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Abstract

The main purpose of this paper is to find double blocking sets in PG(2, q) of size less than
3q, in particular when q is prime. To this end, we study double blocking sets in PG(2, q)
of size 3q − 1 admitting at least two (q − 1)-secants. We derive some structural properties
of these and show that they cannot have three (q − 1)-secants. This yields that one cannot
remove six points from a triangle, a double blocking set of size 3q, and add five new points
so that the resulting set is also a double blocking set. Furthermore, we give constructions of
minimal double blocking sets of size 3q − 1 in PG(2, q) for q = 13, 16, 19, 25, 27, 31, 37 and
43. If q > 13 is a prime, these are the first examples of double blocking sets of size less than
3q. These results resolve two conjectures of Raymond Hill from 1984.

AMS subject classification: 51E21

Keywords: double blocking set, finite projective plane.

1 Introduction

A t-fold blocking set of PG(2, q) is a set of points that intersects every line in at least t points,
and it is called minimal if none of its proper subsets is a t-fold blocking set. Usually, 1-fold
and 2-fold blocking sets are called blocking sets and double blocking sets; t-fold blocking sets
with t ≥ 2 are also called multiple blocking sets. Blocking and multiple blocking sets of finite
projective planes are widely studied objects. A trivial lower bound for the size of a t-fold blocking
set is t(q + 1). For detailed lower bounds, we refer the reader to [2, 4, 10].

If q is a square, one can easily construct a t-fold blocking set of size t(q+
√

q+1) in PG(2, q) using
the well-known partition of the pointset of PG(2, q) into Baer subplanes. This construction is
the smallest possible if t is small enough as shown in [5]. Up to our knowledge, surprisingly few
constructions are known for small multiple blocking sets if q is not a square. If q is not a prime,
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[1, 9] give general constructions of small double blocking sets (of size around 2(q+(q−1)/(r−1)),
where r is the order of a proper subfield of Fq) as the union of two disjoint blocking sets. No
other general results are known when t is a constant. (For particular results on double blocking
sets, see [8] and [16] as cited in [4, p52].) If q is a prime, the situation is even worse.

A trivial construction for a double blocking set is the union of the sides of a triangle (that is,
three non-concurrent lines), which is of size 3q. In [3], it was shown that a double blocking set in
PG(2, q), 9 6= q ≤ 11, must have at least 3q points, and the question whether smaller examples
may exist for larger values of q, q prime, was left wide open. The first and, so far, only smaller
example is shown in [6], where a double blocking set of size 3q − 1 for q = 13 was constructed.

For this paragraph, let q ∈ {13, 16, 19, 25, 27, 31, 37, 43}. In Section 4 of the present paper, we
show minimal double blocking sets in PG(2, q) of size 3q − 1 found by computer search. The
complements of these are maximal (q2 − 2q + 2, q − 1)-arcs in PG(2, q), which can be used to
construct linear codes of type [q2 − 2q + 2, 3, q2 − 3q + 3]q (see [13]). If 13 6= q is a prime, then
these are the first examples of such objects. Let us remark that our construction for q = 13
is different from that of [6]. The double blocking sets we present admit two (q − 1)-secants,
and their existence disprove a cautiously stated ‘conjecture’ of Raymond Hill [14] (see later). In
Section 2, some general structural properties of such double blocking sets are derived.

Hill considered the following problem [14, Problem 3.8, p377]: is it possible to delete x points
from a triangle and add x−1 points so that the resulting set of 3q−1 points is a double blocking
set? He proved that this is not possible for x ≤ 5, and conjectured that it is also impossible
for x = 6 [14, p378]. Easy combinatorial arguments show, as pointed out in [14], that there are
two options: a double blocking set obtained in this way (a) either contains a full line, or (b) the
sides of the triangle become (q − 1)-secants. We verify this conjecture in Section 3 and prove
the following theorem.

Theorem 1.1. In PG(2, q), there is no double blocking set of size 3q − 1 that can be obtained
by removing six points of a triangle and adding five new points.

Option (a) follows easily from the celebrated result on affine blocking sets due to Jamison and
Brouwer–Schrijver. Our proof for option (b) is a somewhat laborious mixture of case analysis
and tedious calculations. Hill proved the following theorem, which immediately yields that
option (b) is not possible if q ≡ 2 (mod 3).

Theorem 1.2 ([14, Theorem 3.10]). Suppose that B is a double blocking set of size 3q − 1 with
at least two (q − 1)-secants in PG(2, q), q > 2. Then q 6≡ 2 (mod 3).

On [14, p380] Hill remarks that “The evidence for q ≤ 7 suggests the conjecture that there does
not exist a (3q − 1,≥ 2)-set with rq−1 ≥ 2 for any q [that is, a double blocking set of size 3q − 1
having at least two (q−1)-secants]. The first cases for which such a set might exist are q = 9 and
q = 13.” The examples in Section 4 refute this conjecture (the one in [6] does not). Moreover,
we propose the following

Conjecture 1.3. For all prime power q ≥ 13, q 6≡ 2 (mod 3), there exists a double blocking set
in PG(2, q) of size 3q − 1 admitting two (q − 1)-secants.

Let us note that there is no such double blocking set for q = 9 (a computer search quickly shows
this).
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Preliminaries and notation. PG(2, q) and AG(2, q) denote the projective and affine planes
over Fq, the finite field of order q, respectively. The multiplicative group of Fq will be denoted
by F

×
q , and F

∗
q stands for the set of non-zero elements of Fq. To represent the points and lines of

PG(2, q), we shall use homogeneous triplets in round brackets for points, considered as coloumn
vectors, and in square brackets for lines, considered as row vectors. Recall that the coordinates
of points and lines are defined up to a scalar multiplier, and (x : y : z) ∈ [a : b : c] if and only if
ax + by + cz = 0. Usually we consider PG(2, q) as the closure of AG(2, q), where the additional
line ℓ∞ is called the line at infinity; clearly, we may assume ℓ∞ = [0 : 0 : 1]. For the points of
ℓ∞, we will sometimes use the notation (m) := (1 : m : 0) (m ∈ Fq) and (∞) := (0 : 1 : 0). The
terms X axis and Y axis refer to the lines [0 : 1 : 0] and [1 : 0 : 0], which will be denoted by LX

and LY , respectively. The slope of [a : b : c] is ∞ if b = 0 and −a/b otherwise. Note that the
slope of the line joining (0 : 0 : 1) and (x : y : z), x 6= 0, is y/x. With respect to a given pointset
S, a t-secant is a line intersecting S in precisely t points. In case of t = 0, 1, 2 and 3, a t-secant
is also called a skew, tangent, bisecant or trisecant line (to S), respectively. A line is blocked by
S if it is not skew to S. We will frequently use the well-known fact that PGL(2, q), the group
of projectivities of PG(2, q), is sharply transitive on the quadruples of points in general position
and, dually, on the quadruples of lines in general position as well. Recall that if a projectivity ϕ
of PG(2, q) is represented by M ∈ F

3×3
q (in notation, ϕ = 〈M〉), and the triplets v, w represent

the coordinates of a point and a line of PG(2, q), then their images under ϕ are represented by
Mv and wM−1, respectively.

2 Properties of double blocking sets in PG(2, q) of size 3q−1 with

two (q − 1)-secants

In this section we consider double blocking sets B in PG(2, q) of size 3q−1 admitting two (q−1)-
secants. Let us remark that, as straightforward combinatorial arguments show, if q ≥ 7 then
the two (q − 1)-secants of B must intersect in a point of B; furthermore, if q ≥ 9 and there are
three (q − 1)-secants to B then they cannot be concurrent. As mentioned in the introduction,
there are no double blocking sets of size less that 3q in PG(2, q) for q ≤ 8 [3]. Thus, without
loss of generality, we may assume that two (q−1)-secants of B meet in a point of B, and if there
are three (q − 1)-secants to B, then they are not concurrent. Finally, let us note that a double
blocking set having a q-secant clearly contains at least 3q points (we look around from the point
of the q-secant not in the blocking set).

