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Abstract: Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for 8 
words based on their written form. It has a highly essential role for natural language processing, 9 
text-to-speech synthesis and automatic speech recognition systems. In this paper, we investigate 10 
convolutional neural networks (CNN) for G2P conversion. We propose a novel CNN-based 11 
sequence-to-sequence (seq2seq) architecture for G2P conversion. Our approach includes an end-to-12 
end CNN G2P conversion with residual connections, furthermore, a model, which utilizes a 13 
convolutional neural network (with and without residual connections) as encoder and Bi-LSTM as 14 
a decoder. We compare our approach with state-of-the-art   methods, including Encoder-Decoder 15 
LSTM and Encoder-Decoder Bi-LSTM. Training and inference times, phoneme and word error rates 16 
were evaluated on the public CMUDict dataset for US English, and the best performing 17 
convolutional neural network based architecture was also evaluated on the NetTalk dataset. Our 18 
method approaches the accuracy of previous state-of-the-art results in terms of phoneme error rate. 19 
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 22 

1.Introduction 23 

The process of grapheme-to-phoneme (G2P) conversion generates the phonetic transcription 24 
from the written form of words. The spelling of the word is called grapheme sequence (or 25 
graphemes), the phonetic form is called phoneme sequence (or phonemes). It is essential to develop 26 
a phonemic lexicon in text-to-speech (TTS) and automatic speech recognition (ASR) systems. For this 27 
purpose, G2P techniques are used, and getting state-of-the-art performance in these systems depends 28 
on the accuracy of G2P conversion. For instance, in ASR acoustic models, the pronunciation lexicons 29 
and language models are critical components. Acoustic and language models are built automatically 30 
from large corpora. Pronunciation lexicons are the middle layer between acoustic and language 31 
models. For a new speech recognition task, the performance of the overall system depends on the 32 
quality of the pronunciation component. In other words, the system’s performance depends on G2P 33 
accuracy. For example, the G2P conversion of word 'speaker' is 'S P IY K ER'. In TTS systems a high-34 
quality G2P model is also an essential part and has a great influence on the overall quality. Inaccurate 35 
G2P conversion results in unnatural pronunciation or even incomprehensible synthetic speech. 36 
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2. Previous Works 37 

G2P conversion has been studied for a long time. Rule-based G2P systems use a wide set of 38 
grapheme-to-phoneme rules [1, 2]. Developing such a G2P system requires linguistic expertise. 39 
Additionally, some languages (such as Chinese and Japanese) have complex writing systems, and 40 
building the rules is labor-intensive and it is extremely difficult to cover most possible situations. 41 
Furthermore, these systems are sensitive to out of vocabulary (OOV) events. Other previous solutions 42 
used joint sequence models [3, 4]. These models create an initial grapheme-phoneme sequence 43 
alignment, and by using this alignment, it calculates a joint n-gram language model over sequences. 44 
The method proposed by [3] is implemented in the publicly available tool Sequitur2. In one-to-one 45 
alignment, each grapheme corresponds only to one phoneme and vice versa. An "empty" symbol is 46 
introduced to match grapheme and phoneme sequences. For example, the grapheme sequence of 47 
‘CAKE’ matches the phoneme sequence of ‘K EY K’, and one-to-one alignment of these sequences is 48 
C  K, A  EY, K  K, and the last grapheme ‘E’ matches the “empty” symbol. Conditional and 49 
joint maximum entropy models use this approach [5]. Later, Hidden Conditional Random Field 50 
(HCRF) models were introduced in which the alignment between grapheme and phoneme sequence 51 
is modelled with hidden variables [6, 7]. The HCRF models usually lead to very competitive results, 52 
however, the training of such models is very memory and computationally intensive. A further 53 
approach utilizes conditional random fields (CRF) and Segmentation/Tagging models (such as linear 54 
finite-state automata or transducers, FSTs), then use them in two different compositions [8]. The first 55 
composition is a joint-multigram combined with CRF; the second one is a joint-multigram combined 56 
with Segmentation/Tagging. The first approach achieved 5.5% phoneme error rate (PER) on 57 
CMUDict.  58 

Recently, neural networks have been applied for G2P conversion. Neural network based G2P 59 
conversion is robust against spelling mistakes and OOV words; it generalizes well. Also, it can be 60 
seamlessly integrated into end-to-end TTS/ASR systems (that are constructed entirely of deep neural 61 
networks) [15]. In this paper, a TTS system (Deep Voice) is presented which was constructed entirely 62 
from deep neural networks. Deep Voice lays the groundwork for truly end-to-end neural speech 63 
synthesis. Thus, the G2P model is jointly trained with further essential parts of the speech synthesizer 64 
and recognizer, which increase the overall quality of the system. 65 

LSTM has shown competitive performance in various fields, like acoustic modelling [9] and 66 
language understanding [10]. One of the early neural approaches investigates unidirectional Long 67 
Short-Term Memory (ULSTM) with full output delays, which achieved 9.1% phoneme error rate [11]. 68 
In the same paper, a deep bidirectional LSTM (DBLSTM) was combined with connectionist temporal 69 
classification (CTC) and joint n-gram models for better accuracy (21.3% word error rate). Note that 70 
CTC objective function was introduced to infer speech-label alignments automatically without any 71 
intermediate process, leading to an end-to-end approach for ASR [44]. CTC technique has combined 72 
with CNN, LSTM for the various speech-related tasks [45]. 73 

