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Abstract 19 

The use of microinjection of newly fertilized zebrafish eggs as an appropriate tool for 20 

qualifying the biodetoxification properties of toxin-degrading microbes was investigated. 21 

Ochratoxin A (OTA), bacterial degradation products of OTA and bacterial metabolites of the 22 

Cupriavidus basilensis ŐR16 strain were microinjected. Results showed  that variations in the 23 

injected droplet size, and thus treatment concentrations, stayed within ±20%, moreover 24 

embryo mortality did not exceed 10% in controls, that is in accordance with the 25 

recommendations of the OECD 236 guideline. The highest lethality was caused by OTA with 26 

a significantly higher toxicity than that of bacterial metabolites or OTA degradation products. 27 

However, toxicity of the latter two did not differ statistically from each other showing that the 28 

observed mortality was due to the intrinsic toxicity of bacterial metabolites (and not OTA 29 

degradation products), thus, the strain effectively degrades OTA to nontoxic products. 30 

Sublethal symptoms also confirmed this finding.  31 

Results confirmed that microinjection of zebrafish embryos could be a reliable tool for testing 32 

the toxin-degrading properties of microbes. The method also allows comparisons among 33 

microbial strains able to degrade the same toxin, helping the selection of effective and 34 

environmentally safe microbial strains for the biodetoxification of mycotoxins in large scale. 35 

Keywords: Cupriavidus basilensis, mycotoxin, ochratoxin, biodegradation, biodetoxification 36 
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1. Introduction 38 

Ochratoxin A (OTA) is a hazardous mycotoxin produced during the secondary metabolism of 39 

filamentous fungi belonging to the genera Aspergillus and Penicillium (Bui-Klimke and Wu, 40 

2015). OTA is a potent nephrotoxic mycotoxin that has several harmful effects in Vertebrates, 41 

including fish, such as hepatotoxicity (Gagliano et al., 2006), teratogenicity (Haq et al., 2016; 42 

O’Brien et al., 2005) and immunosuppression (Marin and Taranu, 2015). OTA has been 43 

reported to play a role in the development of different types of tumors in Rodent models and 44 

humans (Pfohl-Leszkowicz and Manderville, 2007). Chronic OTA exposure proved to be a 45 

leading factor in mycotoxin-induced porcine nephropathy and Balkan endemic nephropathy 46 

(BEN) in humans (Stoev and Denev, 2013; Vrabcheva et al., 2000). 47 

The toxin is present in various agricultural products (e.g., fruits, cereals, meats, coffee beans, 48 

spices) (Bui-Klimke and Wu, 2015) and survives many common food-processing procedures, 49 

such as roasting, brewing and baking, thus, it can be found in bread (Scudamore et al., 2004), 50 

juicy fruits (Fernández-Cruz et al., 2010), beer (Odhav and Naicker, 2002) and wine 51 

(Otteneder and Majerus, 2000). Because of its potential health risks, many countries and 52 

international organizations have introduced a limit value for the OTA content of cereals and 53 

cereal products (ECR, 2006; FAO, 2003). 54 

Global occurrence of mycotoxins in the food chain is a problem worldwide, so several 55 

strategies have been developed to decrease mycotoxin levels in animal feeds and human food 56 

e.g. prevention, physical and chemical methods and biodegradation (Binder, 2007; EFSA, 57 

2010). Among these, toxin biodegradation by microorganisms or their enzymes is the most 58 

promising approach which could be an important postharvest strategy to reduce or eliminate 59 

mycotoxin contamination. 60 

There is growing need for the selection of microbial strains for efficient mycotoxin 61 

biodegradation in large scale use, which are able to eliminate the hazardous effects of a toxin 62 
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and its breakdown products in addition to the degradation of their chemical structure 63 

(Ferenczi et al., 2014; Sheikh-Zeinoddin and Khalesi, 2018; Vanhoutte et al., 2016). 64 

Traditional analytical and immunological methods are sufficient to test biodegradation of the 65 

parent compound, but they are unable to detect the toxic effects of potential degradation 66 

products and bacterial metabolites. In addition, biodegradation does not always mean 67 

biodetoxification. According to the statements described above and the scientific advice of 68 

EFSA (EFSA, 2010), it is important to develop and use new in vivo toxicological approaches 69 

for investigating biodegradation and detoxification efficiency directly. 70 

Various microorganisms have been reported to be suitable for degrading and detoxifying 71 

OTA, some of them are highly efficient (Abrunhosa et al., 2014; Hathout and Aly, 2014). 72 