First we give the proof of Theorem 1.2 in order to gain more detailed information from it. This
proof is essentially the same as which was published in [14]. Note that it might be regarded
as a Segre-type argument (cf. [17]), but addition is used instead of multiplication. We start
by formulating a lemma, whose assertion is essentially proved in [14, Theorem 3.10] but in a
slightly different setting; this formulation is a bit more informative and helps to derive not only
Theorem 1.2 but further corollaries as well.

Notation. Let LX = [0 : 1 : 0] and LY = [1 : 0 : 0] denote the X and Y axes, and let
X∞ = (1 : 0 : 0), X1 = (1 : 0 : 1), Y∞ = (0 : 1 : 0) and Y1 = (0 : 1 : 1).

Applying a suitable projectivity, any double blocking set containing two (q−1)-secants and their
point of intersection can be moved into the position described in the following lemma.

Lemma 2.1 (see also [14]). Suppose that B is a double blocking set of size 3q − 1, where all
points of LX and LY are in B except for the points X1, X∞, Y1 and Y∞. Let T be the set of
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lines through the origin that are different from the axes and intersect B in more than two points.
Then there exists µ, s ∈ F

∗
q such that a line through the origin is in T if and only if its slope is

s, sµ or sµ2, where µ2 + µ + 1 = 0.

Proof. Let S := B \ (LX ∪LY ) = {(xi : yi : zi) : i = 1, 2, . . . , q + 2}. Note that xi 6= 0 and yi 6= 0
for all 1 ≤ i ≤ q + 2.

(A) Looking at the points of S from lines through (0 : 1 : 0) it follows that the multiset
{zi/xi : i = 1, 2, . . . , q + 2} contains each element of Fq once, except for 1 and 0, which are
contained twice. In detail, the line joining (0 : 1 : 0) and (1 : 0 : t) contains as many points

of S as the number of is for which
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must be two if t = 0, 1 and one otherwise.

(B) Looking at the points of S from lines through (0 : 1 : 1) it follows that the multiset
{(zi − yi)/xi : i = 1, 2, . . . , q + 2} contains each element of Fq once, except for 1 and 0,

which are contained twice. The reason is similar as above,
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= txi + yi − zi = 0

must occur twice if t = 0, 1 and once otherwise.

(C) Looking at the points of S from lines through (0 : 0 : 1) it follows that the multiset
{yi/xi : i = 1, 2, . . . , q + 2} is contained in F

∗
q and it contains each element of F

∗
q at least

once. Clearly, there must be at least one point of S on each line [1 : t : 0], t 6= 0.

(D) Looking at the points of S from lines through (1 : 0 : 0) it follows that the multiset
{zi/yi : i = 1, 2, . . . , q + 2} contains each element of Fq once, except for 1 and 0, which are
contained twice. This follows from (A) by interchanging the first two coordinates.

(E) Looking at the points of S from lines through (1 : 0 : 1) it follows that the multiset
{(zi − xi)/yi : i = 1, 2, . . . , q + 2} contains each element of Fq once, except for 1 and 0,
which are contained twice. This follows from (B) by interchanging the first two coordinates.

Since for q 6= 2 the sum of the elements of Fq is 0, the above observations yield several equalities.

From (A) we obtain
∑q+2

i=1
zi/xi = 1, while (B) gives

∑q+2

i=1
(zi − yi)/xi = 1, and thus

q+2
∑

i=1

yi/xi = 0. (1)

From (D) we obtain
∑q+2

i=1
zi/yi = 1, while (E) gives

∑q+2

i=1
(zi − xi)/yi = 1, and thus

q+2
∑

i=1

xi/yi = 0. (2)

Now we apply (C). Let {i, j, k} ∈ {1, 2, . . . , q + 2} such that H := {xν/yν : ν /∈ {i, j, k}} is the
set of non-zero elements of Fq. Note that if ν ∈ {i, j, k}, then sν = xν/yν is the slope of a
line through the origin which intersects B in more than two points. Clearly,

∑

h∈H h = 0 and
∑

h∈H h−1 = 0, thus also si + sj + sk = 0 by (1) and 1/si + 1/sj + 1/sk = 0 by (2). Let
µ = sj/si. Combining the last two equations we obtain µ2 + µ + 1 = 0. As si + sj + sk = 0,
1 + sj/si + sk/si = 0 holds, whence sk/si = µ2.
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Hill’s Theorem 1.2 follows immediately from the well-known fact that µ2 + µ + 1 = 0 has a
solution in Fq if and only if q 6≡ 2 (mod 3). Indeed, as (µ3 − 1) = (µ − 1)(µ2 + µ + 1) = 0, we
have either µ = 1 and thus 3 = 0, so q ≡ 0 (mod 3), or the order of µ in F

×
q is three, whence

q ≡ 1 (mod 3). However, the information gained on the ‘long secants’ through the origin give
valuable corollaries.

Corollary 2.2. Let B be a 2-fold blocking set of size 3q − 1 in PG(2, q), q 6= 2, such that B has
two (q − 1)-secants, ℓ and m, ℓ ∩ m ∈ B. If q ≡ 0 (mod 3), then through ℓ ∩ m there pass two
(q − 1)-secants, q − 2 bisecants and one 5-secant of B. If q ≡ 1 (mod 3), then through ℓ ∩ m
there pass two (q − 1)-secants, q − 4 bisecants and three 3-secants of B.

Proof. We may assume that ℓ and m are as in Lemma 2.1 and then apply the lemma. If q ≡ 0
(mod 3), then µ = 1 and |T | = 1. If q ≡ 1 (mod 3), then µ 6= 1 and thus |T | = 3. This finishes
the proof.

Corollary 2.3. Let B be a 2-fold blocking set of size 3q − 1 in PG(2, q), q 6= 2, such that B has
three (q − 1)-secants. Then q ≡ 1 (mod 3).

Proof. Theorem 1.2 excludes the case q ≡ 2 (mod 3). Suppose now q ≡ 0 (mod 3). Let ℓ, m
and n be the three (q − 1)-secants of B. According to Corollary 2.2, there is a 5-secant of B at
each of the verices of the triangle formed by ℓ, m and n. But then B \ (ℓ ∪ m ∪ n) has size at
least 6, a contradiction since the size of this pointset is 5.

Definition 2.4. Suppose that B is a double blocking set of size 3q − 1, where all points of LX

and LY are in B except for the points X1, X∞, Y1 and Y∞. Let s denote the slope of a line
through the origin, different from the axes, which intersects B in more than two points. Then
the parameter of B is s3.

According to Lemma 2.1, the parameter is well-defined both when q ≡ 1 (mod 3) or q ≡ 0
(mod 3).

Given a double blocking set B in the setting of Lemma 2.1, the projectivities of PG(2, q) that
map B to a double blocking set in the same setting are precisely those that permute the points
X∞, Y∞, X1 and Y1 with the restriction that {X1, X∞} is either fixed setwise or is mapped to
{Y1, Y∞}. Let us denote the group of these projectivities by G. Then G is isomorphic to the
dihedral group D4, and it is generated by the projectivities represented by

F =





0 1 0
−1 0 0
0 1 −1



 and T =





0 1 0
1 0 0
0 0 1



 ,

where F maps Y∞ → X1 → Y1 → X∞ → Y∞ (F is an order four rotation in D4), and T is the
reflection to the line [1 : −1 : 0]. In this section, by rotations and reflections we will refer to the
set of group elements {F i : 1 ≤ i ≤ 4} and {TF i : 1 ≤ i ≤ 4}, respectively.