Due to utilizing an encoder-decoder approach for the G2P task, a separate alignment between 74 
grapheme sequences and phoneme sequences became unnecessary [12, 13]. 75 

Alignment based models of unidirectional LSTM with one layer and bi-directional LSTM (Bi-76 
LSTM) with one, two and three layers were also previously investigated [13]. In this work, alignment 77 
was explicitly modelled in the G2P conversion process by the context of the grapheme. A further 78 
work, which applies deep bi-directional LSTM with hyperparameter optimization (including the 79 
number of hidden layers, optional linear projection layers, optional splicing window at the input) 80 
considers various alignment schemes [14]. The best model with hyperparameter optimization 81 
achieved 5.37% phoneme (PER)and 23.23% word error rate (WER). Multi-layer bidirectional encoder 82 
with gated recurrent units (GRU) and deep unidirectional GRU as a decoder achieved 5.8% PER and 83 
28.7% WER on CMUDict [15]. 84 
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Convolutional neural networks have achieved superior performance compared to previous 85 
methods in large-scale image recognition [16, 17]. Recently, these architectures were also applied to 86 
Natural Language Processing (NLP) tasks, including sentence classifications and neural machine 87 
translation. Nowadays, completely convolutional neural networks may achieve superior results 88 
compared to recurrent solutions [18, 19]. 89 

Sequence-to-sequence (seq2seq) learning, or encoder-decoder type neural networks have 90 
achieved remarkable success in various tasks, such as speech recognition, text-to-speech synthesis, 91 
machine translation [20, 21, 22, 42]. This type of network is used for several tasks, and its performance 92 
has also been enhanced with attention mechanism [19, 42, 43]. In this structure, the encoder computes 93 
a representation of each input sequence, and the decoder generates an output sequence based on the 94 
learned representation. In [43], bidirectional multi-layer recurrent neural network based seq2seq 95 
learning was investigated in two architectures: a single Bi-LSTM/Bidirectional Gated Recurrent Unit 96 
(Bi-GRU) layer and two Bi-LSTM/Bi-GRU layers. Both Bi-LSTM and Bi-GRU uses both past and 97 
future contexts. Moreover, bidirectional decoder was proposed for neural machine translation (NMT) 98 
in [46]. Both encoder and decoder are Bi-GRU, but this model is applicable to other RNNs, such as 99 
LSTM. By introducing a backward decoder, the purpose of which is to exploit reverse target-side 100 
contexts, the results of NMT task was improved. For speech recognition, several sequence-to-101 
sequence models including connectionist temporal classification (CTC), the recurrent neural network 102 
(RNN) transducer, an attention-based model [51] have been analyzed. The basics of sequence 103 
modelling with convolutional networks are summarized in [52]. Furthermore, the key components 104 
of the temporal convolution network (TCN) have also been introduced and some vital advantages, 105 
and disadvantages of using TCN for sequence predictions instead of RNNs were analyzed as well. 106 

The encoder-decoder structure was studied for the G2P task [13, 15, 23] before, but usually, 107 
LSTM and GRU networks were involved. For example, Baidu’s end-to-end text-to-speech 108 
synthesizer, called Deep Voice, uses the multi-layer bidirectional encoder with GRU’s non-linearity 109 
and an equally deep unidirectional GRU decoder [15]. Until now the best result for G2P conversion 110 
was introduced by [23], which applied an attention-enabled encoder-decoder model and achieved 111 
4.69% PER and 20.24% WER on CMUDict. Furthermore, G2P-seq2seq3 is based on neural networks 112 
implemented in the TensorFlow framework with 20.6% WER. 113 

According to our knowledge, our approach is the first that uses convolutional neural networks 114 
for G2P conversion. In this paper, we present one general sequence-to-sequence and four encoder-115 
decoder models. These are introduced in Section 3. Our goal was to achieve and surpass (if possible) 116 
the accuracy of previous models and to reduce the training times (which is quite high in case of 117 
LSTM/GRU).  118 

The remaining parts of this paper are structured as follows: Section 3 discusses the possibility to 119 
apply convolutional neural networks for sequence-to-sequence based grapheme-to-phoneme 120 
conversion. Datasets, training processes, and evaluation of the proposed models are presented in 121 
Section 4. Section 5 analyzes the results of the models, and finally, the conclusion is drawn in Section 122 
6. 123 

3. Convolutional Neural Networks for Grapheme to Phoneme Conversion 124 

Convolutional neural networks are used in various fields, including image [24, 25], object [16, 125 
26, 27] and handwriting recognition [27, 28], face verification [29], natural language processing [30, 126 
31] and machine translation [19]. The architecture of an ordinary CNN is composed of many layer 127 
types (such as the convolutional layers, pooling layers, fully connecting layers, etc.) where each layer 128 
carries out a specific function. The convolutional and pooling layers are for representation learning, 129 
while the fully connected layers on the top of the network are for modelling a classification or 130 
regression problem. One of the main reasons that make convolutional neural networks superior to 131 
previous methods is that CNNs perform representation learning and modelling jointly, thus a quasi-132 
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optimal representation is extracted from the input data for the machine learning model. Weight 133 
sharing in the convolutional layers is also a key element. Thus, the model becomes spatially tolerant: 134 
similar representations are learned in different regions of the input, and the total number of 135 
parameters can also be reduced drastically.  136 

