

Appl. Sci. 2018, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Type of the Paper (Article, Review, Communication, etc.) 1

Grapheme-to-Phoneme Conversion with 2

Convolutional Neural Networks 3

Sevinj Yolchuyeva*1, Géza Németh, Bálint Gyires-Tóth 4

{syolchuyeva, nemeth, toth.b}@tmit.bme.hu 5
*Department of Telecommunications and Media Informatics, University of Budapest Technology and 6
Economics, 1111, Budapest, Hungary 7

Abstract: Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for 8
words based on their written form. It has a highly essential role for natural language processing, 9
text-to-speech synthesis and automatic speech recognition systems. In this paper, we investigate 10
convolutional neural networks (CNN) for G2P conversion. We propose a novel CNN-based 11
sequence-to-sequence (seq2seq) architecture for G2P conversion. Our approach includes an end-to-12
end CNN G2P conversion with residual connections, furthermore, a model, which utilizes a 13
convolutional neural network (with and without residual connections) as encoder and Bi-LSTM as 14
a decoder. We compare our approach with state-of-the-art methods, including Encoder-Decoder 15
LSTM and Encoder-Decoder Bi-LSTM. Training and inference times, phoneme and word error rates 16
were evaluated on the public CMUDict dataset for US English, and the best performing 17
convolutional neural network based architecture was also evaluated on the NetTalk dataset. Our 18
method approaches the accuracy of previous state-of-the-art results in terms of phoneme error rate. 19

Keywords: Grapheme-to-Phoneme (G2P), encoder-decoder; LSTM; 1D convolution; Bi-LSTM; 20
Residual Architecture 21

 22

1.Introduction 23

The process of grapheme-to-phoneme (G2P) conversion generates the phonetic transcription 24
from the written form of words. The spelling of the word is called grapheme sequence (or 25
graphemes), the phonetic form is called phoneme sequence (or phonemes). It is essential to develop 26
a phonemic lexicon in text-to-speech (TTS) and automatic speech recognition (ASR) systems. For this 27
purpose, G2P techniques are used, and getting state-of-the-art performance in these systems depends 28
on the accuracy of G2P conversion. For instance, in ASR acoustic models, the pronunciation lexicons 29
and language models are critical components. Acoustic and language models are built automatically 30
from large corpora. Pronunciation lexicons are the middle layer between acoustic and language 31
models. For a new speech recognition task, the performance of the overall system depends on the 32
quality of the pronunciation component. In other words, the system’s performance depends on G2P 33
accuracy. For example, the G2P conversion of word 'speaker' is 'S P IY K ER'. In TTS systems a high-34
quality G2P model is also an essential part and has a great influence on the overall quality. Inaccurate 35
G2P conversion results in unnatural pronunciation or even incomprehensible synthetic speech. 36

1

 Corresponding author:

syolchuyeva@tmit.bme.hu

Appl. Sci. 2018, 8, x FOR PEER REVIEW 2 of 19

2. Previous Works 37

G2P conversion has been studied for a long time. Rule-based G2P systems use a wide set of 38
grapheme-to-phoneme rules [1, 2]. Developing such a G2P system requires linguistic expertise. 39
Additionally, some languages (such as Chinese and Japanese) have complex writing systems, and 40
building the rules is labor-intensive and it is extremely difficult to cover most possible situations. 41
Furthermore, these systems are sensitive to out of vocabulary (OOV) events. Other previous solutions 42
used joint sequence models [3, 4]. These models create an initial grapheme-phoneme sequence 43
alignment, and by using this alignment, it calculates a joint n-gram language model over sequences. 44
The method proposed by [3] is implemented in the publicly available tool Sequitur2. In one-to-one 45
alignment, each grapheme corresponds only to one phoneme and vice versa. An "empty" symbol is 46
introduced to match grapheme and phoneme sequences. For example, the grapheme sequence of 47
‘CAKE’ matches the phoneme sequence of ‘K EY K’, and one-to-one alignment of these sequences is 48
C  K, A  EY, K  K, and the last grapheme ‘E’ matches the “empty” symbol. Conditional and 49
joint maximum entropy models use this approach [5]. Later, Hidden Conditional Random Field 50
(HCRF) models were introduced in which the alignment between grapheme and phoneme sequence 51
is modelled with hidden variables [6, 7]. The HCRF models usually lead to very competitive results, 52
however, the training of such models is very memory and computationally intensive. A further 53
approach utilizes conditional random fields (CRF) and Segmentation/Tagging models (such as linear 54
finite-state automata or transducers, FSTs), then use them in two different compositions [8]. The first 55
composition is a joint-multigram combined with CRF; the second one is a joint-multigram combined 56
with Segmentation/Tagging. The first approach achieved 5.5% phoneme error rate (PER) on 57
CMUDict. 58

Recently, neural networks have been applied for G2P conversion. Neural network based G2P 59
conversion is robust against spelling mistakes and OOV words; it generalizes well. Also, it can be 60
seamlessly integrated into end-to-end TTS/ASR systems (that are constructed entirely of deep neural 61
networks) [15]. In this paper, a TTS system (Deep Voice) is presented which was constructed entirely 62
from deep neural networks. Deep Voice lays the groundwork for truly end-to-end neural speech 63
synthesis. Thus, the G2P model is jointly trained with further essential parts of the speech synthesizer 64
and recognizer, which increase the overall quality of the system. 65

LSTM has shown competitive performance in various fields, like acoustic modelling [9] and 66
language understanding [10]. One of the early neural approaches investigates unidirectional Long 67
Short-Term Memory (ULSTM) with full output delays, which achieved 9.1% phoneme error rate [11]. 68
In the same paper, a deep bidirectional LSTM (DBLSTM) was combined with connectionist temporal 69
classification (CTC) and joint n-gram models for better accuracy (21.3% word error rate). Note that 70
CTC objective function was introduced to infer speech-label alignments automatically without any 71
intermediate process, leading to an end-to-end approach for ASR [44]. CTC technique has combined 72
with CNN, LSTM for the various speech-related tasks [45]. 73

Due to utilizing an encoder-decoder approach for the G2P task, a separate alignment between 74
grapheme sequences and phoneme sequences became unnecessary [12, 13]. 75

Alignment based models of unidirectional LSTM with one layer and bi-directional LSTM (Bi-76
LSTM) with one, two and three layers were also previously investigated [13]. In this work, alignment 77
was explicitly modelled in the G2P conversion process by the context of the grapheme. A further 78
work, which applies deep bi-directional LSTM with hyperparameter optimization (including the 79
number of hidden layers, optional linear projection layers, optional splicing window at the input) 80
considers various alignment schemes [14]. The best model with hyperparameter optimization 81
achieved 5.37% phoneme (PER)and 23.23% word error rate (WER). Multi-layer bidirectional encoder 82
with gated recurrent units (GRU) and deep unidirectional GRU as a decoder achieved 5.8% PER and 83
28.7% WER on CMUDict [15]. 84