Proposition 2.5. Suppose that B is a double blocking set of size 3q − 1 in PG(2, q), q 6= 2,
where all points of LX and LY are in B except for the points X1, X∞, Y1 and Y∞. Let s3 be the
parameter of B, and let B ∩ X∞Y∞ = {(1 : m : 0), (1 : m′ : 0)}, B ∩ X∞Y1 = {(x : 1 : 1), (x′ :
1 : 1)}, B ∩ Y∞X1 = {(1 : y : 1), (1 : y′ : 1)}, B ∩ X1Y1 = {(1 : a : a + 1), (1 : b : b + 1)}. Then
mm′ = −s3, xx′ = 1/s3, yy′ = s3, ab = −s3.
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Proof. Let S ′ = B \ (LX ∪ LY ∪ ℓ∞) = {(xi : yi : 1) : i = 1, 2, . . . , q}, and S = S ′ ∪ {(1 : m :
0), (1 : m′ : 0)}. Note that xi 6= 0 and yi 6= 0 for all 1 ≤ i ≤ q. Looking at the points of S ′

from (0 : 1 : 0) we see that the multiset {xi : i = 1, . . . , q} contains each element of F
∗
q once

except for 1, which is contained twice. Thus
∏q

i=1
xi = −1 (recall Wilson’s Theorem saying

∏

x∈F∗
q

x = −1). Similarly,
∏q

i=1
yi = −1. Next we look at the points of S from (0 : 0 : 1).

By Lemma 2.1, we know the multiset of the slopes defined by the lines OP , P ∈ S: if q ≡ 0
(mod 3), then it contains each element of F

∗
q once except for s, which is contained four times;

if q ≡ 1 (mod 3), then it contains each element of F
∗
q once except for s, sµ, sµ2, which are

contained twice. As µ3 = 1, in both cases we get

q
∏

i=1

yi

xi
mm′ = −s3.

Since
∏q

i=1
xi =

∏q
i=1

yi = −1, we obtain mm′ = −s3. The other three assertions follow easily
by applying the result to the images of B under the projectivities of G in the following way.
Consider

F 2 =





1 0 0
0 1 0
1 1 −1



 , T := TF 3 =





1 0 0
0 −1 0
1 0 −1



 , and F =





0 1 0
−1 0 0
0 1 −1



 .

By ϕ we will always denote the projectivity represented by one of them. Let (s′)3 be the
parameter of B′, the image of B under ϕ.

Let now ϕ = 〈F 2〉. A line [a : b : 0] through the origin is mapped to [a : b : 0]F 2 = [a : b : 0], hence
(s′)3 = s3. On the other hand, a point (1 : x : x + 1) is mapped to F 2(1 : x : x + 1) = (1 : x : 0),
hence B′ ∩ ℓ∞ = {(1 : a : 0), (1 : b : 0)}, and thus ab = −s3. Let ϕ = 〈T 〉. A line [a : b : 0]
through the origin is mapped to [a : b : 0]T = [a : −b : 0], which yields that (s′)3 = −s3.
On the other hand, a point (1 : t : 1) is mapped to T (1 : t : 1) = (1 : −t : 0), hence
B′ ∩ ℓ∞ = {(1 : −y : 0), (1 : −y′ : 0)}, and thus (−y)(−y′) = yy′ = −(s′)3 = s3. Finally,
let ϕ = 〈F 〉. A line [a : b : 0] is mapped to [a : b : 0]F 3 = [−b : a : 0], which yields that
(s′)3 = −1/s3. On the other hand, a point (t : 1 : 1) is mapped to F (t : 1 : 1) = (1 : −t : 0),
hence B′ ∩ ℓ∞ = {(1 : −x : 0), (1 : −x′ : 0)}, and thus (−x)(−x′) = xx′ = −(s′)3 = 1/s3.

Proposition 2.6. Suppose that B is a double blocking set of size 3q − 1 in PG(2, q), q 6= 2,
where all points of LX and LY are in B except for the points X1, X∞, Y1 and Y∞. Then there is
at most one nontrivial projectivity fixing B, and if there is one, it must correspond to a reflection
in G ≃ D4.

Proof. Let S = B \ (LX ∪ LY ) and let LO denote the set of lines through the origin different
from LX and LY . Suppose that there are two nontrivial projectivities fixing B. Then either one
of them or their product is a rotation in G, thus the subgroup generated by them must contain

ϕ := 〈F 2〉 =

〈





1 0 0
0 1 0
1 1 −1





〉

, which thus also fixes B. It is easy to see that ϕ2 is the identity

and the fixpoints of ϕ are (0 : 0 : 1) and the points of the line [1 : 1 : −2]. For any ℓ ∈ LO, ϕ
fixes ℓ and it follows that

ℓ ∈ LO ⇒ |ℓ ∩ B \ ((ℓ ∩ [1 : 1 : −2]) ∪ {(0 : 0 : 1)})| ≡ 0 (mod 2). (3)
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Suppose now 2 | q and recall that we may assume q ≥ 8. Then [1 : 1 : −2] = [1 : 1 : 0] passes
through (0 : 0 : 1). Every line in LO \ {[1 : 1 : 0]} contains at least one, and thus by (3), at
least two points of S, whence q + 2 = |S| ≥ 2(q − 2), a contradiction. Thus we may assume
that q is odd. By Corollary 2.2, in LO there are either three trisecants (if q ≡ 1 (mod 3)) or
one five-secant (if q ≡ 0 (mod 3)) to B and the rest of the lines of LO are bisecants to B. As
[1 : 1 : −2] /∈ LO, it follows from (3) that for all ℓ ∈ LO, |ℓ ∩ S| = 1 ⇐⇒ ℓ ∩ [1 : 1 : −2] ∈ S.
Suppose now 3 | q. By Corollary 2.2, there is one line in LO containing more than one point of
S, hence [1 : 1 : −2] is a q-secant to B; thus |B| ≥ 3q, a contradiction. Thus we may assume
that q ≡ 1 (mod 3). Let the three trisecants to B in LO be ℓ1 = [s : −1 : 0], ℓ2 = [µs : −1 : 0]
and ℓ3 = [µ2s : −1 : 0], where s, µ ∈ F

∗
q and µ2 + µ + 1 = 0 (cf. Lemma 2.1). Then [1 : 1 : −2] is

a (q − 2)-secant to B with holes (i.e., points not in B) Hi := ℓi ∩ [1 : 1 : −2], i = 1, 2, 3.

X1X1
X∞X∞

Y1 Y1

Y∞Y∞

P1

P1

Q1

Q1

R1

R1 P2

P2

Q2

Q2

R2
R2

ℓ1

ℓ1

ℓ2ℓ2

ℓ3ℓ3

H1

H1

H2H2

H3H3

Figure 1: Arrangements for q ≡ 1 (mod 3), s3 = 1 (to the left) and s3 = −1 (to the right).