Two pathways may be involved in OTA microbiological degradation. The primary is the 73 

hydrolytic cleavage of the amide bond in OTA, resulting in the production of phenylalanine 74 

and ochratoxin α (OTα), which - in most cases – is the major degradation product. Since OTα 75 

and phenylalanine are presumably non-toxic, this mechanism can be considered as a 76 

detoxification pathway. The second is a hypothetical process where OTA is degraded via the 77 

hydrolysis of the lactone ring (Karlovsky Petr, 1999). In this case, the final degradation 78 

product is an opened lactones form of OTA, which has similar toxicity to the parent 79 

compound (Li et al., 1997; Xiao et al., 1996). 80 

In the present report, Cupriavidus basilensis (ŐR16 strain), the first Cupriavidus species with 81 

proven OTA degradation potency has been selected. The strain ŐR16 can degrade almost 82 

100% of OTA in solutions with concentrations below 20 mg/L in laboratory conditions 83 

during 5 days of incubation, and the major metabolite of OTA is OTα. The degradation 84 

efficiency of the strain was tested in mice, where neither the metabolites produced in a 85 

modified LB medium, nor the degraded OTA residuals evoked pathological disorders, or 86 

disturbed the expression of the examined genes (Ferenczi et al., 2014). Based on these 87 
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phenomena, the strain ŐR16 seems to be suitable for developing new in vivo test methods for 88 

Vertebrate models to examine and evaluate the detoxification ability of mycotoxin degrading 89 

microorganisms. 90 

Zebrafish embryo tests are widely used bioassays in toxicological and ecotoxicological 91 

testing, and are often used to analyze organic-matter rich samples (e.g. waste water and 92 

sediment samples) (Braunbeck et al., 2005; Nagel, 2002). Since these assays should be carried 93 

out at temperatures above 25°C, many factors may interfere with toxicity evaluation, of which 94 

low oxygen supply in the embryo test vessel is one of the most important (Küster and 95 

Altenburger, 2008; Strecker et al., 2011). Deviations from oxygen saturation increase the 96 

frequency of malformations or suspension of embryo development, and distinction between 97 

effects of hypoxia and the toxicity of a sample is not always possible. For organic-matter rich 98 

samples, the microinjection of fish embryos could be an alternative method to eliminate the 99 

secondary effects of hypoxia. 100 

Microinjection is a simple way to introduce substances into newly fertilized fish eggs. It has 101 

previously been used for testing polar and nonpolar substances in many fish species (Colman 102 

et al., 2004; Mizell and Romig, 1997; Walker et al., 1992). Effects on embryonic development 103 

are visible shortly after microinjection, and even minor toxic effects can be distinguished 104 

from background mortality and other sublethal symptoms. Although, microinjection of 105 

substances into the yolk of zebrafish eggs is feasible, introduction of accurate volumes (e.g. 106 

constant volumes) through a series of injections seems to be problematic so nominal and real 107 

injected volumes may be different (Schubert et al., 2014). 108 

The objective of this in vivo toxicological study was to investigate whether microinjection of 109 

newly fertilized zebrafish eggs could be an appropriate tool for qualifying the 110 

biodetoxification efficiency of toxin-degrading microbes. Therefore OTA, breakdown 111 

products of OTA and bacterial metabolites of Cupriavidus basilensis ŐR16 strain were 112 
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injected into zebrafish eggs at different volumes and mortality and sublethal effects were 113 

compared. Additionally, we investigated the injected volume fluctuations during a series of 114 

microinjections, to see if desired treatment concentrations are reached and to ensure that the 115 

results are reliable. 116 

  117 
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2. Material and methods 118 

2.1. Animal protection 119 

The Animal Protocol was approved under the Hungarian Animal Welfare Law (XIV-I-120 

001/2303-4/2012). 121 

 122 

2.2. Zebrafish maintenance and egg  collection 123 

Laboratory-bred AB strain zebrafish were held in breeding groups of 30 females and 30 males 124 

at the Department of Aquaculture, Szent István University, Hungary, in a Tecniplast ZebTEC 125 

recirculation system (Tecniplast S.p.A., Italy) at 25.5°C ± 0.5°C, pH 7.0±0.2, conductivity 126 

550±50 µS (system water) and light:dark period of 14 h:10 h. Fish were fed twice a day with 127 

dry granulate food (Zebrafeed 400-600 µm, Sparos Lda., Portugal) supplemented with freshly 128 

hatched live Artemia salina twice a week. Fish were placed in breeding tanks (Tecniplast 129 

S.p.a.) late in the afternoon the day before the experiment and allowed to spawn by removing 130 

the dividing walls next morning. Spawning of individual pairs was delayed through time to 131 

allow a continuous supply of 1-cell embryos. 132 

 133 

2.3. Bacterial strain cultivation and metabolite preparation 134 

The bacterial Cupriavidus basilensis ŐR16 strain (stored at −80 °C) was thawed on ice, 135 

streaked on Luria-Bertani (LB) agar plates (10 g tryptone, 5 g yeast extract, 9 g sodium-136 

chloride and 18 g bacteriological agar (Biolab Ltd., Hungary) in 1L (pH 7.0) ion-exchanged 137 

water) and incubated at 28 °C for 72 hours. Then single colonies were inoculated into 50 mL 138 