2

 https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html, Access date: 9th August 2018

Appl. Sci. 2018, 8, x FOR PEER REVIEW 3 of 19

Convolutional neural networks have achieved superior performance compared to previous 85
methods in large-scale image recognition [16, 17]. Recently, these architectures were also applied to 86
Natural Language Processing (NLP) tasks, including sentence classifications and neural machine 87
translation. Nowadays, completely convolutional neural networks may achieve superior results 88
compared to recurrent solutions [18, 19]. 89

Sequence-to-sequence (seq2seq) learning, or encoder-decoder type neural networks have 90
achieved remarkable success in various tasks, such as speech recognition, text-to-speech synthesis, 91
machine translation [20, 21, 22, 42]. This type of network is used for several tasks, and its performance 92
has also been enhanced with attention mechanism [19, 42, 43]. In this structure, the encoder computes 93
a representation of each input sequence, and the decoder generates an output sequence based on the 94
learned representation. In [43], bidirectional multi-layer recurrent neural network based seq2seq 95
learning was investigated in two architectures: a single Bi-LSTM/Bidirectional Gated Recurrent Unit 96
(Bi-GRU) layer and two Bi-LSTM/Bi-GRU layers. Both Bi-LSTM and Bi-GRU uses both past and 97
future contexts. Moreover, bidirectional decoder was proposed for neural machine translation (NMT) 98
in [46]. Both encoder and decoder are Bi-GRU, but this model is applicable to other RNNs, such as 99
LSTM. By introducing a backward decoder, the purpose of which is to exploit reverse target-side 100
contexts, the results of NMT task was improved. For speech recognition, several sequence-to-101
sequence models including connectionist temporal classification (CTC), the recurrent neural network 102
(RNN) transducer, an attention-based model [51] have been analyzed. The basics of sequence 103
modelling with convolutional networks are summarized in [52]. Furthermore, the key components 104
of the temporal convolution network (TCN) have also been introduced and some vital advantages, 105
and disadvantages of using TCN for sequence predictions instead of RNNs were analyzed as well. 106

The encoder-decoder structure was studied for the G2P task [13, 15, 23] before, but usually, 107
LSTM and GRU networks were involved. For example, Baidu’s end-to-end text-to-speech 108
synthesizer, called Deep Voice, uses the multi-layer bidirectional encoder with GRU’s non-linearity 109
and an equally deep unidirectional GRU decoder [15]. Until now the best result for G2P conversion 110
was introduced by [23], which applied an attention-enabled encoder-decoder model and achieved 111
4.69% PER and 20.24% WER on CMUDict. Furthermore, G2P-seq2seq3 is based on neural networks 112
implemented in the TensorFlow framework with 20.6% WER. 113

According to our knowledge, our approach is the first that uses convolutional neural networks 114
for G2P conversion. In this paper, we present one general sequence-to-sequence and four encoder-115
decoder models. These are introduced in Section 3. Our goal was to achieve and surpass (if possible) 116
the accuracy of previous models and to reduce the training times (which is quite high in case of 117
LSTM/GRU). 118

The remaining parts of this paper are structured as follows: Section 3 discusses the possibility to 119
apply convolutional neural networks for sequence-to-sequence based grapheme-to-phoneme 120
conversion. Datasets, training processes, and evaluation of the proposed models are presented in 121
Section 4. Section 5 analyzes the results of the models, and finally, the conclusion is drawn in Section 122
6. 123

3. Convolutional Neural Networks for Grapheme to Phoneme Conversion 124

Convolutional neural networks are used in various fields, including image [24, 25], object [16, 125
26, 27] and handwriting recognition [27, 28], face verification [29], natural language processing [30, 126
31] and machine translation [19]. The architecture of an ordinary CNN is composed of many layer 127
types (such as the convolutional layers, pooling layers, fully connecting layers, etc.) where each layer 128
carries out a specific function. The convolutional and pooling layers are for representation learning, 129
while the fully connected layers on the top of the network are for modelling a classification or 130
regression problem. One of the main reasons that make convolutional neural networks superior to 131
previous methods is that CNNs perform representation learning and modelling jointly, thus a quasi-132

3

 https://github.com/cmusphinx/g2p-seq2seq, Access date: 9th August 2018

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 19

optimal representation is extracted from the input data for the machine learning model. Weight 133
sharing in the convolutional layers is also a key element. Thus, the model becomes spatially tolerant: 134
similar representations are learned in different regions of the input, and the total number of 135
parameters can also be reduced drastically. 136

Deep Learning refers to the increased depth of neural networks. Intuitively, it is expected that 137
neural networks with many hidden layers are more powerful than shallow ones with a single hidden 138
layer. However, as the number of layers increases the training may become surprisingly hard, partly 139
because the gradients are unstable. Batch normalization is a technique to overcome this problem; it 140
reduces internal covariance shift and helps to smooth learning. The main idea of batch normalization 141
is to bring back the benefits of normalization at each layer [32]. Batch normalization results in faster 142
convergence as well. E.g., with batch normalization 7% of the training steps were enough to achieve 143
similar accuracy in an image classification task [32]. Moreover, an additional advantage of batch 144
normalization is that it regularizes the training and thus reduces the need for dropout and other 145
regularization techniques [32]. However, batch normalization and dropout are often simultaneously 146
applied. 147

Convolutional neural networks were successfully applied to various NLP tasks [19, 30, 31, 52]. 148
These results suggest investigating the possibility of applying CNN based sequence-to-sequence 149
models for G2P. We expected that the advantage of convolutional neural networks enhances the 150
performance of G2P conversion. As known, LSTMs read input sequentially, the output for further 151
inputs depends on the previous ones. Thus, we cannot parallelise these networks. Applying CNN 152
also moves away computational load by using large receptive fields. 153

Deep neural networks with a sequential architecture have many typical building blocks, such as 154
convolutional or fully connected layers, stacked on each other. Increasing the number of layers in 155
these kinds of networks does not implicitly mean improved accuracy (in our case PER or WER), and 156
some issues, such as vanishing gradient and degradation problems arise as well. Introducing residual 157
and highway connections can improve performance significantly [33, 34]. These connection 158
alternatives allow the information to flow more into the deeper layers, increase the convergence 159
speed and decrease the vanishing gradient problem. 160

3.1. Models 161

Encoder-decoder structures have shown state-of-the-art results in different NLP tasks [13, 21]. 162
The main idea of these approaches has two steps: the first step is mapping the input sequence to a 163
vector; the second step is to generate the output sequence based on the learned vector representation. 164
Encoder-decoder models generate an output after the complete input sequence is processed by the 165
encoder, which enables the decoder to learn from any part of the input without being limited to fixed 166
context windows. Fig. 1 shows an example of an encoder-decoder architecture [12]. 167