Suppose s3 = 1; we may assume s = 1 (see Figure 1). Then H1 = (1 : 1 : 1) cannot be in
S, and H2 = (2 : 2µ : 1 + µ), H3 = (2 : 2µ2 : 1 + µ2). As the lines X∞Y1 = H1X∞ and
Y∞X1 = H1Y∞ must contain two points in S, we see that Q1 := X∞Y1 ∩ ℓ2 = (1 : µ : 1),
R1 := X∞Y1∩ ℓ3 = (1 : µ2 : 1), Q2 := Y∞X1∩ ℓ2 = (µ2 : 1 : 1) and R2 := Y∞X1∩ ℓ3 = (µ : 1 : 1)
must be in S. None of these four points are on X1Y1 = [1 : 1 : −1], which is a 2-secant to S; thus
P1 := [1 : 1 : −1] ∩ ℓ1 = (1 : 1 : 2) must be in S, as well as P2 := (1 : 1 : 2)ϕ = (1 : 1 : 0). Let
S ′ = {P1, P2, Q1, Q2, R1, R2}. Consider Y∞H2 = [µ+1 : 0 : −2]. This line must contain a point of
S ′ which, clearly, cannot be Q1, Q2, R2 or P2. As R1 = (1 : µ2 : 1) ∈ [µ+1 : 0 : −2] ⇐⇒ µ = 1 is
not possible, we have P1 = (1 : 1 : 2) ∈ [µ+1 : 0 : −2], that is, µ = 3. As µ2+µ+1 = 13 = 0, this
yields 13 | q. Consider now Y∞H3 = [µ2 + 1 : 0 : −2] = [5 : 0 : −1]. This line also must contain
a point of S ′, which clearly cannot be P2, Q2, R1 or R2. As neither Q1 = (1 : 3 : 1) ∈ [5 : 0 : −1]
nor P1 = (1 : 1 : 2) ∈ [5 : 0 : −1] holds, we obtained a contradiction. Hence s3 = 1 cannot hold.

Now, as s3 6= 1, (1 : 1 : 1) ∈ B must hold. Then, by Proposition 2.5, P1 := (1 : s3 : 1) and
P2 := (s−3 : 1 : 1) are also in B. As these points are not on [1 : 1 : −2], (1 : s3 : 1) ∈ B yields
s3 ∈ {s, µs, µ2s}, whence s = −1 may be assumed and H1 = (1 : −1 : 0), H2 = (2 : −2µ : 1−µ),
H3 = (2 : −2µ2 : 1−µ2) follow ((see Figure 1)). Note that P1 = (1 : −1 : 1) and P2 = (−1 : 1 : 1)
are in ℓ1. As H1 = (1 : −1 : 0) /∈ B, the two points of B on the line [1 : 1 : −1] must be its
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intersection points with ℓ2 and ℓ3, namely, Q1 := (1 : −µ : 1 − µ) and R1 := (1 : −µ2 : 1 − µ2).
Their images under ϕ, Q2 := (1 : −µ : 0) and R2 := (1 : −µ2 : 0), are also in B. Let
S ′ = {P1, P2, Q1, Q2, R1, R2}. Consider Y1H2 = [µ + 1 : 2 : −2]. This line must contain a point
of S ′ which, clearly, cannot be Q1, Q2 or R1. As neither R2 = (1 : −µ2 : 0) ∈ [µ + 1 : 2 :
−2] ⇐⇒ 3µ2 = 0 nor P2 = (−1 : 1 : 1) ∈ [µ + 1 : 2 : −2] ⇐⇒ µ = −1 is possible, we obtain
that P1 = (1 : −1 : 1) ∈ [µ + 1 : 2 : −2], from which µ = 3 and 13 | q follow. Consider now
Y1H3 = [µ2 + 1 : 2 : −2] = [3 : −2 : 2]. This line also must contain a point of S ′ which clearly
cannot be R1, R2 or Q1. But none of P1 = (1 : −1 : 1), P2 = (−1 : 1 : 1) and Q2 = (1 : −3 : 0)
lie on [−3 : 2 : −2], thus we end up with a final contradiction.

If q is not a prime, then there are double blocking sets in PG(2, q) that are much smaller than
3q. Thus in this case not the size but the structure of such constructions may be of interest. At
the end of this section, let us point out that minimality is not an issue in our case.

Proposition 2.7. Let B be a blocking set in a projective plane of order q > 4 of size 3q− 1 that
admits two (q − 1)-secants whose intersection point is in B. Then B is minimal.

Proof. Let ℓ1 and ℓ2 be the two (q−1)-secants, {Pi, Qi} := ℓi \B, i = 1, 2. Considering the lines
through P1 and the points of B on them, we see q − 1 points on ℓ1, at least two points on P1P2

and P1Q2, and at least one point on each of the q− 2 further lines P1P , P ∈ ℓ2 ∩B, P 6= ℓ1 ∩ ℓ2.
This is at least 3q−1 points altogether, thus equality must hold everywhere, whence we see that
all points of B \ ℓ1 are essential for B. Repeating the argument with P2 we get that the only
point that could be superfluous is ℓ1 ∩ ℓ2 =: O. In this case, looking around from O we obtain
|B \ {O}| = 3q − 2 ≥ 2 · (q − 2) + (q − 1) · 2, that is, q ≤ 4.

3 Proof of Theorem 1.1

Let B be a double blocking set in PG(2, q) of size 3q− 1. Suppose that B contains all the points
of a line ℓ. Consider ℓ as the line at infinity. Then B \ ℓ is a blocking set of AG(2, q) which,
by the well-known result of Jamison [15] (and, independently, Brouwer and Schrijver [7]), must
have at least 2q − 1 points. Thus |B| ≥ 3q, a contradiction.

Recall that a double blocking set having a q-secant has at least 3q points. Suppose now that
B is obtained from a triangle by removing six of its points and adding five. Let us denote the
three vertices of the triangle by A, B and C. The 6 points removed from the sides will be called
holes. By the previous remarks, there must be two holes on each side. For I ∈ {A, B, C}, let
ℓI denote the side of the triangle for which I /∈ ℓI , and we denote the holes on ℓI by I1 and I2.
The 5 points of the blocking set not on the sides of the triangle will be called midpoints, and we
denote them by P1, . . . , P5. We may assume that the three vertices of the triangle are the three
base points A = (0 : 0 : 1), B = (1 : 0 : 0), and C = (0 : 1 : 0).

The proof comes in two subsections depending on whether or not there are one or more triplets
of the holes that are collinear.
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3.1 Holes in general position

In this subsection we assume that the holes are in general position, that is, no three of them are
collinear. Let us denote the set of lines joining a vertex of the triangle with one of the holes of
the opposite side by L. Note that |L| = 6, thus there is a midpoint incident with at least two
lines of L. Applying a suitable projectivity, we may move such a midpoint to (1 : 1 : 1) without
moving the triangle.

Lemma 3.1. If the holes are in general position, then there is no midpoint incident with three
lines of L.

Proof. Suppose the contrary and let P1 be a midpoint incident with three lines of L. Then we
may assume

P1 = A1A ∩ B1B ∩ C1C = (1 : 1 : 1)

and hence A1 = (1 : 1 : 0), B1 = (0 : 1 : 1), and C1 = (1 : 0 : 1) are holes. Note that if q is even,
then these are collinear (the line [1 : 1 : 1] joins them), a contradiction. Hence we may assume
that q is odd.

(0 : 0 : 1)=A

B=(1 : 0 : 0)

C =(0 : 1 : 0)

A1 =(1 : 1 : 0)

(0 : 1 : 1)=B1

(1 : 0 : 1)=C1

A2 =(1 : m : 0)

(0 : y : 1)=B2

C2 =(x : 0 : 1)

P1 =(1 : 1 : 1)

(0 : 0 : 1)=A

B=(1 : 0 : 0)

C =(0 : 1 : 0)

A1 =(1 : m : 0)
=(1 − x : 1 : 0)

(0 : 1 : 1)=B1

(1 : 0 : 1)=C1

A2 =(1 : m′ : 0)
=(1 : 1 − y : 0)(0 : y : 1)=B2

C2 =(x : 0 : 1)

P1 =(1 : 1 : 1)

Figure 2: The arrangement of the triangle and the holes.