100% LB medium (10 g tryptone, 5 g yeast extract and 9 g sodium-chloride in 1L (pH 7.0) 139 

ion-exchanged water) in 250 mL flasks and cultures were grown for 120 h at 28 °C, 170 rpm 140 

in a shaking incubator (Sartorius Certomat BS-1, Germany). Liquid cultures were centrifuged 141 

at 3220 g, 4 °C for 20 min (Eppendorf 5810R, Germany), the pellet was resuspended in 50 142 
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mL 20% LB medium (100% LB medium diluted with ion-exchanged water), then was 143 

centrifuged again at the same conditions. The procedure was repeated twice. After 144 

resuspension, the optical density of the culture was measured at 600 nm (OD 600) (GENESIS 145 

10S UV-VIS, Thermo Fischer Scientific) and adjusted to 0.6±0.05 to prepare bacterial 146 

inoculum. 5 mL bacterial suspensions were inoculated into 45 mL sterile 20% LB medium in 147 

triplicates and incubated on a laboratory shaker at 28 °C, 170 rpm for 120 h. Cultures were 148 

then centrifuged at 3220 g, 4 °C, for 15 min. Supernatants were filtered through 0.2 µm 149 

syringe filters (VWR International Ltd., Hungary) to gain bacteriologically sterile samples 150 

containing bacterial metabolites only. Samples were stored at  −20 °C until microinjection. 151 

 152 

2.4. Ochratoxin A biodegradation and OTA concentration measurement 153 

Bacterial inocula (5 mL) were prepared as above, and added to 45 mL 20% LB medium 154 

containing OTA (7 mg/L final concentration). Similar inocula were prepared in parallel 155 

without OTA to test the effects of bacterial metabolites. Uninoculated LB medium (20%) 156 

contaminated by OTA (7 mg/L) was used as negative control. Both of the cultures and control 157 

were incubated at 28 °C, 170 rpm for 120 h in triplicates. After the incubation, cultures were 158 

centrifuged at 3220 g, 4 °C, for 20 min. Supernatants were filtered with 0.2 µm syringe filters, 159 

and samples were stored at −20 °C until microinjection. 160 

For the measurement of OTA concentration, high-performance liquid chromatography with 161 

tandem mass spectrometry (HPLC-MS/MS) was applied. Prior to measuring toxin 162 

concentration, 100 μL sample were mixed with 25 μL isotope-labelled internal standard (13
C20-163 

OTA), the mixture was evaporated under nitrogen gas, thereafter it was reconsituted in 50-50 164 

V/V% A-B eluent (A : water, 5mM ammonium-acetate, 0.1% acetic acid ; B : methanol, 165 

5mM ammonium-acetate, 0.1% acetic acid). For the separation Agilent 1100 HPLC (Agilent 166 

Technologies, USA) equipped with Agilent Zorbax C18 column (3.5µm, XDB-C18, 2.1 x 167 
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50mm) was used. 10 μL prepared samples were injected into the mobile phase containing A-168 

B eluent. 400 µL/min flow rate and 40°C column temperature was set. 3200 QTRAP 169 

LC/MS/MS system (Applied Biosystems, USA) in positive ion mode was used for the 170 

determination of OTA concentration in samples. During the measurement, LOD was 2 µg/L 171 

and LOQ was 6 µg/L.  172 

2.5. Microinjection 173 

A Narishige (Japan Model PN-31) micropipette puller (heater level: 89.1, magnet sub level: 174 

15.7, magnet main level: 84.3) was used to pull microinjection pipette tips (injection needle) 175 

(Narishige Japan G-1 borosilicate glass capillary, 1 mm o.d. x 0.6 mm i.d., 90 mm length). 176 

Injection needles were backfilled with 20 µL substance without air bubbles by a Microloader 177 

pipette tip (Eppendorf, Germany). 178 

The needle was placed in the microinjection manipulator (microINJECTOR MINJ-2, TriTech 179 

Research Inc. Los Angeles, USA) connected to a nitrogen gas bottle. Injections were carried 180 

out under a stereomicroscope at 15× magnification (Leica LED2500, Leica Microsystems 181 

GmbH, Germany). Injection volumes were determined in immersion oil (Merck Ltd., 182 

Hungary, An affiliate of Merck KGaA, Darmstadt, Germany) on the basis of droplet 183 

diameters by a calibrated software (Leica M205 FA, Leica DFC 7000T camera, Leica 184 

Application Suite 3.4.2.18368, Leica Microsystems GmbH, Germany). Injection volumes 185 

were administered five times into the oil droplet until appropriate volume was achieved 186 

(pressure or capillary orifice size change). According to the sphere volume formula 187 