Deep Learning refers to the increased depth of neural networks. Intuitively, it is expected that 137 
neural networks with many hidden layers are more powerful than shallow ones with a single hidden 138 
layer. However, as the number of layers increases the training may become surprisingly hard, partly 139 
because the gradients are unstable. Batch normalization is a technique to overcome this problem; it 140 
reduces internal covariance shift and helps to smooth learning. The main idea of batch normalization 141 
is to bring back the benefits of normalization at each layer [32]. Batch normalization results in faster 142 
convergence as well. E.g., with batch normalization 7% of the training steps were enough to achieve 143 
similar accuracy in an image classification task [32]. Moreover, an additional advantage of batch 144 
normalization is that it regularizes the training and thus reduces the need for dropout and other 145 
regularization techniques [32]. However, batch normalization and dropout are often simultaneously 146 
applied.  147 

Convolutional neural networks were successfully applied to various NLP tasks [19, 30, 31, 52]. 148 
These results suggest investigating the possibility of applying CNN based sequence-to-sequence 149 
models for G2P. We expected that the advantage of convolutional neural networks enhances the 150 
performance of G2P conversion. As known, LSTMs read input sequentially, the output for further 151 
inputs depends on the previous ones. Thus, we cannot parallelise these networks. Applying CNN 152 
also moves away computational load by using large receptive fields. 153 

Deep neural networks with a sequential architecture have many typical building blocks, such as 154 
convolutional or fully connected layers, stacked on each other. Increasing the number of layers in 155 
these kinds of networks does not implicitly mean improved accuracy (in our case PER or WER), and 156 
some issues, such as vanishing gradient and degradation problems arise as well. Introducing residual 157 
and highway connections can improve performance significantly [33, 34]. These connection 158 
alternatives allow the information to flow more into the deeper layers, increase the convergence 159 
speed and decrease the vanishing gradient problem. 160 

3.1. Models 161 

Encoder-decoder structures have shown state-of-the-art results in different NLP tasks [13, 21]. 162 
The main idea of these approaches has two steps: the first step is mapping the input sequence to a 163 
vector; the second step is to generate the output sequence based on the learned vector representation. 164 
Encoder-decoder models generate an output after the complete input sequence is processed by the 165 
encoder, which enables the decoder to learn from any part of the input without being limited to fixed 166 
context windows. Fig. 1 shows an example of an encoder-decoder architecture [12]. 167 

     168 

Figure 1. The input of the encoder is “CAKE” grapheme sequence, and the decoder produces “K EY 169 
K” as phoneme sequences. The left side is encoder; the right side is decoder. The model stops making 170 
predictions after generating the end-of-phonemes tag. As distinct from [12, 13], input data for the 171 
encoder is not reversed in all our models. 172 
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In our experiments, we used encoder-decoder architectures. Several models with different 173 
hyperparameters were developed and tested. From a large number of experiments, five models with 174 
the highest accuracy and diverse architectures were selected. Our first two models are based on 175 
existing solutions for comparison purposes. We used these models as a baseline. In the following 176 
paragraphs the five models are introduced: 177 
 178 

1. The first model uses LSTMs for both the encoder and the decoder. The LSTM encoder reads 179 
the input sequence and creates a fixed-dimensional vector representation. The second LSTM is the 180 
decoder, and it generates the output. Fig. 2(a) shows the structure of the first model. It can be seen 181 
that both LSTMs have 1024 units; softmax activation function is used to obtain model predictions. 182 
This architecture is the same as a previous solution [13], while the parameters of training 183 
(optimization method, regularization, etc.) are identical to the settings used in case of the other four 184 
models. This way we try to ensure a fair comparison among the models.  185 

Although the encoder-decoder architecture achieves competitive results on a wide range of 186 
problems, it suffers from the constraint that all input sequences are forced to be encoded to a fixed 187 
size latent space. To overcome this limitation, we investigated the effects of the attention mechanism 188 
proposed by [49, 50] in Model 1 and Model 2. We applied an attention layer between the encoder and 189 
decoder LSTMs in case of Model 1, and Bi-LSTMs for Model 2. The introduced attention layers are 190 
based on global attention [50]. 191 

2. In the second model, both the encoder and the decoder are Bi-LSTMs [10, 35, 36]. The structure 192 
of this model is presented in Fig. 2(b). The input is fed to the first Bi-LSTM (encoder), which combines 193 
two unidirectional LSTM layers that process the input from left-to-right and right-to-left. The output 194 
of the encoder is given as input for the second Bi-LSTM (decoder). Finally, the softmax function is 195 
applied to generate the output of one-hot vectors (phonemes). During the inference, the complete 196 
input sequence is processed by the encoder, and after that, the decoder generates the output. For 197 
predicting a phoneme, both the left and the right contexts are considered. This model was also 198 
inspired by an existing solution [11]. 199 

3. In the third model, a convolutional neural network is introduced as encoder, and a Bi-LSTM 200 
as decoder. This architecture is presented in Fig. 2(c). As this figure shows the number of filters is 201 
524, the length of the filter is 23, the stride is 1, and the number of cells in the Bi-LSTM is 1024. In this 202 
model, the CNN layer takes graphemes as input and performs convolution operations. For 203 
regularization purpose, we also introduced batch normalization in this model.  204 