Denote the remaining holes by C2 = (x : 0 : 1), B2 = (0 : y : 1) and A2 = (1 : m : 0) (see Figure
2 left). Looking at lines passing through A1 we get that there is a midpoint incident with each
of the lines

A1B2, A1B1, A1C1, A1C2.

The line C1B1 = [1 : 1 : −1] is also incident with a midpoint, and this midpoint can lie neither
on A1C1 nor on A1B1; also, it cannot be P1. It follows that this midpoint is incident either with
A1B2 or with A1C2. By interchanging the role of the X and Y axes, we may assume that it is
incident with A1C2 = [−1 : 1 : x] and hence

P2 := C1B1 ∩ A1C2 = (1 + x : 1 − x : 2)

is a midpoint. Now consider the line C1B2 = [y : 1 : −y]. It can be incident neither with P1 nor
with P2, thus it is incident with a midpoint from one of the lines A1B2, A1B1, A1C1. Clearly,
this line has to be A1B1 = [1 : −1 : 1] and hence

P3 := C1B2 ∩ A1B1 = (y − 1 : 2y : y + 1)
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is a midpoint. The line C1A2 = [−m : 1 : m] has to be incident with a midpoint P4 which is
clearly different from the previous midpoints. Also, C1A2 cannot have a common midpoint with
the line A1C1, thus P4 is incident with A1B2 = [1 : −1 : y] and hence

P4 = C1A2 ∩ A1B2 = (m + y : m + my : m − 1).

Finally, there must be a midpoint incident with the line B1A2 = [m : −1 : 1] and this midpoint
cannot coincide with the previous ones, thus it must be incident also with the line C1A1 = [−1 :
1 : 1], hence

P5 := B1A2 ∩ C1A1 = (2 : m + 1 : 1 − m)

is a midpoint.

The line B1C2 = [1 : x : −x] has to be incident with P4 since all the other midpoints lie on
different lines through B1, thus

x + y + m + xym = 0. (4)

It is easy to see that

• B2A2 = [m : −1 : y] is incident with at least one of P1 and P2,

• B2B = [0 : −1 : y] is incident with at least one of P5 and P2,

• C2B2 = [y : x : −xy] is incident with at least one of P1 and P5.

We distinguish two cases. In the first case we suppose that B2A2 is blocked by P1, that is,

y + m − 1 = 0.

Then, as P1 /∈ C2B2, P5 ∈ C2B2 must hold, that is,

x + 2y + mx − xy + xym = 0. (5)

Also, since P5 ∈ C2B2, we have P5 /∈ B2B and hence P2 ∈ B2B, which means

1 − x = 2y.

Then y = 1−m and x = 1− 2y = 2m− 1. Putting back these into (4) and (5) and subtracting
these two equations from each other gives

2(m − 1)(2m − 1) = 0,

a contradiction (as both m = 1 and 2m − 1 = x = 0 are impossible).

In the second case we have P2 ∈ B2A2, that is,

mx = 1 − x − m − 2y. (6)

Then P5 ∈ B2B follows and hence
my = y − m − 1. (7)

Finally, P1 ∈ C2B2; in other words,
xy = x + y. (8)

Combining (4), (6), (7), and (8), we obtain

0 = x + y + m + (x + y)m

= x + y + m + 1 − x − m − 2y + y − m − 1 = −m,

a contradiction.
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Proposition 3.2. If the holes are in general position, then there is no 2-fold blocking set with
the given properties.

Proof. As before, we may assume that P1 = (1 : 1 : 1) is a midpoint and B1 = (0 : 1 : 1),
C1 = (1 : 0 : 1) are holes. Let B2 = (0 : y : 1), C2 = (x : 0 : 1) denote the other two
affine holes; note that {x, y} ∩ {0, 1} = ∅. Consider A1 = (1 : m : 0), one of the holes at the
line at infinity. There are different midpoints on each of the lines A1C2, A1C1, A1B2, A1B1,
A1A, so P1 is incident with one of these lines. Clearly, P1 /∈ A1C1, P1 /∈ A1B1 and, because
of Lemma 3.1, P1 /∈ A1A, thus P1 is incident with A1C2 = [−m : 1 : mx] or with A1B2. Now
consider A2 = (1 : m′ : 0), the other hole at the line at infinity (see Figure 2 right). In the same
way we obtain P1 ∈ A2C2 or P1 ∈ A2B2 = [m′ : −1 : y]. Thus either P1 ∈ A1C2 ∩ A2B2 or
P1 ∈ A2C2 ∩ A1B2. With a suitable (re)labeling of A1 and A2, we obtain

P1 = B1B ∩ C1C ∩ A1C2 ∩ A2B2,

A1 = (1 − x : 1 : 0),

A2 = (1 : 1 − y : 0).

The line C1B1 = [1 : 1 : −1] has to be incident with one of the midpoints. Recall that each
of the midpoints is incident with exactly one of the lines A1B1, A1B2, A1A, A1C2, A1C1. As
P1 /∈ C1B1 and P1 ∈ A1C2, the midpoint on C1B1 is either on A1B2 = [1 : x − 1 : y − xy] or
on A1A. Similarly, each of the midpoints is incident with exactly one of the lines A2B1, A2B2,
A2A, A2C2, A2C1, and C1B1 shares a midpoint either with A2C2 or with A2A. Since C1B1 is
incident with exactly one midpoint, A1A ∩ C1B1 and A2A ∩ C1B1 cannot be both midpoints
and hence one of A1B2 ∩ C1B1 and A2C2 ∩ C1B1 is a midpoint. After possibly interchanging
the role of the X and Y axes, we may assume that

P2 := A1B2 ∩ C1B1 = (1 − x − y + xy : 1 + y − xy : 2 − x)

is a midpoint. Now take the line B1A2 = [y − 1 : 1 : −1]; note that neither P1 nor P2 lies on
it, thus it must contain a different midpoint P3. Consider the lines A1B1, A1B2, A1A, A1C1,
A1C2. A similar argument as before shows that P3 is either on A1A = [1 : x − 1 : 0] or on
A1C1 = [1 : x − 1 : −1]. We distinguish two cases according to these two possibilities.

Case I: P3 = B1A2∩A1A = (1−x : 1 : x+y−xy). Then looking around from B1 and A1, we
see that the remaining two midpoints must block A1B1, B1C2 = [1 : x : −x] and A1C1, hence

P4 := B1C2 ∩ A1C1 = (2x − x2 : x − 1 : 1)

is also a midpoint.

Consider the lines A1B1 and A2C1. The first four midpoints cannot be incident with them,
thus P5 := A1B1 ∩ A2C1 is a midpoint. But then P5 /∈ A2C2, hence P2 ∈ A2C2 must hold;
therefore P2 /∈ A2A, so P4 ∈ A2A follows. The line B2C1 can be blocked only by P3, which
yields P3 /∈ B2C2, and thus P5 ∈ B2C2; consequently, P5 /∈ B2B, hence P4 ∈ B2B = [0 : 1 : −y].
This gives x = y +1. On the other hand, P4 ∈ A2A = [y−1 : 1 : 0] and P3 ∈ B2C1 = [y : 1 : −y]
give

−1 − x + x2 + 2xy − x2y = 0,

−1 − y + 2xy + y2 − xy2 = 0,
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respectively. Subtracting these two equations from each other yields (x − 1)(y − 1)(x − y) = 0.
As x, y 6= 1, x = y must hold, in contradiction with x = y + 1.