(V=1/6πd

3

), a sphere diameter of 50 µm corresponded to an injection volume of 0.22 nL, 100 188 

µm to 0.52 nL, 150 µm to 1.77 nL, and 200 µm to 4.17 nL. Injection volume needed to be 189 

measured and adjusted for each solution, concentration and control. 190 
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One-cell stage zebrafish embryos were lined up against the side of a microscope slide placed 191 

in a 10 cm diameter Petri dish. Excess water was removed with a plastic pipette. Treatment 192 

groups of 20 eggs were injected in a minimum of three replicates per treatment. Following 193 

microinjection, eggs were incubated in system water with methylene blue (2 mL 0.1% 194 

methylene blue in 1 L system water) (25°C ± 2°C) in 10 cm diameter Petri dishes. After 2 195 

hours, coagulated and/or non-fertilized eggs were discarded and developing embryos were 196 

transferred in groups of twenty into 6 cm diameter Petri dishes. Embryos were then incubated 197 

in system water at 26°C ± 1°C and a 14 h:10 h-light:dark period and checked for lethal and 198 

sublethal effects under a microscope. System water was replaced in every 24 hours until 120 199 

hpf (hours post-fertilization). Digital images of embryos (72 hpf) and larvae (120 hpf) in 200 

lateral orientation were taken under a stereomicroscope at 30× magnification (Leica M205 201 

FA, Leica DFC 7000T camera, Leica Application Suite 3.4.2.18368, Leica Microsystems 202 

GmbH, Germany).  203 

 204 

2.6. Determination of the variations in the injection volume 205 

Zebrafish Ringer’s solution (ZFR) (116 mM sodium-chloride, 2.9 mM potassium-chloride, 206 

1.8 mM calcium-chloride and 5 mM HEPES (pH 7.2) (Sigma-Aldrich, Hungary) in system 207 

water, filtered with 0.2 µm syringe filters) was injected into the yolk of zebrafish eggs. Prior 208 

to treatments, microinjection parameters (pressure and capillary orifice size) were set 209 

according to the volumes calculated on the basis of injected droplet sizes in immersion oil. 210 

When the desired volume was reached, five eggs were injected, and the diameter of five 211 

droplets was measured again in immersion oil. This egg injection - droplet measurement cycle 212 

was repeated five times to test the accuracy of injection.  213 

 214 
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2.7. Effect of the highest used injection volume and the LB media on the viability of  215 

embryos 216 

The effect of the largest injection volume (4.2 nL) on egg viability was tested with Zebrafish 217 

Ringer’s solution, the negative control of the experiments. The effect of the bacterial growth 218 

medium and the effects of the solvent were tested following the injection of 4.2 nL of 20% 219 

LB medium and 20% LB medium with acetone (250 µL acetone in 50 mL 20% LB medium). 220 

 221 

2.8. Determination of the initial OTA concentration of the reference curve 222 

OTA (99.5% Fermentek, Israel) was dissolved in acetone (98.8% Sigma-Aldrich, Hungary) at 223 

1000 mg/L concentration, of which 1; 7; 10 mg/L concentrations were prepared in 20% LB 224 

medium. OTA contaminated medium was injected in 0.22 nL, 0.52 nL, 1.77 nL and 4.17 nL 225 

volumes into the embryos to find the optimal concentration for the reference curve. 226 

 227 

2.9. Examining the toxicity of samples derived from OTA degradation experiment 228 

Samples containing ŐR16 metabolic products as well as OTA degradation products were 229 

injected in 0.22 nL, 0.52 nL, 1.77 nL and 4.17 nL volumes into the zebrafish embryos. 230 

 231 

2.10. Examination of injected embryos 232 

Embryo mortality was determined at 72 and 120 hpf on the basis of egg coagulation, the lack 233 

of somite formation and the lack of heart function. Sublethal effects were examined at 72 and 234 

120 hpf, the endpoints were pericardial edema, yolk edema, tail deformation, craniofacial 235 

deformation and disintegrated abnormal embryo shape. Abnormalities were recorded 236 

separately, irrespective of the number of deformities per individual. 237 

 238 
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2.11. Statistics 239 

Results were analysed and graphs were plotted by GraphPad Prism 6.01 (GraphPad Software, 240 

San Diego, USA). Data were checked for normality with Shapiro-Wilk normality test and 241 

non-compliance with the requirements of parametric methods was established. Significant 242 

differences were verified by Kruskal-Wallis analysis with Dunn's multiple comparisons test. 243 

  244 
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3. Results and discussion 245 

 246 

3.1 Examination of variations in the microinjection volume 247 

In toxicology including ecotoxicology, the concentrations used should remain as stable as 248 

possible to obtain reliable results. The microinjection method may cause volume fluctuations, 249 

the rate of which depends on the injection time, the applied pressure, the diameter of the 250 

needle tip and the viscosity of the cytoplasm of the injected cell (Minaschek G. et al., 1989; 251 