 168

Figure 1. The input of the encoder is “CAKE” grapheme sequence, and the decoder produces “K EY 169
K” as phoneme sequences. The left side is encoder; the right side is decoder. The model stops making 170
predictions after generating the end-of-phonemes tag. As distinct from [12, 13], input data for the 171
encoder is not reversed in all our models. 172

Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 19

In our experiments, we used encoder-decoder architectures. Several models with different 173
hyperparameters were developed and tested. From a large number of experiments, five models with 174
the highest accuracy and diverse architectures were selected. Our first two models are based on 175
existing solutions for comparison purposes. We used these models as a baseline. In the following 176
paragraphs the five models are introduced: 177
 178

1. The first model uses LSTMs for both the encoder and the decoder. The LSTM encoder reads 179
the input sequence and creates a fixed-dimensional vector representation. The second LSTM is the 180
decoder, and it generates the output. Fig. 2(a) shows the structure of the first model. It can be seen 181
that both LSTMs have 1024 units; softmax activation function is used to obtain model predictions. 182
This architecture is the same as a previous solution [13], while the parameters of training 183
(optimization method, regularization, etc.) are identical to the settings used in case of the other four 184
models. This way we try to ensure a fair comparison among the models. 185

Although the encoder-decoder architecture achieves competitive results on a wide range of 186
problems, it suffers from the constraint that all input sequences are forced to be encoded to a fixed 187
size latent space. To overcome this limitation, we investigated the effects of the attention mechanism 188
proposed by [49, 50] in Model 1 and Model 2. We applied an attention layer between the encoder and 189
decoder LSTMs in case of Model 1, and Bi-LSTMs for Model 2. The introduced attention layers are 190
based on global attention [50]. 191

2. In the second model, both the encoder and the decoder are Bi-LSTMs [10, 35, 36]. The structure 192
of this model is presented in Fig. 2(b). The input is fed to the first Bi-LSTM (encoder), which combines 193
two unidirectional LSTM layers that process the input from left-to-right and right-to-left. The output 194
of the encoder is given as input for the second Bi-LSTM (decoder). Finally, the softmax function is 195
applied to generate the output of one-hot vectors (phonemes). During the inference, the complete 196
input sequence is processed by the encoder, and after that, the decoder generates the output. For 197
predicting a phoneme, both the left and the right contexts are considered. This model was also 198
inspired by an existing solution [11]. 199

3. In the third model, a convolutional neural network is introduced as encoder, and a Bi-LSTM 200
as decoder. This architecture is presented in Fig. 2(c). As this figure shows the number of filters is 201
524, the length of the filter is 23, the stride is 1, and the number of cells in the Bi-LSTM is 1024. In this 202
model, the CNN layer takes graphemes as input and performs convolution operations. For 203
regularization purpose, we also introduced batch normalization in this model. 204

4. The fourth model contains convolutional layers only with residual connections (blocks) [33]. 205
These residual connections have two rules [37]: 206

(1) if feature maps have the same size, then the blocks share the same hyperparameters. 207
(2) each time when the feature map is halved, the number of filters is doubled. 208
First, we apply one convolutional layer with 64 filters to the input layer, followed by a stack 209

of residual blocks. Through hyperparameter optimization, the best result was achieved by 4 residual 210
blocks, as shown in Fig. 3(a) and the number of filters in each residual block is 64, 128, 256, 512, 211
respectively. Each residual block contains a sequence of two convolutional layers followed by a batch 212
normalization [32] layer and ReLU activation. The filter size of all convolutional layers is three. After 213
these blocks, one more batch normalization layer and ReLU activation are applied. The architecture 214
ends with a fully connected layer, which uses the softmax activation function. 215

We carried out experiments with the same fully convolutional models without residual 216
connections, however, the phoneme and word error rates were worse than with residual connections, 217
as expected. 218

5. The fifth model combines models 3 and 4: the encoder has the same convolutional neural 219
network architecture with residual connections and batch normalization, which was introduced in 220
model four. The decoder is a Bi-LSTM, as in model three. The structure of this model is presented in 221
Fig. 3(b). 222

In all models except Model 4, we used stateless LSTM (or Bi-LSTM) configurations; the internal 223
state is reset after each batch for predictions. 224

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 19

225
a) b) c) 226

 227

Figure 2. G2P conversion model based on encoder-decoder (a) LSTMs (first model); (b) Bi-LSTMs 228
(second model); (c) encoder CNN, decoder Bi-LSTM (third model). f, d, s are the number of the filters, 229
length of the filters and stride, respectively, in the convolutional layer. 230

Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 19

 231
 a) b) 232

Figure 3. G2P conversion based on (a) convolutional neural network with residual connections (fourth 233
model) and (b) encoder convolutional neural network with residual connections and decoder Bi-234
LSTM (fifth model). f, d, s is the number of the filters, length of the filters and stride, respectively. 235

3.2. Details of the bidirectional decoder 236

The details of the bidirectional decoder, which was used in Model 2, are presented in this section. 237
Given an input sequence � � ���, ��, . . , �	
, LSTM network computes the hidden vector 238

sequence ℎ � � ℎ�, ℎ�, . . , ℎ	
 and output vector sequence � � ���, ��, . . , �	
. 239
Initially, one-hot character vectors for graphemes and phonemes sequences were created. 240

Character vocabularies, which contain all the elements that are present in the input and output data, 241
are separately calculated. In other words, neither any grapheme vector in the output vocabulary, nor 242
any phoneme vector in the input vocabulary was used. These were the inputs to the encoder and the 243
decoder. Padding was applied to make all input and output sequences to have the same length, which 244
was set to 22. This number (22) was chosen based on the maximum length in the training database. 245
For G2P, � � ���, ��, . . , �	
 is one-hot character vectors of graphemes sequences; � � ���, ��, . . , �	
 246
is one-hot character vectors of phonemes sequences. 247

In the proposed Model 2, as an encoder, Bi-LSTM was used, and it consists of two LSTMs: one 248
that processes the sequence from left-to-right (forward encoder), and one that does it in reverse 249
(backward encoder). It was applied to learn the semantic representation of the input sequences in 250
both directions. One LSTM looks at the sequence from left-to-right (forward encoder), so reads an 251
input sequence in left-to-right order; and another LSTM looks at it in reverse (backward encoder), so 252
reads an input sequence in a right-to-left order. Each of the time steps the forward hidden sequence 253
ℎ⃗ and the backward hidden sequence ℎ⃖ are iterated by the following equations [48]: 254

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 19

ℎ����⃗ � ℋ������⃗ �� + ����⃗ ���⃗ ℎ�⃗ ��� + ����⃗
 (1) 255

ℎ��⃖�� � ℋ����⃖���� + ��⃖���⃖��ℎ⃖���� + ��⃖��� (2) 256

In Equation (1) the forward layer iterated from � � 1 to �; in Equation (2) the backward layer is 257
iterated from � � � to 1; ℋ is an element-wise sigmoid function. 258