Case II: P3 = B1A2 ∩ A1C1 = (x − 2 : y − 2 : xy − x − y). We see that the remaining two
midpoints must block A1B1, A1A and B1C2 = [1 : x : −x], hence

P4 := A1A ∩ B1C2 = (x − x2 : x : 1)

is also a midpoint. As A1B1 is not blocked by the first four midpoints, P5 ∈ A1B1. The line
A2C1 can be blocked by P4 and P5 only; A2A and A2C2 by P2 and P5 only. Thus P5 ∈ A2C1 is
impossible, since P2 cannot block both A2A and A2C2; thus P4 ∈ A2C1 = [y − 1 : 1 : 1− y] and
hence P5 ∈ B2C1 and P3 ∈ B2C2 = [y : x : −xy] follow. Consequently, B2B = [0 : −1 : y] can
be blocked only by P4.

The incidence P4 ∈ B2B gives x = y. Then P4 = (x−x2 : x : 1) ∈ A2C1 = [x−1 : 1 : 1−x] gives
x3 − 2x2 = 1 − x and P3 = (x − 2 : x − 2 : x2 − 2x) ∈ B2C2 = [x : x : −x2] = [1 : 1 : −x] gives
x3−2x2 = 2x−4. It follows that q must be odd. From 1−x = 2x−4 we get x = 5/3; with this,
x3 − 2x2 = 1− x holds if and only if p = 7. Consider now the lines A2A, A2C2 and C2C. These
must be blocked by P2 and P5; consequently, either P2 ∈ A2C2 or P2 = A2A ∩ C2C. Under
p = 7 and x = y = 5/3 = 4, it is easy to see that neither P2 = (2 : 3 : 5) ∈ A2C2 = [3 : 1 : 2],
nor P2 ∈ A2A = [4 : 1 : 0].

By Proposition 3.2, we see that there must be at least one triplet among the holes that is
collinear, which case is to be treated in the next subsection.

3.2 Holes with collinear triplets

With the general notation of the entire section, we assume this time that the holes A1, B1 and
C1 are collinear, and ℓ denotes the line joining them. As the collineation group of PG(2, q) is
transitive on the quadruples of four lines in general position, we may assume that ℓ = [1 : −1 : 1],
ℓA = [0 : 0 : 1], ℓB = [1 : 0 : 0] and ℓC = [0 : 1 : 0]. In this setting, for some x, y, m ∈ Fq, we have

A = (0 : 0 : 1), B = (1 : 0 : 0), C = (0 : 1 : 0),

A1 = (1 : 1 : 0), B1 = (0 : 1 : 1), C1 = (−1 : 0 : 1),

A2 = (1 : m : 0), B2 = (0 : y : 1), C2 = (x : 0 : 1).

Clearly, x /∈ {0,−1} and {y, m} ∩ {0, 1} = ∅. Note that with a suitable collineation, ℓA, ℓB and
ℓC can be arbitrarily permuted while fixing ℓ.

Lemma 3.3. If there are more than one collinear triplets among the holes, then these triplets
have to be disjoint.

Proof. Suppose to the contrary that there is another collinear triplet among the holes which has
a common point with {A1, B1, C1}. We may assume that this triplet is {A2, B1, C2}. Let ℓ′ be
the line joining these holes. Then both ℓ and ℓ′ contain at least two midpoints and hence there is
at most one midpoint P1 which is not contained in ℓ∪ℓ′. Since A2 ∈ B1C2 = [1 : x : −x], we have
A2 = (−x : 1 : 0). It is easy to see that each of the lines B1B = [0 : 1 : −1], A1C2 = [−1 : 1 : x]
and C1A2 = [1 : x : 1] must be blocked by P1. Then P1 = B1B ∩ A1C2 = (x + 1 : 1 : 1);
furthermore, P1 ∈ C1A2 gives 2x = −2, a contradiction unless 2 | q.
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Suppose now 2 | q. Let the midponits on ℓ be P2 and P3, and let P4, P5 be the midpoints on ℓ′.
Note that A1, B2 and C2 cannot be collinear as, if they were, there should be two midpoints on
the line joining them, but none of P2, P3, P4, or P5 can be on it. Then C2C = [1 : 0 : x] and
C2B2 = [y : x : xy] can be blocked only by P2 and P3; thus, without loss of generality we may
assume that P2 = C2C ∩ ℓ = (x : x + 1 : 1) and P3 = C2B2 ∩ ℓ = (x(y + 1) : y(x + 1) : x + y).
Similarly as above, we can argue that A2, B2 and C1 cannot be collinear. This yields P1 /∈ A2B2.
Since A2C2 ∩ B1B2 = B1, A2, B2 and C2 are not collinear, hence P3 /∈ A2B2. Clearly, P4 and
P5 are not on A2B2; thus P2 ∈ A2B2 = [1 : x : xy] must hold. This yields x(x + y) = 0, thus
x = y; hence P3 = (1 : 1 : 0) = A1, a contradiction.

Let us call A1, B1 and C1 ‘collinear holes’ in the sequel. The line ℓ must contain two midpoints;
let us denote the other three midpoints by P1, P2 and P3, and those two on ℓ by P4 and P5.
Consider a collinear hole, say, A1. Then the lines A1A, A1B2 and A1C2 are pairwise distinct
by Lemma 3.3, and they must be blocked by P1, P2 and P3 (in some order). Hence, using the
same observation for all the three collinear holes, we see that for i = 1, 2, 3, Pi is incident with
exactly one line of each row in the following table, and each of the nine lines is incident with
exactly one of P1, P2 and P3:

A1A = [1 : −1 : 0], A1B2 = [1 : −1 : y], A1C2 = [1 : −1 : −x],

B1B = [0 : 1 : −1], B1C2 = [1 : x : −x], B1A2 = [m : −1 : 1],

C1C = [1 : 0 : 1], C1A2 = [m : −1 : m], C1B2 = [y : −1 : y].

We will frequently use these observations and coordinates without explicitly referring to them.

Proposition 3.4. None of A1A ∩ B1B, B1B ∩ C1C, C1C ∩ A1A can be a midpoint.

Proof. Suppose the contrary. Without loss of generality we may assume that P1 = A1A∩C1C =
(−1 : −1 : 1) is a midpoint. There must be a midpoint on A1B2, which cannot be on C1C or
C1B2, so (with suitable relabeling) P2 = A1B2∩C1A2 = (y−m : m(y−1) : m−1) is a midpoint
and, similarly, P3 = A1C2 ∩C1B2 = (x+ y : y(x+1) : 1− y) is also midpoint. These three must
block the lines B1B, B1C2, B1A2. Note that P2 /∈ B1A2 and P3 /∈ B1C2.
Case I: P1 ∈ B1B. That is, (−1 : −1 : 1) ∈ [0 : 1 : −1], which happens if and only if q is
even. This immediately leads to P2 = A1B2 ∩B1C2 ∩C1A2 and P3 = A1C2 ∩B1A2 ∩C1B2. The
arising equations yield

m + x + y = mxy and yx + mx + ym = 1. (9)

From these we obtain m(1+xy) = (x+y) and m(x+y) = 1+xy, hence m2(1+xy) = (x+y)m =
1+xy, so either m = 1 or xy = 1. As the first option is forbidden, applying symmetry arguments
in (9) we obtain xy = xm = ym = 1, whence xym = x = y = m = 1 follows, a contradiction.
Case II: P1 ∈ B1C2. Then q is odd and x = −1

2
; furthermore, P2 ∈ B1B and P3 ∈ B1A2.