Schubert et al., 2014). These volume variations cause concentration shifts, and so nominal 252 

and real concentrations may differ from each other. 253 

The best method for volume determination is the measurement of droplet diameters in the 254 

yolk after each injection (Schubert et al., 2014). However, with diffuse substances – such as 255 

those used in these experiments – this is not possible, therefore droplet size was measured in 256 

immersion oil, prior to microinjection to the yolk. To examine alterations in the injection 257 

volume during the microinjection procedure, a microinjection series was carried out with 258 

zebrafish Ringer’s solution and the diameter of injected droplets were measured after the 259 

injection of every 5 embryos. In general, no significant difference was observed between 260 

replicates compared to the desired diameter (Fig 1 A). Minimal and maximal droplet volumes 261 

calculated from the measured diameters are shown in Fig 1 B. The largest decrease in volume 262 

was detected in case of the 1.77 nL droplet size (17.51% (1.46 nL)), while the largest volume 263 

increase was seen in case of the 0.22 nL droplet size (18.18% (0.26 nL)). 264 

According to the OECD 236 guideline for the Fish Embryo Toxicity Test, nominal and real 265 

concentrations should not differ from each other by more than ±20% (OECD236, 2013). In 266 

this experiment deviations from the nominal volume stayed within this range for all volumes 267 

tested, thus presumably our experiments would meet this basic requirement. 268 
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Results show that with the above described experimental settings, the method is 269 

dimensionally stable for all used droplet sizes, if the capillary is not clogged during injection. 270 

 271 

3.2 Effect of the largest injection volume and the media on the viability of embryos 272 

Prior to testing bacterial products, potential toxic effects of three basic media, the Zebrafish 273 

Ringer’s solution, the LB medium, the medium supplemented with the solvent acetone (which 274 

served as a bacterial propagation medium and carrier for OTA) and the largest used injection 275 

volume (selected according to the work of Schubert and co-workers (2014)) was examined. 276 

The injection volume is a critical factor in postinjection embryo survival, but potentially does 277 

not cause egg trauma if the administered volume is bellow 10% of the total volume of the 278 

yolk (Walker et al., 1992). For the same substance and same concentration, smaller injection 279 

volumes cause less mortality and malformations in injected embryos (Zabel et al., 1995). 280 

According to these, LB media were administered in the largest droplet volume too. 281 

As the conditions did not have significant toxic effects, only results for 5 days of exposure are 282 

shown in Figure 1 C. In the non-injected control no dead embryos were found, and the 283 

average mortality rate was also very low in case of the LB medium (5%), the solvent 284 

supplemented LB (5%) and the ZFR (5.83%) and there was no significant difference between 285 

treatments. Malformations were not detected either in injected or non-injected (control) 286 

embryos (Fig. 1 D).  287 

The OECD guideline for fish embryo test allows a maximum of 10% lethality in the control 288 

during an experiment (OECD236, 2013). This criterion was fulfilled in this study, since LB 289 

media and ZFR caused lower lethality. Based on the mortality and morphology results, the 290 

injection settings and droplet sizes used here seemed to be suitable for further work, the 291 

examined conditions are not toxic to zebrafish embryos and so do not affect the outcome of 292 

subsequent tests. 293 
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 294 

3.3 The effect of metabolites produced by the Cupriavidus basilensis ŐR16 strain on the 295 

survival of microinjected embryos 296 

Bacterial metabolites produced during the primary metabolism of the strain (ŐR16) might 297 

also have toxic effects on embryos, therefore the effect of the LB medium following 3 and 5 298 

days of bacterial incubation was tested in 4 injection volumes (Fig. 2 A and B). The solution 299 

decreased the survival rate of embryos at 72 and 120 hpf too and dose-response relationship 300 

was found between injection volumes and lethality. After 72 hours of exposure, significant 301 

increase was detected in mortality in the groups injected with 1.77 and 4.17 nL (p < 0.05) 302 

compared to the control, and the group injected with the largest volume (4.17 nL) and the 303 

group injected with 0.22 nL (p < 0.01). Mortality in the groups injected with the two largest 304 

volumes was 22.92% (1.77 nL) and 26.15% (4.17 nL), with no significant difference between 305 

the groups. Mortality increased in all injected groups after 120 hours of exposure, but 306 

compared to the control, significant difference was only detected in the groups injected with 307 

the two largest volumes where mortality was 32.92% (1.77 nL, p < 0.01) and 50.13% (4.17 308 

nL, p < 0.01). Results clearly show that the strain ŐR16 produces toxic metabolites that – 309 

following administration by microinjection – decrease the survival of zebrafish embryos. 310 

Ferenczi et al. (2014) examined OTA biodegradation efficiency of the strain ŐR16 and the 311 

toxicity of breakdown products derived from degradation in feeding experiments with mice. 312 