4. The fourth model contains convolutional layers only with residual connections (blocks) [33]. 205 
These residual connections have two rules [37]:  206 

(1) if feature maps have the same size, then the blocks share the same hyperparameters. 207 
(2) each time when the feature map is halved, the number of filters is doubled.  208 
First, we apply one convolutional layer with 64 filters to the input layer, followed by a    stack 209 

of residual blocks. Through hyperparameter optimization, the best result was achieved by 4 residual 210 
blocks, as shown in Fig. 3(a) and the number of filters in each residual block is 64, 128, 256, 512, 211 
respectively. Each residual block contains a sequence of two convolutional layers followed by a batch 212 
normalization [32] layer and ReLU activation. The filter size of all convolutional layers is three. After 213 
these blocks, one more batch normalization layer and ReLU activation are applied. The architecture 214 
ends with a fully connected layer, which uses the softmax activation function. 215 

We carried out experiments with the same fully convolutional models without residual 216 
connections, however, the phoneme and word error rates were worse than with residual connections, 217 
as expected. 218 

5. The fifth model combines models 3 and 4: the encoder has the same convolutional neural 219 
network architecture with residual connections and batch normalization, which was introduced in 220 
model four. The decoder is a Bi-LSTM, as in model three. The structure of this model is presented in 221 
Fig. 3(b).  222 

In all models except Model 4, we used stateless LSTM (or Bi-LSTM) configurations; the internal 223 
state is reset after each batch for predictions. 224 
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 227 

Figure 2. G2P conversion model based on encoder-decoder (a) LSTMs (first model); (b) Bi-LSTMs 228 
(second model); (c) encoder CNN, decoder Bi-LSTM (third model). f, d, s are the number of the filters, 229 
length of the filters and stride, respectively, in the convolutional layer. 230 
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Figure 3. G2P conversion based on (a) convolutional neural network with residual connections (fourth 233 
model) and (b) encoder convolutional neural network with residual connections and decoder Bi-234 
LSTM (fifth model). f, d, s is the number of the filters, length of the filters and stride, respectively. 235 

3.2. Details of the bidirectional decoder 236 

The details of the bidirectional decoder, which was used in Model 2, are presented in this section.  237 
Given an input sequence � �  ���, ��, . . , �	
,  LSTM network computes the hidden vector 238 

sequence ℎ �  � ℎ�, ℎ�, . . , ℎ	
 and output vector sequence � �  ���, ��, . . , �	 
. 239 
Initially, one-hot character vectors for graphemes and phonemes sequences were created. 240 

Character vocabularies, which contain all the elements that are present in the input and output data, 241 
are separately calculated. In other words, neither any grapheme vector in the output vocabulary, nor 242 
any phoneme vector in the input vocabulary was used. These were the inputs to the encoder and the 243 
decoder. Padding was applied to make all input and output sequences to have the same length, which 244 
was set to 22. This number (22) was chosen based on the maximum length in the training database. 245 
For G2P, � �  ���, ��, . . , �	
 is one-hot character vectors of graphemes sequences; � �  ���, ��, . . , �	 
 246 
is one-hot character vectors of phonemes sequences. 247 

In the proposed Model 2, as an encoder, Bi-LSTM was used, and it consists of two LSTMs: one 248 
that processes the sequence from left-to-right (forward encoder), and one that does it in reverse 249 
(backward encoder). It was applied to learn the semantic representation of the input sequences in 250 
both directions. One LSTM looks at the sequence from left-to-right (forward encoder), so reads an 251 
input sequence in left-to-right order; and another LSTM looks at it in reverse (backward encoder), so 252 
reads an input sequence in a right-to-left order. Each of the time steps the forward hidden sequence 253 
ℎ⃗ and the backward hidden sequence ℎ⃖ are iterated by the following equations [48]: 254 
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ℎ����⃗ � ℋ������⃗ �� + ����⃗ ���⃗ ℎ�⃗ ��� + ����⃗ 
                       (1) 255 

ℎ��⃖�� � ℋ����⃖���� + ��⃖���⃖��ℎ⃖���� + ��⃖���                       (2) 256 

In Equation (1) the forward layer iterated from � � 1 to �; in Equation (2) the backward layer is 257 
iterated from � � � to 1;  ℋ is an element-wise sigmoid function. 258 

As next step, the hidden states of these two LSTMs were concatenated to form an annotation 259 
sequence  ℎ �  {ℎ�, ℎ�, . . , ℎ	  }, where ℎ�  �  [ ℎ���⃗ , ℎ��⃖� ]   encodes information about the � − th 260 
grapheme with respect to all the other surrounding graphemes in the input. ��ℎ⃗ , ���⃖��  , ��⃖���⃖�� and 261 
�ℎ⃗ℎ⃗ are weight matrixes; �ℎ⃗, �ℎ⃖ denotes the bias vectors. Generally, in all parameters, the arrow 262 
which pointed left to right and right to left means forward and backward layer, respectively. 263 

The forward LSTM unrolls the sequences until it reaches the end of sequence for that input. The 264 
backward LSTM unrolls the sequences until it reaches the start of the sequence.  265 