These give m = 1/(2 − y) and m(x + y) − (x + 2)y + 1 = 0, which lead to 3(y − 1)2 = 0, thus
either 3 | q, which is impossible by Corollary 2.3, or y = 1, a contradiction.
Case III: P1 ∈ B1A2. Then m = 2, P3 ∈ B1B and P2 ∈ B1C2. These give x = (1 − 2y)/y
and 2xy − 3x + y − 2 = 0, which lead to 3(y − 1)2 = 0, but this is still impossible.

By Proposition 3.4, we may assume in the sequel that P1 ∈ A1A, P2 ∈ B1B, P3 ∈ C1C.

Proposition 3.5. None of A1A∩B1A2, A1A∩C1A2, B1B ∩A1B2, B1B ∩C1B2, C1C ∩A1C2,
C1C ∩ B1C2 can be a midpoint.
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Proof. Suppose the contrary. Applying a suitable collineation permuting ℓA, ℓB and ℓC (recall
that we may permute the letters A, B and C in an arbitrary fashion), we may assume that
A1A ∩ B1A2 = P1 is a midpoint. Then, necessarily, B1C2 and thus A1B2 are blocked by P3

and, similarly, C1A2 can only be blocked by P2; summing up, we get P1 = A1A∩B1A2 ∩C1B2,
P2 = B1B∩C1A2∩A1C2, and P3 = C1C∩A1B2∩B1C2. From these we obtain P1 = (1 : 1 : 1−m)
and y(2−m) = 1, P2 = (x+1 : 1 : 1) and (x+2)m = 1, and P3 = (−1 : y−1 : 1) and x(y−2) = 1.
Substituting m = 1/(x + 2) and y = 2 + 1/x into y(2 − m) = 1 leads to 3(x + 1)2 = 0, thus
either 3 | q, which is yet again impossible by Corollary 2.3, or x = −1, a contradiction.

It follows easily from Propositions 3.4 and 3.5 that the only possibility left is P1 = A1A∩B1C2∩
C1B2, P2 = B1B∩C1A2∩A1C2, P3 = C1C∩A1B2∩B1A2. From these, simple calculations yield
that q is odd, P1 = (y : y : 1− y), P2 = (x+1 : 1 : 1), P3 = (−1 : y− 1 : 1), and 2xy + y−x = 0,
mx + 2m − 1 = 0, 2 − m − y = 0. Substituting m = 2 − y into the second one we obtain
y = (2x + 3)/(x + 2) which, after substituting it into the first one, gives 3(x + 1)2 = 0. This
contradicts either Corollary 2.3 or x 6= −1. With this, we have finished the proof of Theorem
1.1.

4 Constructions of double blocking sets of size 3q − 1

With the help of a standard PC and the MIP solvers [11, 12], we found some constructions
of double blocking sets of size 3q − 1 in PG(2, q), 13 ≤ q ≤ 43, q 6≡ 2 (mod 3). We were
looking for examples that admit two (q − 1)-secants. Applying a suitable collineation, we may
assume that these long secants are the X and Y axes, and the holes on them are (1 : 0 : 1),
(1 : 0 : 0), (0 : 1 : 1), and (0 : 1 : 0). Hence we only give the coordinates of the remaining
q+2 points. As an additional information, we also give the distribution of the secant lengths; to
this end, let nt denote the number of t-secants with respect to the pointset under consideration.
Sometimes, in order to fasten the calculations, we assumed the pointset to be X-Y symmetric;
that is, the collineation interchanging (1 : 0 : 1) with (0 : 1 : 1) and (1 : 0 : 0) with (0 : 1 : 0)
(denoted by T in Section 2) should fix the double blocking set. Note that by Proposition 2.6,
a construction admitting a nontrivial symmetry cannot have another nontrivial symmetry, and
so it can be transformed into one which is X-Y symmetric. We also made use of the other
structural properties derived in Section 2, which remarkably reduced the necessary computer
time. Unless we explicitly state differently in the notes, the trisecants through the origin in case
of q ≡ 1 (mod 3) have slopes −1, −µ and −µ2 (where µ2 + µ + 1 = 0; c.f. Lemma 2.1 and
Corollary 2.2); in other words, the parameter s of the example is −1. Note that for an example
admitting the X-Y symmetry, s = −1 necessarily holds as the symmetry implies mm′ = 1 = −s3

(c.f. Proposition 2.5). In many, but not all, of our examples m = µ, m′ = µ2.

4.1 q = 13

Points: (points on the X and Y axes are not displayed)
(1 : 1 : 1) (1 : 12 : 1) (2 : 8 : 1) (3 : 7 : 1) (4 : 3 : 1)
(5 : 9 : 1) (6 : 10 : 1) (7 : 4 : 1) (8 : 2 : 1) (9 : 5 : 1)

(10 : 11 : 1) (11 : 6 : 1) (12 : 1 : 1) (1 : 3 : 0) (1 : 9 : 0)
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Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 12 8 7 6 5 4 3

nt 2 1 1 4 10 19 51

Notes: The third roots of unity are 1, 3, 9.
Up to projective equivalence, this is the only example admitting two (q − 1)-secants.
There is no example having a symmetry.
This example is different from the one published in [6], as the longest secants to that
one are 10-secants.

4.2 q = 16

Let ω be a primitive element of F16 which has minimal polynomial x4 + x + 1 over F2.

Points: (points on the X and Y axes are not displayed)
(1 : ω14 : 1) (1 : ω7 : 1) (ω : ω11 : 1) (ω2 : ω3 : 1) (ω3 : ω5 : 1)
(ω4 : ω : 1) (ω5 : ω12 : 1) (ω6 : ω9 : 1) (ω7 : ω13 : 1) (ω8 : ω2 : 1)
(ω9 : ω6 : 1) (ω10 : ω10 : 1) (ω11 : 1 : 1) (ω12 : ω8 : 1) (ω13 : 1 : 1)
(ω14 : ω4 : 1) (1 : ω8 : 0) (1 : ω13 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 15 9 7 6 5 4 3

nt 2 1 1 3 20 37 69

Notes: The third roots of unity are 1, ω5, ω10.
The trisecants through the origin have slopes ω2, ω7 and ω12 (so s = ω6).
There is no example where [1 : 1 : 0] is a triscant (i.e., s = −1 = 1 is impossible).
Therefore, there is no example admitting a symmetry;
and there is no example where (1 : µ : 0) and (1 : µ2 : 0) are both in B.

4.3 q = 19

First example:

Points: (points on the X and Y axes are not displayed)
(1 : 4 : 1) (1 : 14 : 1) (2 : 18 : 1) (3 : 5 : 1) (6 : 13 : 1) (7 : 17 : 1)
(4 : 1 : 1) (14 : 1 : 1) (18 : 2 : 1) (5 : 3 : 1) (13 : 6 : 1) (17 : 7 : 1)
(8 : 16 : 1) (9 : 15 : 1) (10 : 11 : 1) (12 : 12 : 1)
(16 : 8 : 1) (15 : 9 : 1) (11 : 10 : 1) (1 : 7 : 0) (1 : 11 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 18 11 7 6 5 4 3

nt 2 1 2 4 22 57 111
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Second example:

Points: (points on the X and Y axes are not displayed)
(1 : 4 : 1) (1 : 14 : 1) (2 : 12 : 1) (3 : 17 : 1) (5 : 5 : 1) (6 : 7 : 1)
(4 : 1 : 1) (14 : 1 : 1) (12 : 2 : 1) (17 : 3 : 1) (7 : 6 : 1)
(8 : 11 : 1) (9 : 13 : 1) (10 : 15 : 1) (16 : 18 : 1)
(11 : 8 : 1) (13 : 9 : 1) (15 : 10 : 1) (18 : 16 : 1) (1 : 2 : 0) (1 : 10 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 18 8 7 6 5 4 3

nt 2 2 2 5 28 39 128

Notes: The third roots of unity are 1, 7, 11.
Up to projective equivalence, there are no other examples;
thus all examples admit a symmetry.