Animals were exposed to ŐR16 metabolites via intragastric gavage once a day through 21 313 

days. Toxic effects were examined via the expression of several marker genes and 314 

histolopathological examination of the kidney and spleen. In mice, metabolic products of the 315 

strain ŐR16 did not seem to be toxic compared to the control. According to the results 316 

described above, zebrafish embryos seem to be more sensitive to the bacterial metabolites 317 

than mice, however, difference may be due to different exposition pathways.  318 
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 319 

3.4 Determination of the initial OTA concentration for further experiments 320 

In order to determine the initial OTA concentration for further degradation experiments, OTA 321 

was injected into the yolk of embryos in 1, 7 and 10 mg/L concentration, in different volumes. 322 

All concentrations fell within the degradable concentration range of strain ŐR16. Mortality 323 

was checked at 3 and 5 dpf and results were plotted on a dose response curve for mortality. 324 

The graph of the potentially optimal initial concentration should serve as a reference for 325 

further experiments even if toxicity is higher following degradation, so should meet the 326 

following requirements: the maximum mortality should not exceed that of the bacterial 327 

metabolic products and the curve should not reach its maximum early. 328 

Mortality increased along with the injection volume in case of all three OTA concentrations, 329 

and reached the maximum after 72 hours of exposure in all cases. Mortality did not change 330 

significantly for 120 hours following exposure (Fig. 3 A and B). 331 

The slope of the dose-response curve for 1 mg/L OTA was lower than the others and 332 

mortality maximum was reached only with the largest injection volume following 72 and 120 333 

hours of exposure. In case of lower injection volumes, mortality was below 10%. 334 

Dose-response relationship was detected between injection volumes and mortality in case of 7 335 

mg/L OTA as well. Mortality increased gradually with injection volumes at 72 and 120 hours 336 

of exposure too, and the maximum (100%) was reached with the largest injection volume. 337 

From 0.52 nL, significant difference (p < 0.05) was detected in mortality compared to the 338 

control. Differences between mortality values of the groups injected with volumes ≤0.52 nL 339 

compared to the 1.77 (p < 0.001) and 4.17 nL injection volumes were also significant (p < 340 

0.05), however, no significant difference was found in case of the two largest volumes (Fig. 341 

3C and D). Mortality reached its maximum (75%) early with 10 mg/L OTA with the lowest 342 

injection volume (0.52 nL) and did not show to be higher with larger volumes. 343 
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On the basis of our results, 7 mg/L was selected to be an initial concentration in further 344 

experiments. The mortality curve of this concentration shown here served as reference for 345 

subsequent tests. 346 

The present study was the first to examine acute toxic effects of OTA following 347 

microinjection, and high mortality was detected even after short exposures to low 348 

concentrations. However, these results are difficult to compare to the results of classical tests 349 

where embryos are exposed via waterborne exposure. It is still unclear how substances are 350 

distributed in the yolk following injection but it is inhomogenous in most cases, so 351 

presumably embryos are not exposed uniformly. Moreover, zebrafish embryos consume their 352 

yolk sac completely to 165 ±12 hpf (Litvak and Jardine, 2003), thus, some of the substance 353 

may remain unabsorbed during the exposition period presented here, however, with longer 354 

exposure the experiment would fall under animal testing regulations. The microinjection 355 

technique enables the administration of exact amounts, so theoretically it would be possible to 356 

determine doses per bodyweight as seen in feeding experiments with vertebrates. 357 

 358 

3.5 Toxicity of samples derived from ochratoxin degradation experiment  359 

In order to clarify the toxicity of OTA-metabolites produced during microbial toxin 360 

degradation with strain ŐR16, degradation products were microinjected in four concentrations 361 

into zebrafish embryos. Mortality was examined on the 3rd and 5th day of exposure. 362 

Mortality increased with the injected volume as seen previously. At 72 hours of exposure, 363 

mortality in the non-injected control, and in the 0.22 nL and 0.52 nL injection volumes was 364 

bellow 10%, and did not reach 30% even with the highest volumes. No significant difference 365 

was observed between treated groups (Fig. 4 B). At 120 hours of exposure, dose-response 366 

relationship was found between the injected volume and embryo mortality, as mortality 367 

increased gradually along with the injection volume and reached 38.5% in the largest volume.  368 
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Statistically significant decrease was detected in the number of survivals in the groups 369 

injected with 0.52 nL, 1.77 nL and 4.17 nL compared to the non-injected control (p < 0.05), 370 

and the two largest injection volumes compared to 0.22 nL (p < 0.05) (Fig. 4 C). 371 

OTA degrading efficiency of strain ŐR16 was tested prior to exposure and it was found to be 372 

95.6% (Fig. 4 A). OTA degradation of the strain ŐR16 is possibly mediated by a peptidase 373 

enzyme. Ferenczi et al. (2014) showed that the major metabolite of OTA degraded by strain 374 