As next step, the hidden states of these two LSTMs were concatenated to form an annotation 259
sequence ℎ � {ℎ�, ℎ�, . . , ℎ	 }, where ℎ� � [ℎ���⃗ , ℎ��⃖�] encodes information about the � − th 260
grapheme with respect to all the other surrounding graphemes in the input. ��ℎ⃗ , ���⃖�� , ��⃖���⃖�� and 261
�ℎ⃗ℎ⃗ are weight matrixes; �ℎ⃗, �ℎ⃖ denotes the bias vectors. Generally, in all parameters, the arrow 262
which pointed left to right and right to left means forward and backward layer, respectively. 263

The forward LSTM unrolls the sequences until it reaches the end of sequence for that input. The 264
backward LSTM unrolls the sequences until it reaches the start of the sequence. 265

For the decoder, we used bidirectional LSTM. These LSTMs can be called forward and backward 266
decoder, and described as '�⃗ ,'⃐�. After concatenating the forward and backward encoder LSTMs, the 267
backward decoder performs decoding in a right-to-left way. It was initialized with final encoded state 268
and reversed output (phonemes). The forward decoder is trained to sequentially predict the next 269
phoneme given the phoneme sequence. This part was initialized with the final state of the encoder 270
and all phoneme sequences. 271

Each decoder output is passed through the softmax layer that will learn to classify the correct 272
phonemes. 273

For training, given the previous phonemes, the model factorizes the conditional into a 274
summation of individual log conditional probabilities from both directions, 275

)��� *�[�:����
], �[����
:]� � log)��� |��:���
��������������������������������⃗ + log)���*�����
:	��⃖����������������������������������� (3) 276

Where log) /��0�[1:��−1
]1
����������������������������������⃗ and log) /��0�[��+1
:�]1 �⃖����������������������������������

are the left-to-right (forward), the right-to-277

left (backward) conditional probability in Equation (3), and calculated as below equations: 278

log)��� *�[����
:]� �⃖��������������������������������������� � 5 log)���*{���� , . . , �	}, �, ℎ, '⃖� �4
 279

 log)���*�[�:����
]���������������������������������������⃗ � ∑ log)��� *{�� , . . , ����}, �, ℎ, '⃗� (5) 280

The prediction is performed on test data as follows: 281

log)���*�[����
:]� �⃖��������������������������������������� � 5 log)���|�, ℎ]
 �6
. 282

According to Equation (6) future output is not used during inference. The architecture is shown 283
on Figure 4. 284

 285

Figure 4. The architecture of the proposed bidirectional decoder model for G2P task. 286

4. Experiments 287

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 19

4.1. Datasets 288

We used the CMU pronunciation4 and NetTalk5 datasets, which have been frequently chosen 289
by various researchers [3, 13, 23]. The training and testing splits are the same as found in [4, 5, 8, 11], 290
thus, the results are comparable. CMUDict contains a 106,837-word training set and a 12,000-word 291
test set (reference data). 2,670 words are used as development set. There are 27 graphemes (uppercase 292
alphabet symbols plus the apostrophe) and 41 phonemes (AA, AE, AH, AO, AW, AY, B, CH, D, DH, 293
EH, ER, EY, F, G, HH, IH, IY, JH, K, L, M, N, NG, OW, OY, P, R, S, SH, T, TH, UH, UW, V, W, Y, Z, 294
ZH, <EP>, </EP>) in this dataset. NetTalk contains 14,851 words for training, 4,951 words for testing 295
and does not have a predefined validation set. There are 26 graphemes (lowercase alphabet symbols) 296
and 52 phonemes ('!', '#', '*', '+', '@', 'A', 'C', 'D', 'E', 'G', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'R', 'S', 'T', 'U', 'W', 'X', 297
'Y', 'Z', '^', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'k', 'l', 'm', 'n', 'o', 'p', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',<EP>, </EP>) 298
in this dataset. 299

We use <EP> and </EP> tokens as beginning-of-graphemes and end-of-graphemes tokens in both 300
datasets. For inference, the decoder uses the past phoneme sequence to predict the next phoneme, 301
and it stops predicting after token </EP>. 302

4.2. Training 303

For the CMUDict experiments, in all models, the size of the input layers is equal to 304
input: {length of the longest input (22) X number of graphemes (27)} 305

and the size of the output layers is equal to the 306
output: {length of the longest output (22) 9 number of phonemes (41)} 307
In order to transform graphemes and phonemes for neural networks, we convert inputs to 27-308

dimensional and outputs to 41-dimensional one-hot vector representations. For example, the 309
phoneme sequences of the word 'ARREST' is 'ER EH S T'; the input and output vector of the 310
grapheme and phoneme sequences are as below: 311

Input vector of ‘ARREST’ : 312

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ =

>
>
?
@
A
…

=
1
0
0
0
0
0
0

D
0
0
0
0
0
0
0

E
0
0
0
0
0
0
0

?
0
0
0
1
0
0
…

⃜
0
0
0
0
0
0
0

>
0
1
1
0
0
0
0

⃜
0
0
0
0
0
0
0

@
0
0
0
0
1
0
…

A
0
0
0
0
0
1
…

⃜
0
0
0
0
0
0
0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 313

Output vector of 'ER EH S T': 314

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ?)

?>
?J
@
A

/?)
…

/?)
0
0
0
0
0
1
0

⃜
0
0
0
0
0
0
0

?J
0
0
1
0
0
0
0

?>
0
1
0
0
0
0
…

?)
1
0
0
0
0
0
0

⃜
0
0
0
0
0
0
0

@
0
0
0
1
0
0
0

@J
0
0
0
0
0
0
…

A
0
0
0
0
1
0
…

⃜
0
0
0
0
0
0
0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 315

In case of LSTMs we applied the Adam optimization algorithm [39] with a starting learning rate 316
of 0.001, and with the baseline values of β1, β2 and ε (0.9, 0.999 and 1e-08, respectively). For batch size 317
128 was chosen. Weights were saved when the PER on the validation dataset achieved a lower value 318

4

 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
5

 We are grateful to Stan Chen for providing the data

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 19

than before. When the PER did not decrease further within 100 epochs, the best model was chosen, 319
and it was trained with stochastic gradient descent (SGD) further. In case of the first, second and third 320
models for SGD we used 0.005 for learning rate, 0.8 for momentum. For the fourth (convolutional 321
with residual connections) model 0.05 (learning rate) and 0.8 (momentum) were applied, and it was 322
trained for 142 when early stopping was called. In the fifth model 0.5 (learning rate) of SGD and 0.8 323
(momentum) was set and when PER has stopped improving in about 50 epochs, the learning rate 324
was multiplied by 4/5. The number of epochs for this model reached 147 and 135 for CMUDict and 325
NetTalk, respectively. 326

In all proposed models, the patience of early stopping was set to 50 in Adam optimizer and 30 327
in SGD optimizer. 328