4.4 q = 25

Let ω be a primitive element of F25 which has minimal polynomial x2 − x − 1 over F5.

Points: (points on the X and Y axes are not displayed)
(1 : ω4 : 1) (1 : ω8 : 1) (2 : ω10 : 1) (3 : ω11 : 1) (4 : ω2 : 1)
(ω4 : 1 : 1) (ω8 : 1 : 1) (ω10 : 2 : 1) (ω11 : 3 : 1) (ω2 : 4 : 1)
(ω : ω13 : 1) (ω3 : ω21 : 1) (ω5 : ω14 : 1) (ω7 : ω9 : 1) (ω15 : ω20 : 1)
(ω13 : ω : 1) (ω21 : ω3 : 1) (ω14 : ω5 : 1) (ω9 : ω7 : 1) (ω20 : ω15 : 1)

(ω16 : ω17 : 1) (ω19 : ω22 : 1) (ω23 : ω23 : 1)
(ω17 : ω16 : 1) (ω22 : ω19 : 1) (1 : ω11 : 0) (1 : ω13 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 24 9 7 6 5 4 3

nt 2 1 6 15 24 101 207

Notes: The third roots of unity are 1, ω8, ω16.

4.5 q = 27

Let ω be a primitive element of F27 which has minimal polynomial x3 − x + 1 over F3.

Points: (points on the X and Y axes are not displayed)
(1 : ω : 1) (1 : ω12 : 1) (2 : ω3 : 1) (ω2 : ω25 : 1) (ω4 : ω17 : 1)
(ω : 1 : 1) (ω12 : 1 : 1) (ω3 : 2 : 1) (ω25 : ω2 : 1) (ω17 : ω4 : 1)

(ω5 : ω10 : 1) (ω6 : ω24 : 1) (ω7 : ω7 : 1) (ω8 : ω21 : 1) (ω9 : ω20 : 1)
(ω10 : ω5 : 1) (ω24 : ω6 : 1) (ω21 : ω8 : 1) (ω20 : ω9 : 1)
(ω11 : ω18 : 1) (ω14 : ω23 : 1) (ω15 : ω19 : 1) (ω16 : ω22 : 1)
(ω18 : ω11 : 1) (ω23 : ω14 : 1) (ω19 : ω15 : 1) (ω22 : ω16 : 1)

(1 : ω2 : 0) (1 : ω24 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 26 7 6 5 4 3

nt 2 2 15 57 124 195
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Notes: the five-secant through the origin has slope −1.

4.6 q = 31

Points: (points on the X and Y axes are not displayed)
(1 : 1 : 1) (1 : 30 : 1) (2 : 12 : 1) (3 : 11 : 1) (4 : 6 : 1) (5 : 9 : 1)

(30 : 1 : 1) (12 : 2 : 1) (11 : 3 : 1) (6 : 4 : 1) (9 : 5 : 1)
(7 : 19 : 1) (8 : 13 : 1) (10 : 26 : 1) (14 : 23 : 1) (15 : 17 : 1) (16 : 22 : 1)
(19 : 7 : 1) (13 : 8 : 1) (26 : 10 : 1) (23 : 14 : 1) (17 : 15 : 1) (22 : 16 : 1)
(18 : 21 : 1) (20 : 25 : 1) (24 : 29 : 1) (27 : 28 : 1)
(21 : 18 : 1) (25 : 20 : 1) (29 : 24 : 1) (28 : 27 : 1) (1 : 5 : 0) (1 : 25 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 30 10 8 7 6 5 4 3

nt 2 1 4 4 12 58 147 334

Notes: The third roots of unity are 1, 5, 25.
We have found two other examples, both admitting X-Y symmetry;
their longest secants are of length 8 and 7 (not counting the two (q − 1)-secants).

4.7 q = 37

Points: (points on the X and Y axes are not displayed)
(1 : 3 : 1) (1 : 12 : 1) (2 : 2 : 1) (4 : 5 : 1) (6 : 32 : 1) (7 : 19 : 1)
(3 : 1 : 1) (12 : 1 : 1) (5 : 4 : 1) (32 : 6 : 1) (19 : 7 : 1)
(8 : 29 : 1) (9 : 25 : 1) (10 : 24 : 1) (11 : 35 : 1) (13 : 15 : 1) (14 : 16 : 1)
(29 : 8 : 1) (25 : 9 : 1) (24 : 10 : 1) (35 : 11 : 1) (15 : 13 : 1) (16 : 14 : 1)
(17 : 33 : 1) (18 : 28 : 1) (20 : 22 : 1) (21 : 27 : 1) (23 : 30 : 1) (26 : 34 : 1)
(33 : 17 : 1) (28 : 18 : 1) (22 : 20 : 1) (27 : 21 : 1) (30 : 23 : 1) (34 : 26 : 1)
(31 : 36 : 1) (36 : 31 : 1) (1 : 10 : 0) (1 : 26 : 0)

Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 36 8 7 6 5 4 3

nt 2 3 6 27 79 230 445

Notes: The third roots of unity are 1, 10, 26.

4.8 q = 43

Points: (points on the X and Y axes are not displayed)
(1 : 18 : 1) (1 : 31 : 1) (2 : 39 : 1) (3 : 40 : 1) (4 : 36 : 1) (5 : 28 : 1)
(18 : 1 : 1) (31 : 1 : 1) (39 : 2 : 1) (40 : 3 : 1) (36 : 4 : 1) (28 : 5 : 1)
(6 : 27 : 1) (7 : 16 : 1) (8 : 32 : 1) (9 : 15 : 1) (10 : 26 : 1) (11 : 33 : 1)
(27 : 6 : 1) (16 : 7 : 1) (32 : 8 : 1) (15 : 9 : 1) (26 : 10 : 1) (33 : 11 : 1)
(12 : 21 : 1) (13 : 23 : 1) (14 : 22 : 1) (17 : 34 : 1) (19 : 19 : 1) (20 : 38 : 1)
(21 : 12 : 1) (23 : 13 : 1) (22 : 14 : 1) (34 : 17 : 1) (38 : 20 : 1)
(24 : 25 : 1) (29 : 41 : 1) (30 : 37 : 1) (35 : 42 : 1)
(25 : 24 : 1) (41 : 29 : 1) (37 : 30 : 1) (42 : 35 : 1) (1 : 6 : 0) (1 : 36 : 0)
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Secant distribution: (the number nt of t-secants is present iff t ≥ 3 and nt > 0)
t 42 8 7 6 5 4 3

nt 2 4 8 26 122 321 590

Notes: The third roots of unity are 1, 6, 36.
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[5] A. Blokhuis, L. Storme, T. Szőnyi, Lacunary polynomials, multiple blocking sets
and Baer subplanes. J. London Math. Soc. (2) 60(2) (1999), 321–332.

[6] M. Braun, A. Kohnert, A. Wassermann, Construction of (n, r)-arcs in PG(2, q).
Innovations in Incidence Geometry 1 (2005), 133–141.

[7] A. E. Brouwer and A. Schrijver, The blocking number of an affine space. J.
Combin. Theory Ser. A, 24 (1978), 251–253.

[8] A. A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Linear nonbinary
covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1)
(2011), 119–147.
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