ŐR16 is ochratoxin alpha (OTα). They found that OTA content in the supernatants decreased 375 

gradually, OTα content increased in parallel during the 5-day incubation period and OTA was 376 

completely degraded (94% decrease was measured by ELISA and 100% by HPLC), that is in 377 

accordance with the results of the above described experiments. OTα is not potentially toxic, 378 

according to the results of previous Vertebrate studies (Bruinink, 1998; Ferenczi et al., 2014). 379 

Haq and co-workers (2016) tested the toxicity of OTα with ZETA test on zebrafish embryos 380 

in concentrations ≤2.5 µM. In contrast to OTA, no significant difference was detected 381 

between the mortality of embryos exposed to OTα and the untreated negative controls during 382 

the 5 days exposure. On the basis of these, mortality in our experiments is probably due to 383 

other metabolites of strain ŐR16.  384 

Ferenczi et al. (2014) also studied OTA degradation products of strain ŐR16 in mouse 385 

feeding experiments. Subchronic exposure did not cause mortality in mice and physiological 386 

or gene expression alterations in the examined organs, compared to controls. However 387 

degradation products were lethal to injected zebrafish embryos, so the zebrafish embryo is 388 

probably a more sensitive model, than the mouse. 389 

 390 

3.6 Comparison of mortality values of 7 mg/L OTA, and the bacterial and degradation 391 

products of the strain ŐR16 392 
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Mortality caused by 7 mg/L OTA, and the bacterial and degradation products of the strain 393 

ŐR16 were plotted on joint graphs. In order to investigate the degradation characteristics of 394 

the bacterial strain, mortality values of equal volumes were compared to each other (Fig. 5 A 395 

and B). 396 

Following 72 hours of incubation, mortality did not show significant difference between 397 

groups injected with the smallest volumes. In case of larger volumes, there was no difference 398 

between results of the bacterial metabolites and the degradation products of the strain, 399 

however, mortality values of 7 mg/L OTA differed significantly from these (p < 0.05). 400 

Highest mortality was caused by 7 mg/L OTA injected in 0.52 nL and above. 401 

120 hours after microinjection, no significant difference was seen between the mortality 402 

values of groups injected with 0.22 nL. In case of the groups injected with 0.52 nL, significant 403 

difference was detected between 7 mg/L OTA and the metabolites of the strain ŐR16 (p < 404 

0.05). Mortality values of the degradation products of strain ŐR16 did not differ nor from that 405 

of the bacterial metabolites neither from the OTA solution. In larger volumes, only mortality 406 

values of 7 mg/L OTA differed significantly from other groups (p < 0.001 - degradation 407 

products, p < 0.01 – ŐR16 bacterial metabolites), however, bacterial metabolites of the strain 408 

and degradation products of OTA did not show significant difference. The highest mortality 409 

was detected in 7 mg/L OTA injected in 0.52 nL and above. 410 

As no statistical difference was found between the mortality values of the bacterial and 411 

degradation products, it can be concluded that OTA breakdown products are not toxic, and 412 

mortality is probably caused by metabolites of the strain ŐR16. Results also show that 413 

exposure via microinjection is a potential, functional, alternative way to test the detoxification 414 

efficiency of toxin degrading microbes on zebrafish embryos in vivo. Mortality in itself may 415 

provide a sufficient endpoint when testing the differences between the toxicity of the bacterial 416 

metabolites of a strain and the degradation products of the toxin following microinjection, and 417 
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toxicity of toxin degradation products can be predicted. There was no detectable difference 418 

between the mortality curves of 3 and 5 days of exposure, so it seems that a 3 days exposure 419 

period is sufficient for studying the degradation characteristics of bacterial strains. 420 

 421 

3.7 Sublethal effects in injected embryos 422 

Beyond mortality, sublethal endpoints were also analyzed in treated embryos following 72 423 

and 120 hours of exposure. Generally, compared to the non-injected controls all treatments 424 

with all injected volumes increased the frequency and severity of developmental deformities 425 

(Fig. 6 A and B). Following 72 hours of exposure, the highest frequency of morphological 426 

disorders was detected in the 7 mg/L OTA group, and in some replicates of treatments with 427 

the highest volumes of this concentration, all surviving embryos showed abnormalities. A 428 

statistically significant difference was only observed between the 1.77 nL OTA (7 mg/L), and 429 

1.77 nL samples containing bacterial metabolites or degradation products (p < 0.01). 430 

Following 120 hours of exposure, it was also evident that compared to other treatment groups 431 

the ratio of deformed embryos was the highest in the groups treated with OTA from 0.52 nL 432 

and above. Statistically significant differences were observed in ŐR16 bacterial metabolites 433 

(p < 0.01) and breakdown products of OTA (p < 0.05) compared to 7 mg/L OTA, injected in 434 