For the decoder, we used bidirectional LSTM. These LSTMs can be called forward and backward 266 
decoder, and described as '�⃗ ,'⃐�. After concatenating the forward and backward encoder LSTMs, the 267 
backward decoder performs decoding in a right-to-left way. It was initialized with final encoded state 268 
and reversed output (phonemes). The forward decoder is trained to sequentially predict the next 269 
phoneme given the phoneme sequence. This part was initialized with the final state of the encoder 270 
and all phoneme sequences.  271 

Each decoder output is passed through the softmax layer that will learn to classify the correct 272 
phonemes. 273 

For training, given the previous phonemes, the model factorizes the conditional into a 274 
summation of individual log conditional probabilities from both directions, 275 

)��� *�[�:����
], �[����
:	]� � log )��� |��:���
��������������������������������⃗ + log )���*�����
:	��⃖�����������������������������������             (3) 276 

Where log ) /��0�[1:��−1
]1
����������������������������������⃗  and log ) /��0�[��+1
:�]1 �⃖����������������������������������

are the left-to-right (forward), the right-to-277 

left (backward) conditional probability in Equation (3), and calculated as below equations: 278 

log )��� *�[����
:	]� �⃖��������������������������������������� � 5 log )���*{���� , . . , �	}, �, ℎ, '⃖�                        �4
 279 

                         log )���*�[�:����
]���������������������������������������⃗ � ∑ log )��� *{�� , . . , ����}, �, ℎ, '⃗�          (5) 280 

The prediction is performed on test data as follows: 281 

log )���*�[����
:	]� �⃖��������������������������������������� � 5 log )���|�, ℎ]
                                                  �6
. 282 

According to Equation (6) future output is not used during inference. The architecture is shown 283 
on Figure 4. 284 

 285 

Figure 4.  The architecture of the proposed bidirectional decoder model for G2P task. 286 

4. Experiments 287 
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4.1. Datasets 288 

We used the CMU pronunciation4 and NetTalk5 datasets, which have been frequently chosen 289 
by various researchers [3, 13, 23]. The training and testing splits are the same as found in [4, 5, 8, 11], 290 
thus, the results are comparable. CMUDict contains a 106,837-word training set and a 12,000-word 291 
test set (reference data). 2,670 words are used as development set. There are 27 graphemes (uppercase 292 
alphabet symbols plus the apostrophe) and 41 phonemes (AA, AE, AH, AO, AW, AY, B, CH, D, DH, 293 
EH, ER, EY, F, G, HH, IH, IY, JH, K, L, M, N, NG, OW, OY, P, R, S, SH, T, TH, UH, UW, V, W, Y, Z, 294 
ZH, <EP>, </EP>) in this dataset. NetTalk contains 14,851 words for training, 4,951 words for testing 295 
and does not have a predefined validation set. There are 26 graphemes (lowercase alphabet symbols) 296 
and 52 phonemes ('!', '#', '*', '+', '@', 'A', 'C', 'D', 'E', 'G', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'R', 'S', 'T', 'U', 'W', 'X', 297 
'Y', 'Z', '^', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'k', 'l', 'm', 'n', 'o', 'p', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',<EP>, </EP>) 298 
in this dataset. 299 

We use <EP> and </EP> tokens as beginning-of-graphemes and end-of-graphemes tokens in both 300 
datasets. For inference, the decoder uses the past phoneme sequence to predict the next phoneme, 301 
and it stops predicting after token </EP>.   302 

4.2. Training  303 

For the CMUDict experiments, in all models, the size of the input layers is equal to 304 
input: {length of the longest input (22) X number of graphemes (27)}  305 

and the size of the output layers is equal to the  306 
output: {length of the longest output (22) 9 number of phonemes (41)}  307 
In order to transform graphemes and phonemes for neural networks, we convert inputs to 27-308 

dimensional and outputs to 41-dimensional one-hot vector representations. For example, the 309 
phoneme sequences of the word 'ARREST' is 'ER  EH  S  T'; the input and output vector of the 310 
grapheme and phoneme sequences are as below: 311 

Input vector of  ‘ARREST’ : 312 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ =

>
>
?
@
A
…

  

=
1
0
0
0
0
0
0

  

D
0
0
0
0
0
0
0

  

E
0
0
0
0
0
0
0

  

?
0
0
0
1
0
0
…

  

⃜
0
0
0
0
0
0
0

  

>
0
1
1
0
0
0
0

  

⃜
0
0
0
0
0
0
0

  

@
0
0
0
0
1
0
…

  

A
0
0
0
0
0
1
…

  

⃜
0
0
0
0
0
0
0

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 313 

Output vector of  'ER  EH  S  T': 314 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ?)