For NetTalk experiments, and the size of input and output layers are equal to 329
input: {length of the longest input (19) 9 number of graphemes (26)} 330
output: {length of the longest output (19) 9number of phonemes (52)}. 331
We converted inputs to 26-dimensional and outputs to 52-dimensional one-hot vector 332

representations as in case of CMUDict. The same model structure was used as with the CMUDict 333
experiments. 334

 335
Moreover, the implementation of a single convolutional layer on input data is presented in Fig. 5. 336
The input is a one-hot vector of ‘ARREST’; 64 filters of (input length) *3 are applied to the input. In 337
other words, the input is convolved with 64 feature maps, which produce the output of the 338
convolutional layer. Zero padding was used to ensure that the output of the convolution layer has 339
the same dimension as the input. During training, the filter weights are optimized to produce lower 340
loss values. 341
 342

 343
Figure 5. Implementation of a single convolutional layer with 64 filters of size (input length) *3 to the 344
input data. 345
 346

During inference, prediction of the graphemes sequence is decoded until /EP, and the length of 347
input and output are not considered. 348

4.3. Evaluation and Results 349

NVidia Titan Xp (12 GB) and NVidia Titan X (12 GB) GPU cards hosted in two i7 workstations 350
with 32GB RAM served for training and inference. Ubuntu 14.04 with Cuda 8.0 and cuDNN 5.0 was 351
used as general software architecture. For training and evaluating the Keras deep learning framework 352
with Theano backend was our environment. 353

For evaluation standard and commonly used [11, 13] measurements of phoneme error rate (PER) 354
and word error rate (WER) were calculated. PER was used to measure the distance between the 355
predicted phoneme sequence and reference pronunciation divided by the number of phonemes in 356

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 19

the reference pronunciation. Edit distance (also known as Levenshtein distance [38]) is the minimum 357
number of insertions (I), deletions (D) and substitutions (S), that are required to transform one 358
sequence into the other. If there are multiple pronunciation variants for a word in the reference data, 359
the variant that has the smallest Levenshtein distance [38] to the candidate is used. Levenshtein 360
distance can be calculated by dynamic programming method [47]. 361

For WER computation, which is only counted if the predicted pronunciation does not match any 362
reference pronunciation, the number of word errors is divided by the total number of unique words 363
in the reference. 364

After training the model, predictions were run on the test dataset. The results of evaluation on 365
the CMUDict dataset are shown in Table 1. The first and second columns show the model number 366
and the applied architecture, respectively. The third and fourth columns show the PER and WER 367
values. The fifth column of Table 1 contains the average sum of training and validation time of one 368
epoch. The last two columns present information about the size of models, which shows the number 369
of parameters (weights) and the number of epochs to reach minimum validation loss. According to 370
the results, the encoder-decoder Bi-LSTM architecture (Model 2) outperforms the first model, as 371
expected. But attention-based Model 1 (called Model 1A in Table 1) outperforms Model 2 in term of 372
PER. The best WER and PER values are achieved by the fifth model: PER is 4.81%, and WER is 25.13%. 373
Attention-based Model 2 (called Model 2A in Table 1) approaches the best result in terms of both PER 374
and WER. But the number of parameters of Model 2A is twice as much as for Model 5. Although the 375
fourth model was faster than all other models, both PER and WER of this model are the highest, 376
however, still competitive. Moreover, this model has also the least parameters. 377

We compared the performance of the fifth model on both CMUDict and NetTalk with previously 378
achieved state-of-the-art results. These comparisons are presented in Table 2. The first column shows 379
the dataset, the second column presents the method used in previous solutions with references, PER 380
and WER columns tell the results of the referred models. Table 2 clearly shows that our fifth model 381
outperforms the previous solutions by PER on each dataset, except [23]. For NetTalk, we are able to 382
significantly surpass the previous state-of-the-art, but a better WER was obtained by [23] with an 383
encoder-decoder network based on attention mechanism. We should point out that the results of the 384
fifth model are very close to those obtained by [23]. 385

The proposed best model in [40] consists of the combination of the sequitur G2P (model order 386
8) and seq2seq-attention (Bi-LSTM 512x3) and multitask learning (ARPAbet/IPA), and although the 387
WER in their case is better, Model 5 has the smaller PER. 388

Although the encoder-decoder LSTM by [13] is similar to our first model, the PER is better in 389
our case; the WER of both models is almost the same. Our second model is comparable with [13], in 390
which the Bi-LSTM method was implemented, alignment was also applied. 391
 392

 Table 1. Results on the CMUDict dataset. 393

Model Method PER(%) WER(%) Time(s) Number

of epochs

Model

size

1 Encoder-Decoder LSTM 5.68 28.44 467.73 185 12.7M

1A Encoder-Decoder LSTM with

attention layer

5.23 28.36 688.9 136 13.9M

2 Encoder-Decoder Bi-LSTM 5.26 27.07 858.93 177 33.8M

2A Encoder-Decoder Bi-LSTM with

attention layer

4.86 25.67 1045.5 114 35.3M

3 Encoder CNN, decoder Bi-LSTM 5.17 26.82 518.3 115 13.1M

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 19

4 End-to-end CNN (with res.

connections)

5.84 29.74 176.1 142 7.62M

5 Encoder CNN with res.

connections, decoder Bi-LSTM

4.81 25.13 573.5 147 14.5M

 394

Table 2. Comparison of best previous results of G2P models with our fifth model (encoder is a CNN 395
with residual connections, Bi-LSTM decoder) on CMUDict and NetTalk. 396

Data Method PER (%) WER (%)

NetTalk

Joint sequence model [3] 8.26 33.67

Bi-LSTM [13] 7.38 30.77

Encoder-decoder with global attention [23] 7.14 29.20

Encoder CNN with residual connections,

decoder Bi-LSTM (Model 5)
5.69 30.10

CMUDict

LSTM with Full-delay [11] 9.11 30.1

Joint sequence model [3] 5.88 24.53

Encoder-decoder LSTM [13] 7.63 28.61

Bi-LSTM +Alignment [13] 5.45 23.55

Combination of sequitur G2P and seq2seq-attention

and multitask learning [40]
5.76 24.88

Ensemble of 5 [Encoder-decoder + global attention]

models [23]
4.69 20.24

Encoder-decoder with global attention [23] 5.04 21.69

Joint multi-gram + CRF [8] 5.5 23.4

Joint n-gram model [4] 7.0 28.5

Joint maximum entropy (ME) n-gram model [5] 5.9 24.7

Encoder-Decoder GRU [15] 5.8 28.7

Encoder CNN with residual con., decoder Bi-LSTM

(fifth model)
4.81 25.13

 397

5. Discussions 398

In this section, we discuss the results of the previous section and analyse the connection between 399
PER values and word length, furthermore the position of the error within the word. 400

