ b, . . . , a(n− 1) + b:

T 2
a,b(n) = (−1)n−1

(
a2

2
n2 +

a(2b− a)

2
n+

b(b− a)

2

)
+
b(b− a)

2
.

One can easily obtain the following decompositions:

T 2
a,b(n) =

{
a2

2

(
n+ b

a
− 1

2

)2
+ −a2+4b2−4ab

8
if n is odd,

−a2

2

(
n+ b

a
− 1

2

)2
+ (a−2b)2

8
if n is even.
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Diophantine equations and Bernoulli polynomials (with an Appendix by A.
Schinzel), Compositio Math., 131 (2002), 173–188.

6. J. Faulhaber, Darinnen die miraculosische Inventiones zu den höchsten
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