?>
?J
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 315 

In case of LSTMs we applied the Adam optimization algorithm [39] with a starting learning rate 316 
of 0.001, and with the baseline values of β1, β2 and ε (0.9, 0.999 and 1e-08, respectively). For batch size 317 
128 was chosen. Weights were saved when the PER on the validation dataset achieved a lower value 318 

                                                
4

 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
5

 We are grateful to Stan Chen for providing the data 
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than before. When the PER did not decrease further within 100 epochs, the best model was chosen, 319 
and it was trained with stochastic gradient descent (SGD) further. In case of the first, second and third 320 
models for SGD we used 0.005 for learning rate, 0.8 for momentum. For the fourth (convolutional 321 
with residual connections) model 0.05 (learning rate) and 0.8 (momentum) were applied, and it was 322 
trained for 142 when early stopping was called. In the fifth model 0.5 (learning rate) of SGD and 0.8 323 
(momentum) was set and when PER has stopped improving in about 50 epochs, the learning rate 324 
was multiplied by 4/5. The number of epochs for this model reached 147 and 135 for CMUDict and 325 
NetTalk, respectively. 326 

In all proposed models, the patience of early stopping was set to 50 in Adam optimizer and 30 327 
in SGD optimizer. 328 

For NetTalk experiments, and the size of input and output layers are equal to  329 
input: {length of the longest input (19) 9 number of graphemes (26)} 330 
output: {length of the longest output (19) 9number of phonemes (52)}. 331 
We converted inputs to 26-dimensional and outputs to 52-dimensional one-hot vector 332 

representations as in case of CMUDict. The same model structure was used as with the CMUDict 333 
experiments. 334 

 335 
Moreover, the implementation of a single convolutional layer on input data is presented in Fig. 5. 336 
The input is a one-hot vector of ‘ARREST’; 64 filters of (input length) *3 are applied to the input. In 337 
other words, the input is convolved with 64 feature maps, which produce the output of the 338 
convolutional layer. Zero padding was used to ensure that the output of the convolution layer has 339 
the same dimension as the input. During training, the filter weights are optimized to produce lower 340 
loss values. 341 
 342 

                   343 
Figure 5. Implementation of a single convolutional layer with 64 filters of size (input length) *3 to the 344 
input data. 345 
 346 

During inference, prediction of the graphemes sequence is decoded until /EP, and the length of 347 
input and output are not considered.  348 

4.3. Evaluation and Results 349 

NVidia Titan Xp (12 GB) and NVidia Titan X (12 GB) GPU cards hosted in two i7 workstations 350 
with 32GB RAM served for training and inference. Ubuntu 14.04 with Cuda 8.0 and cuDNN 5.0 was 351 
used as general software architecture. For training and evaluating the Keras deep learning framework 352 
with Theano backend was our environment.  353 

For evaluation standard and commonly used [11, 13] measurements of phoneme error rate (PER) 354 
and word error rate (WER) were calculated. PER was used to measure the distance between the 355 
predicted phoneme sequence and reference pronunciation divided by the number of phonemes in 356 
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the reference pronunciation. Edit distance (also known as Levenshtein distance [38]) is the minimum 357 
number of insertions (I), deletions (D) and substitutions (S), that are required to transform one 358 
sequence into the other. If there are multiple pronunciation variants for a word in the reference data, 359 
the variant that has the smallest Levenshtein distance [38] to the candidate is used. Levenshtein 360 
distance can be calculated by dynamic programming method [47]. 361 

For WER computation, which is only counted if the predicted pronunciation does not match any 362 
reference pronunciation, the number of word errors is divided by the total number of unique words 363 
in the reference. 364 

After training the model, predictions were run on the test dataset. The results of evaluation on 365 
the CMUDict dataset are shown in Table 1. The first and second columns show the model number 366 
and the applied architecture, respectively. The third and fourth columns show the PER and WER 367 
values. The fifth column of Table 1 contains the average sum of training and validation time of one 368 
epoch. The last two columns present information about the size of models, which shows the number 369 
of parameters (weights) and the number of epochs to reach minimum validation loss. According to 370 
the results, the encoder-decoder Bi-LSTM architecture (Model 2) outperforms the first model, as 371 
expected. But attention-based Model 1 (called Model 1A in Table 1) outperforms Model 2 in term of 372 
PER. The best WER and PER values are achieved by the fifth model: PER is 4.81%, and WER is 25.13%. 373 
Attention-based Model 2 (called Model 2A in Table 1) approaches the best result in terms of both PER 374 
and WER. But the number of parameters of Model 2A is twice as much as for Model 5. Although the 375 
fourth model was faster than all other models, both PER and WER of this model are the highest, 376 
however, still competitive. Moreover, this model has also the least parameters.   377 

We compared the performance of the fifth model on both CMUDict and NetTalk with previously 378 
achieved state-of-the-art results. These comparisons are presented in Table 2. The first column shows 379 
the dataset, the second column presents the method used in previous solutions with references, PER 380 
and WER columns tell the results of the referred models. Table 2 clearly shows that our fifth model 381 
outperforms the previous solutions by PER on each dataset, except [23]. For NetTalk, we are able to 382 
significantly surpass the previous state-of-the-art, but a better WER was obtained by [23] with an 383 
encoder-decoder network based on attention mechanism. We should point out that the results of the 384 
fifth model are very close to those obtained by [23].  385 

The proposed best model in [40] consists of the combination of the sequitur G2P (model order 386 
8) and seq2seq-attention (Bi-LSTM 512x3) and multitask learning (ARPAbet/IPA), and although the 387 
WER in their case is better, Model 5 has the smaller PER. 388 

Although the encoder-decoder LSTM by [13] is similar to our first model, the PER is better in 389 
our case; the WER of both models is almost the same. Our second model is comparable with [13], in 390 
which the Bi-LSTM method was implemented, alignment was also applied. 391 
 392 