We categorize the word length into 3 classes: short (shorter than 6 characters), medium (between 401
6 and 10 characters), long (more than 10 characters). According to this categorization, there were 4306 402
short, 5993 medium and 1028 long words in the CMUDict dataset. In this analysis, we ignored 403
approximately 600 words that have multiple pronunciation variants in the reference data. 404

The result of this comparison is presented in Fig. 6(a). For short words, all models show similar 405
PERs; for medium length words, except the end-to-end CNN model (fourth model), the other models 406
resulted in similar error; for long words, encoder CNN with residual connection, decoder Bi-LSTM 407
(fourth model) and encoder CNN, decoder Bi-LSTM (third model) got similar minimum errors. The 408
fourth model showed the highest error in both medium and long length words. According to Fig. 409
6(a), the advantage of Bi-LSTM based models is clearly shown for learning long sequences. 410

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 19

Moreover, errors occurring in the first half of the pronunciation (in the reference) increases the 411
probability of predicting incorrect phonemes in the second half. Still, a correctly predicted first half 412
cannot guarantee a correctly predicted second half. In our experiments, convolutional architectures 413
also performed well on short and on long-range dependencies. Our intuition is that the residual 414
connections enable the network to consider features learned by lower and higher layers - which 415
represents shorter and longer dependencies. 416

We also analysed the position of the errors in the reference pronunciation: we investigated if the 417
error occurred in the first or in the second half of the word. The type of error can be insertion (I), 418
deletion (D) and substitution (S). By using this position information, we can analyse the distribution 419
of these errors across the first or second half of the word. The position of error was calculated by 420
enumerating graphemes in the reference. For error insertion (I), the position of the previous 421
grapheme was taken into account. The example below describes the process details: 422

 word: ACKNOWLEDGEMENT 423
Enumeration: 0 1 2 3 4 5 6 7 8 9 10 11 12 424
Reference: [EP AE K N AA L IH JH M AH N T /EP] 425
Prediction: [EP IH K N AA L IH JH IH JH AH N T /EP] 426
Type of errors: S S I 427
Position: [1, 8, 8] 428

As the example shows two substitutions (S) and one insertion (I) occurred in our fifth model 429
output. One error (S) is included in the first half part of the pronunciation in the reference (EP AE 430
K N AA L, the other errors (S) and (I) are in the second half (H JH M AH N T /EP). 431

Fig. 6(b) shows the position errors calculated for all the models on the reference dataset. The first 432
half of the words in all models contains more errors. Regarding the second half, all models show a 433
similar number of position errors, except the end-to-end CNN model. The fifth model resulted in the 434
lowest number of position errors. 435

Furthermore, in all models presented here, PER is better than the previous results on CMUDict 436
except the first four models in [23] while WER is still reasonable. It means that even most of the 437
incorrect predictions are very close to the reference, therefore they have small PER. Accordingly, we 438
need to analyse the incorrect predictions (outputs) for each model to see how many phonemes are 439
correct in the reference. In the fifth model, 25.3 % of the test data are not correct (about 3000 test 440
samples). After the analysis of these predictions, more than half of them have 1 incorrect phoneme. 441
In particular, the PER for 59 test samples is higher than 50% (11 test samples are greater than 60%, 442
and only 1 test sample is more than 70%). These percentages in the other presented models are more 443
or less the same. Generally, the same 1000 words are incorrectly predicted by all presented models. 444

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 19

 445
a) b) 446

Figure 6. PER depending on the length of the words (a); Position of errors for all models (b). 447

 448
We can see different types of error when generating phoneme sequences. One of these errors is 449

that some phonemes are unnecessarily generated multiple times. For example, for the word 450
YELLOWKNIFE, reference is [Y EH L OWN AY F], the prediction of Model 5 for this word is [Y EH 451
L OW K N N F], where the character N was generated twice. Another error type regards sequences 452
of graphemes that are rarely represented in the training process. For example, for the word ZANGHI 453
Model 5 output is [Z AE N G], while the reference is [Z AA N G IY]. The graphemes ‘NGHI’ appeared 454
only 7 times in the training data. Furthermore, many words are of foreign origin, for example, 455
GDANSK is Polish a city, SCICCHITANO is an Italian name, KOVACIK is a Turkish surname. 456
Generating phoneme sequences of abbreviations is one of the hard challenges. For example, LPN, 457
INES are shown with their references and the prediction form of Model 5 in Table 3: 458

Table 3. Examples of errors predicted by Model 5. 459

Word from test data Reference of given word Prediction of Model 5

YELLOWKNIFE Y EH L OW N AY F Y EH L OW K N N F

ZANGHI Z AA N G IY Z AE N G

GDANSK G AH D AE N S K D AE N AE K EH K

SCICCHITANO S IH K AH T AA N OW S CH CH Y K IY IY

KOVACIK K AA V AH CH IH K K AH V AA CH IH K

LPN EH L P IY EH N L L N N P IY E

INES IH N IH S AY N Z

In the proposed models, we were able to achieve smaller PERs with different hyperparameter 460
settings, but WERs showed different behaviour, in contrast, what we expected. For calculating WER, 461
the number of word errors is divided by the total number of unique words in the reference. These 462
word errors are counted only if the predicted pronunciation does not match any reference 463
pronunciation. So, in the generated phoneme sequences of words that contained errors, there is at 464
least one phoneme error. For that reason, we calculated the number of word errors depending on 465
the number of phoneme errors for all proposed models on CMUDict, as presented in Fig. 7. 466

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 19

 467

Figure 7. Number of word errors depending on the number of phoneme errors for all models. 468

In the case of each model, there are twice as many words with only one phoneme error than 469
words which have two phoneme errors. Words with one phoneme error significantly effect the WER. 470
The number of words with two phoneme errors were the most in Model 4 (908), and the least in 471
Model 5 (739). The number of words, which have three phoneme errors is the least (230) in Model 5. 472
There is approximately the same number of words which have four phoneme errors in Model 2 and 473
Model 5 (84 in Model 2 and 86 in Model 5). There are very few words with five or more phoneme 474
errors in all models. Model 1, Model 3 has only 1 word which has seven phoneme errors; Model 5 475
has 2 words; Model 4 has 6 words. The number of words with eight phoneme errors is 0 in Model 3, 476
Model 5; 1 in Model 4. Fig. 7 helps to understand why PER in our models can be smaller while WER 477
is higher. 478

 479
 480

6. Conclusions 481

In this paper convolutional neural networks for grapheme-to-phoneme conversion are 482
introduced. Five different models for the G2P task are described, and the results are compared to 483
previously reported state-of-the-art research. Our models are based on the seq2seq architecture, and, 484
in the fourth and fifth models, we applied CNNs with residual connections. The fifth model, which 485
uses convolutional layers with residual connections as encoder and Bi-LSTM as decoder 486
outperformed most the previous solutions on the CMUDict and NetTalk datasets in terms of PER. 487
Furthermore, the fourth model, which contains convolutional layers only, is significantly faster than 488
other models and still has competitive accuracy. Our solution achieved these results without explicit 489
alignments. The experiments are conducted on a test set, which is 9.8% and 24.9% of the whole 490
CMUDict and NetTalk databases, respectively. The same test set is used in all cases, so we consider 491
the results comparable. To draw conclusions on whether one model is better than another the goal 492
must be defined. If inference time is crucial, then smaller model sizes are favorable (e.g. Model 4), but 493
if lower WER and PER are the main factors, then Model 5 outperforms the others. 494