           Table 1. Results on the CMUDict dataset. 393 

Model Method PER(%) WER(%) Time(s) Number 

of epochs 

Model 

size 

1 Encoder-Decoder LSTM 5.68 28.44 467.73 185 12.7M 

1A Encoder-Decoder LSTM with 

attention layer 

5.23 28.36 688.9 136 13.9M 

2 Encoder-Decoder Bi-LSTM 5.26 27.07 858.93 177 33.8M 

2A Encoder-Decoder Bi-LSTM with 

attention layer 

4.86 25.67 1045.5 114 35.3M 

3 Encoder CNN, decoder Bi-LSTM 5.17 26.82 518.3 115 13.1M 
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4 End-to-end CNN (with res. 

connections) 

5.84 29.74 176.1 142 7.62M 

5 Encoder CNN with res. 

connections, decoder Bi-LSTM 

4.81 25.13 573.5 147 14.5M 

 394 

Table 2. Comparison of best previous results of G2P models with our fifth model (encoder is a CNN 395 
with residual connections, Bi-LSTM decoder) on CMUDict and NetTalk. 396 

Data Method PER (%) WER (%) 

NetTalk 

  

  

  

Joint sequence model [3] 8.26 33.67 

Bi-LSTM [13] 7.38 30.77 

Encoder-decoder with global attention [23] 7.14 29.20 

Encoder CNN with residual connections,  

decoder Bi-LSTM ( Model 5) 
5.69 30.10 

CMUDict 

  

  

  

  

  

  

  

  

  

  

  

LSTM with Full-delay [11] 9.11 30.1 

Joint sequence model [3] 5.88 24.53 

Encoder-decoder LSTM [13] 7.63 28.61 

Bi-LSTM +Alignment [13] 5.45 23.55 

Combination of sequitur G2P and seq2seq-attention 

and multitask learning [40] 
5.76 24.88 

Ensemble of 5 [Encoder-decoder + global attention] 

models [23] 
4.69 20.24 

Encoder-decoder with global attention [23] 5.04 21.69 

Joint multi-gram + CRF [8] 5.5 23.4 

Joint n-gram model [4] 7.0 28.5 

Joint maximum entropy (ME) n-gram model [5] 5.9 24.7 

Encoder-Decoder GRU [15] 5.8 28.7 

Encoder CNN with residual con., decoder Bi-LSTM 

(fifth model) 
4.81 25.13 

 397 

5.  Discussions 398 

In this section, we discuss the results of the previous section and analyse the connection between 399 
PER values and word length, furthermore the position of the error within the word. 400 

We categorize the word length into 3 classes: short (shorter than 6 characters), medium (between 401 
6 and 10 characters), long (more than 10 characters). According to this categorization, there were 4306 402 
short, 5993 medium and 1028 long words in the CMUDict dataset. In this analysis, we ignored 403 
approximately 600 words that have multiple pronunciation variants in the reference data. 404 

The result of this comparison is presented in Fig. 6(a). For short words, all models show similar 405 
PERs; for medium length words, except the end-to-end CNN model (fourth model), the other models 406 
resulted in similar error; for long words, encoder CNN with residual connection, decoder Bi-LSTM 407 
(fourth model) and encoder CNN, decoder Bi-LSTM (third model) got similar minimum errors. The 408 
fourth model showed the highest error in both medium and long length words. According to Fig. 409 
6(a), the advantage of Bi-LSTM based models is clearly shown for learning long sequences.  410 



Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 19 

Moreover, errors occurring in the first half of the pronunciation (in the reference) increases the 411 
probability of predicting incorrect phonemes in the second half. Still, a correctly predicted first half 412 
cannot guarantee a correctly predicted second half. In our experiments, convolutional architectures 413 
also performed well on short and on long-range dependencies. Our intuition is that the residual 414 
connections enable the network to consider features learned by lower and higher layers - which 415 
represents shorter and longer dependencies. 416 

We also analysed the position of the errors in the reference pronunciation: we investigated if the 417 
error occurred in the first or in the second half of the word. The type of error can be insertion (I), 418 
deletion (D) and substitution (S). By using this position information, we can analyse the distribution 419 
of these errors across the first or second half of the word. The position of error was calculated by 420 
enumerating graphemes in the reference. For error insertion (I), the position of the previous 421 
grapheme was taken into account. The example below describes the process details:  422 

 word: ACKNOWLEDGEMENT 423 
Enumeration: 0 1 2 3 4 5 6 7 8 9 10 11 12 424 
Reference: [EP AE K N AA L IH JH M AH N T /EP] 425 
Prediction: [EP IH K N AA L IH JH IH JH AH N T /EP] 426 
Type of errors: S S I 427 
Position: [1, 8, 8] 428 

As the example shows two substitutions (S) and one insertion (I) occurred in our fifth model 429 
output. One error (S) is included in the first half part of the pronunciation in the reference (EP   AE  430 
K  N  AA  L, the other errors (S) and (I) are in the second half (H  JH  M AH  N  T  /EP). 431 

Fig. 6(b) shows the position errors calculated for all the models on the reference dataset. The first 432 
half of the words in all models contains more errors. Regarding the second half, all models show a 433 
similar number of position errors, except the end-to-end CNN model. The fifth model resulted in the 434 
lowest number of position errors. 435 

Furthermore, in all models presented here, PER is better than the previous results on CMUDict 436 
except the first four models in [23] while WER is still reasonable. It means that even most of the 437 
incorrect predictions are very close to the reference, therefore they have small PER. Accordingly, we 438 
need to analyse the incorrect predictions (outputs) for each model to see how many phonemes are 439 
correct in the reference. In the fifth model, 25.3 % of the test data are not correct (about 3000 test 440 
samples). After the analysis of these predictions, more than half of them have 1 incorrect phoneme. 441 
In particular, the PER for 59 test samples is higher than 50% (11 test samples are greater than 60%, 442 
and only 1 test sample is more than 70%). These percentages in the other presented models are more 443 
or less the same. Generally, the same 1000 words are incorrectly predicted by all presented models.  444 
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 445 
a)                                    b) 446 

Figure 6. PER depending on the length of the words (a); Position of errors for all models (b). 447 

 448 
We can see different types of error when generating phoneme sequences. One of these errors is 449 

that some phonemes are unnecessarily generated multiple times. For example, for the word 450 
YELLOWKNIFE, reference is [ Y EH L OWN AY F], the prediction of Model 5 for this word is [Y EH 451 
L OW K N N F], where the character N was generated twice. Another error type regards sequences 452 
of graphemes that are rarely represented in the training process. For example, for the word ZANGHI 453 
Model 5 output is [Z AE N G], while the reference is [Z AA N G IY]. The graphemes ‘NGHI’ appeared 454 
only 7 times in the training data. Furthermore, many words are of foreign origin, for example, 455 
GDANSK is Polish a city, SCICCHITANO is an Italian name, KOVACIK is a Turkish surname.  456 
Generating phoneme sequences of abbreviations is one of the hard challenges. For example, LPN, 457 
INES are shown with their references and the prediction form of Model 5 in Table 3: 458 

Table 3. Examples of errors predicted by Model 5. 459 

Word from test data Reference of given word Prediction of Model 5 

YELLOWKNIFE Y EH L OW N AY F Y EH L OW K N N F 

ZANGHI Z AA N G IY Z AE N G 

GDANSK  G AH D AE N S K D AE N AE K EH K 

SCICCHITANO S IH K AH T AA N OW S CH CH Y K IY IY 

KOVACIK K AA V AH CH IH K K AH V AA CH IH K 

LPN EH L P IY EH N  L L N N P IY E 

INES IH N IH S AY N Z 

In the proposed models, we were able to achieve smaller PERs with different hyperparameter 460 
settings, but WERs showed different behaviour, in contrast, what we expected. For calculating WER, 461 
the number of word errors is divided by the total number of unique words in the reference. These 462 
word errors are counted only if the predicted pronunciation does not match any reference 463 
pronunciation. So, in the generated phoneme sequences of words that contained errors, there is at 464 
least one phoneme error.  For that reason, we calculated the number of word errors depending on 465 
the number of phoneme errors for all proposed models on CMUDict, as presented in Fig. 7. 466 
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 467 

Figure 7. Number of word errors depending on the number of phoneme errors for all models. 468 

In the case of each model, there are twice as many words with only one phoneme error than 469 
words which have two phoneme errors. Words with one phoneme error significantly effect the WER. 470 
The number of words with two phoneme errors were the most in Model 4 (908), and the least in 471 
Model 5 (739). The number of words, which have three phoneme errors is the least (230) in Model 5. 472 
There is approximately the same number of words which have four phoneme errors in Model 2 and 473 
Model 5 (84 in Model 2 and 86 in Model 5). There are very few words with five or more phoneme 474 
errors in all models. Model 1, Model 3 has only 1 word which has seven phoneme errors; Model 5 475 
has 2 words; Model 4 has 6 words. The number of words with eight phoneme errors is 0 in Model 3, 476 
Model 5; 1 in Model 4. Fig. 7 helps to understand why PER in our models can be smaller while WER 477 
is higher. 478 

 479 
 480 

6. Conclusions 481 

In this paper convolutional neural networks for grapheme-to-phoneme conversion are 482 
introduced. Five different models for the G2P task are described, and the results are compared to 483 
previously reported state-of-the-art research. Our models are based on the seq2seq architecture, and, 484 
in the fourth and fifth models, we applied CNNs with residual connections. The fifth model, which 485 
uses convolutional layers with residual connections as encoder and Bi-LSTM as decoder 486 
outperformed most the previous solutions on the CMUDict and NetTalk datasets in terms of PER. 487 
Furthermore, the fourth model, which contains convolutional layers only, is significantly faster than 488 
other models and still has competitive accuracy. Our solution achieved these results without explicit 489 
alignments. The experiments are conducted on a test set, which is 9.8% and 24.9% of the whole 490 
CMUDict and NetTalk databases, respectively. The same test set is used in all cases, so we consider 491 
the results comparable. To draw conclusions on whether one model is better than another the goal 492 
must be defined. If inference time is crucial, then smaller model sizes are favorable (e.g. Model 4), but 493 
if lower WER and PER are the main factors, then Model 5 outperforms the others. 494 

The results presented in this paper can be applied in TTS systems, however, because of the rapid 495 
development of deep learning further aspects will be investigated, like dilated convolutional 496 
networks and neural architecture search. These are possible further extensions of the current 497 
research. 498 

Abbreviations 499 

G2P: Grapheme-to-phoneme 500 

ASR: Automatic Speech Recognition 501 
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