The results presented in this paper can be applied in TTS systems, however, because of the rapid 495
development of deep learning further aspects will be investigated, like dilated convolutional 496
networks and neural architecture search. These are possible further extensions of the current 497
research. 498

Abbreviations 499

G2P: Grapheme-to-phoneme 500

ASR: Automatic Speech Recognition 501

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 19

CNN: Convolutional neural network 502

PER: Phoneme error rate 503

WER: Word error rate 504

Bi-LSTM: bi-directional Long Short Term Memory 505

Declarations 506

Acknowledgements 507

The research presented in this paper has been supported by the European Union, co-financed 508

by the European Social Fund (EFOP-3.6.2-16-2017-00013), by the BME-Artificial 509

Intelligence FIKP grant of Ministry of Human Resources (BME FIKP-MI/SC), by Doctoral 510

Research Scholarship of Ministry of Human Resources (ÚNKP-18-4-BME-394) in the scope 511

of New National Excellence Program, by János Bolyai Research Scholarship of the 512

Hungarian Academy of Sciences, by the VUK project (AAL 2014-183), and the DANSPLAT 513

project (Eureka 9944). We gratefully acknowledge the support of NVIDIA Corporation with 514

the donation of the Titan Xp GPU used for this research. 515

Authors’ contributions 516

All authors have read and approved the final manuscript. 517

 518

Ethics approval and consent to participate 519

Not applicable. 520

Competing interests 521

The authors declare that they have no competing interests. 522
Authors’ Affiliations 523

(1, 2, 3) Department of Telecommunications and Media Informatics, University of 524

Budapest Technology and Economics. 525

References 526

1. Elovitz, H., Rodney, J., McHugh, A., & Shore, J. (1976). Letter-to-Sound Rules for Automatic Translation of English 527
Text to Phonetics. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24 (6): 446–459, 528
doi:10.1109/TASSP.1976.1162873. 529

2. Black, A. W., Lenzo, K., & Page, V. (1998). Issues in Building General Letter to Sound Rules. Proceedings of the 3rd 530
ESCA Workshop on Speech Synthesis, 77–80. 531

3. Bisani, M., & Ney, H. (2008). Joint-Sequence Models for Grapheme-to- Phoneme Conversion. Speech 532

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 19

Communication, 50 (5): 434–451, doi: 10.1016/j.specom.2008.01.002. 533
4. Galescu, L., & F. Allen, J. (2002). Pronunciation of Proper Names with a Joint N-Gram Model for Bi-Directional 534

Grapheme-to-Phoneme Conversion. 7th International Conference on Spoken Language Processing, 109–112. 535
5. Chen, S. F. (2003). Conditional and Joint Models for Grapheme-to-Phoneme Conversion. 8th European Conference 536

on Speech Communication and Technology, (5): 2033–2036. 537
6. Lehnen, P., Allauzen, A., Laverge, T., Yvon, F., Hahn, S., & Ney, H. (2013). Structure Learning in Hidden 538

Conditional Random Fields for Grapheme-to-Phoneme Conversion. Proceedings of the Annual Conference of the 539
International Speech Communication Association, 2326–2330. 540

7. Lehnen, P., Hahn, S., Guta, V., & Ney, H. (2012). Hidden Conditional Random Fields with M-to-N Alignments for 541
Grapheme-to-Phoneme Conversion. Proceedings of the 13th Annual Conference of the International Speech 542
Communication Association, 2554-2557. 543

8. Wu, K., Allauzen, C., Hall, K., Riley, M., & Roark, B. (2014). Encoding Linear Models as Weighted Finite-State 544
Transducers. Proceedings of the Annual Conference of the International Speech Communication Association, 1258–545
1262. 546

9. Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., & Shi, Y. (2014). Spoken Language Understanding Using Long 547
Short-Term Memory Neural Networks. Proceedings of the Spoken Language Technology Workshop (SLT’14), 548
189–194, doi:10.1109/slt.2014.7078572. 549

10. Schuster, M., & Paliwal, K., K. (1997). Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal 550
Processing, 45 (11): 2673–2681, doi:10.1109/78.650093. 551

11. Rao, K., Peng, Fuchun, Sak, H., & Beaufays F. (2015). Grapheme-to-Phoneme Conversion Using Long Short-Term 552
Memory Recurrent Neural Networks. IEEE International Conference on Acoustics, Speech and Signal Processing, 553
4225–4229. 554

12. Sutskever, I., Vinyals, O., & V. Le, Q. (2014). Sequence to Sequence Learning with Neural Networks. Advances in 555
Neural Information Processing Systems (NIPS), 3104–3112. 556

13. Yao, K., & Zweig, G. (2015). Sequence-to-Sequence Neural Net Models for Grapheme-to-Phoneme Conversion. 557
Proceedings of the Annual Conference of the International Speech Communication Association, 3330–3334. 558

14. Mousa, A., E., &, Schuller, B. (2016). Deep Bidirectional Long Short-Term Memory Recurrent Neural Networks for 559
Grapheme-to-Phoneme Conversion Utilizing Complex Many-to-Many Alignments. Proceedings of the Annual 560
Conference of the International Speech Communication Association, 2836–2840, doi:10.21437/Interspeech.2016-561
1229. 562

15. Arik, S.Ö., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li, X., Miller, J., Raiman, J., Sengupta, 563
S., & Shoeybi, M (2017). Deep Voice: Real-Time Neural Text-to-Speech. Proceedings of the 34th International 564
Conference on Machine Learning, PMLR 70, 195-204. 565

16. Krizhevsky, A., Sutskever, I., & E. Hinton, G. (2012). ImageNet Classification with Deep Convolutional Neural 566
Networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS'12), 567
(1), 1097-1105. 568

17. Zeiler, M. D. & Fergus, R. (2014). Visualizing and understanding convolutional networks. 13th European Conference 569
on Computer Vision (ECCV), 818-833, doi: 10.1007/978-3-319-10590-1_53 570

18. Gehring, J., Auli, M., Grangier, D., & Dauphin, Y (2016). A Convolutional Encoder Model for Neural Machine 571
Translation. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 123-135, 572
doi:10.18653/v1/p17-1012 573

19. Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. (2017). Convolutional Sequence to Sequence Learning. 574
arXiv preprint arXiv: 1705.03122. 575

20. Kalchbrenner, N., & Blunsom, P. (2013). Recurrent Continuous Translation Models. Proceedings of the 2013 576

Appl. Sci. 2018, 8, x FOR PEER REVIEW 18 of 19

Conference on Empirical Methods in Natural Language Processing, 1700–1709, 577
doi:10.1146/annurev.neuro.26.041002.131047. 578

21. Cho, K., Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning 579
Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. Proceedings of the 2014 580
Conference on Empirical Methods in Natural Language Processing, 1724-1734, doi:10.3115/v1/d14-1179. 581

22. Lu, L., Zhang, X., & Renals, S. (2016). On Training the Recurrent Neural Network Encoder-Decoder for Large 582
Vocabulary End-to-End Speech Recognition. IEEE International Conference on Acoustics, Speech and Signal 583
Processing, 5060–5064, doi:10.1109/icassp.2016.7472641 584

23. Toshniwal, S., & Livescu, K. (2016). Jointly learning to align and convert graphemes to phonemes with neural 585
attention models. IEEE Spoken Language Technology Workshop (SLT), doi:10.1109/SLT.2016.7846248 586

24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception Architecture for 587
Computer Vision. Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2818-2826, 588
doi:10.1109/cvpr.2016.308. 589

25. Szegedy, C, Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. 590
(2015). Going Deeper with Convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision 591
and Pattern Recognition, 1-9, doi:10.1109/cvpr.2015.7298594. 592

26. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, 593
M., C.Berg, A., & Fei-Fei L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of 594
Computer Vision, 115 (3): 211–252, doi:10.1007/s11263-015-0816-y. 595

27. Bluche, T., Ney, H., & Kermorvant, C. (2013). Tandem HMM with Convolutional Neural Network for Handwritten 596
Word Recognition. Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing 597
(ICASSP2013), 2390–2394. 598

28. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. 599
Proceedings of the IEEE 86 (11): 2278–2323, doi:10.1109/5.726791 600

29. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and 601
Clustering. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 602
815–823, doi:10.1109/cvpr.2015.7298682. 603

30. Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very Deep Convolutional Networks for Text 604
Classification. KI - Künstliche Intelligenz 26 (4): 357–363. 605

31. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., & Xu, B. (2016). Text Classification Improved by Integrating Bidirectional 606
LSTM with Two-Dimensional Max Pooling. Proceedings of the 26th International Conference on Computational 607
Linguistics (COLING): Technical Papers, 3485–3495. 608

32. Ioffe, S., & Szegedy. C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal 609
Covariate Shift. Proceedings of the 32 International Conference on Machine Learning, PMLR 37, 448-456. 610

33. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE 611
Conference on Computer Vision and Pattern Recognition (CVPR), 770–778, doi:10.1109/CVPR.2016.90. 612

34. Greff, K., K.Srivastava, R., & Schmidhuber, J. (2017). Highway and Residual Networks Learn Unrolled Iterative 613
Estimation. arXiv preprinted arXiv:1612.07771. 614

35. Sundermeyer, M., Alkhouli, T., Wuebker, J., & Ney, H., (2014). Translation Modeling with Bidirectional Recurrent 615
Neural Networks. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 14–25, 616
doi:10.3115/v1/d14-1003. 617

36. Fan, Y., Qian, Y., Xie, F., & Soong, F.K. (2014) TTS Synthesis with Bidirectional LSTM Based Recurrent Neural 618
Networks. Proceedings of the Annual Conference of the International Speech Communication Association, 1964–619
1968. 620

Appl. Sci. 2018, 8, x FOR PEER REVIEW 19 of 19

37. Saining, X., Girshick, R., Dollar, P., Tu, Z., & He, K. (2017) Aggregated Residual Transformations for Deep Neural 621
Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 622

38. Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. Soviet Physics 623
Doklady, 10 (8): 707–710, doi:citeulike-article-id:311174. 624

39. Kingma, D. P., and Jimmy, L. B. (2015). Adam: A Method for Stochastic Optimization. International Conference on 625
Learning Representations. 626

40. Milde, B., Schmidt, C., Köhler, J. (2017) Multitask Sequence-to-Sequence Models for Grapheme-to-Phoneme 627
Conversion. Proc. Interspeech 2017, 2536-2540, doi: 10.21437/Interspeech.2017-1436. 628

41. Wang, W., Xu, S., Xu, B. (2016) First Step Towards End-to-End Parametric TTS Synthesis: Generating Spectral 629
Parameters with Neural Attention. Proc. Interspeech 2016, 2243-2247. 630

42. Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., Le, 631
Q., Agiomyrgiannakis, Y., Clark, R., Saurous, R.A. (2017) Tacotron: Towards End-to-End Speech Synthesis. Proc. 632
Interspeech 2017, 4006-4010, doi: 10.21437/Interspeech.2017-1452. 633

43. Nguyen, D.Q., Nguyen, D.Q, Chu, C.X., Thater, S., & Pinkal, M. (2017). Sequence to Sequence Learning for Event 634
Prediction. Proceedings of the 8th International Joint Conference on Natural Language Processing, 37–42. 635

44. Graves, A., Fernandez, S., Gomez, F. & Schmidhuber, J. (2016) Connectionist temporal classification: labelling 636
unsegmented sequence data with recurrent neural networks. In Proceedings of the 23th International Conference on 637
Machine Learning (ICML 2006), 369–376. 638

45. Hori, T., Watanabe, S., Zhang, Y., & Chan, W. (2017) Advances in Joint CTC-Attention based End-to-End Speech 639
Recognition with a Deep CNN Encoder and RNN-LM. INTERSPEECH, 949-953. 640

46. Zhang, X., Su, J., Qin, Y., Liu, Y., Ji, R., & Wang, H. (2018). Asynchronous Bidirectional Decoding for Neural 641
Machine Translation. In Proceedings of Association for the Advancement of Artificial Intelligence (AAAI-2018), 642
5698--5705. 643

47. Zhu, R. & Huang, Y. 2017. Efficient privacy-preserving general edit distance and beyond. Cryptology ePrint Archive, 644
Report 2017/683. 645

48. Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid speech recognition with Deep Bidirectional LSTM. 2013 IEEE 646
Workshop on Automatic Speech Recognition and Understanding, 273-278. 647

49. Luong, T., Pham, H., & Manning, C.D. (2015). Effective Approaches to Attention-based Neural Machine Translation. 648
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1412–1421. 649

50. Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. 650
CoRR, abs/1409.0473. 651

51. Prabhavalkar, R., Rao, K., Sainath, T.N., Li, B., Johnson, L., & Jaitly, N. (2017). A Comparison of Sequence-to-652
Sequence Models for Speech Recognition. Interspeech 2017, 939-943. 653

52. Bai, S., Kolter, J. Z., & Koltun, V. (2018). Convolutional sequence modeling revisited. ICLR Workshop Track. 1-20. 654

© 2018 by the authors. Submitted for possible open access publication under the terms 655
and conditions of the Creative Commons Attribution (CC BY) license 656
(http://creativecommons.org/licenses/by/4.0/). 657