1.77 nL. Significant differences were also found between OTA 7 mg/L and metabolites of 435 

strain ŐR16 (p < 0.01) or degradation products (p < 0.05), injected in 4.17nL. However no 436 

significant difference was detected between the deformation frequencies in the groups 437 

injected with the bacterial metabolites of the strain and OTA degradation products during the 438 

whole exposure period with any injection volumes. 439 

It can be concluded that notwithstanding the significant differences detected in morphology, 440 

OTA degradation products seem to be nontoxic on the basis of deformation frequencies, 441 

however the metabolites of the strain were proved to be toxic. 442 
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Figure 7. shows representative development dysfunctions in embryos from treatment groups 443 

with statistically significant differences. Following 3 days of OTA injection (1.77 nL) 444 

embryos displayed craniofacial deformities, small eyes, curvature of the body axis, yolk 445 

deformities, reduced growth rates and edemas in some cases. Most of them have previously 446 

been described in OTA treated zebrafish embryos (Haq et al., 2016), and teratogenic effect 447 

was observed at sub-micromolar concentrations with an EC50 of 20 nM OTA.  448 

Similarly to zebrafish OTA proved to be teratogenic in the amphibian Xenopus laevis model 449 

(FETAX) too, causing mainly craniofacial deformities (O’Brien et al., 2005) like in the 450 

experiments described above. These developmental abnormalities (craniofacial deformities) 451 

were also detected in a wide range of Vertebrates, including rats (Brown and Purmalis, 1976), 452 

mice (Arora, 1983), hamsters (Hood et al., 1976) and chicken (Wiger and Starrmer, 1990). 453 

Decreased hatching rate described by Haq et al. (2016) was not seen in our experiments. 454 

Embryos injected with the same volume (1.7 nL) of bacterial metabolites and OTA 455 

degradation products displayed shorter body, yolk sac deformations, grey coloration in the 456 

yolk, pericardial edema, small eyes and deformities of lower facial structures in embryos 457 

following 3 days of injection. Curvation of the body as a common sign of OTA exposure has 458 

not been detected. 459 

Five days after microinjection, sympthoms got more pronounced in OTA treated embryos and 460 

severe deformations appeared all through the body. Embryos injected with bacterial 461 

metabolites of the strain ŐR16 and OTA degradation products displayed shorter body, yolk 462 

sac deformations, pericardial edema, edema around the abdomen, small eyes, small and not 463 

well defined olfactory region and deformities of lower facial structures on the 5th day of 464 

exposure. As in 3 dpf exposed embryos, curvation of the body axis was not seen here either. 465 

In contrast, OTα did not seem to be toxic in Vertebrates. Haq and co-workers (2016) 466 

examined the effects of OTα (along with OTA) on zebrafish embryos and neither 467 
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teratogenicity nor mortality differed significantly from that of the negative control embryos 468 

during 5 days of exposure. Ferenczi et al. (2014) demonstrated apparent hydrolysis of OTA to 469 

OTα, and consequent detoxification by using a bacterial species Cupriavidus basilensis, as 470 

evidenced by comparative toxicological studies in a mouse model of nephrotoxicity. 471 

In the present study, morphological examination showed that phenotype of OTA treated 472 

embryos differed significantly from the morphology of embryos exposed to bacterial 473 

metabolites or OTA degradation products in both experimental time points, however embryos 474 

in the latter groups showed similar phenotypes. In conclusion, it seems that strain ŐR16 475 

degrades OTA to nontoxic metabolites, the strain is able to degrade OTA even in 7 mg/L 476 

concentration, and deformations resulted from the injection of OTA degradation products are 477 

probably due to the metabolites of the bacteria. In addition, zebrafish exposed via 478 

microinjection appeared to be more sensitive to the metabolites of strain ŐR16 than mice. 479 

All injected solutions contained high levels of organic matter. No deformation implied 480 

oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and 481 

Altenburger, 2008; Strecker et al., 2011). Results suggest that microinjection can be an 482 

alternative way to test samples with high organic matter content. 483 

High organic matter content of samples often causes hypoxia during zebrafish embryo tests, 484 

and its effects (developmental disorders, suspension of embryo development) can hardly be 485 

differentiated from those of the sample itself (Küster and Altenburger, 2008; Strecker et al., 486 

2011). With microinjection hypoxic effect of such samples can be avoided and results can 487 

easily be evaluated. 488 

  489 
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 490 

4. Conclusions 491 

Microinjection is a simple way to introduce organic matter-rich test substances into newly 492 

fertilized fish eggs and helps to eliminate hypoxia that cause a wide range of secondary 493 

effects. If the method is well optimized, injection volume variations can be kept within ±20%, 494 

according to the OECD 236 test guideline’s recommendations and so result reliability can be 495 

ensured. 496 

Results clearly showed that investigation of zebrafish embryos microinjected with toxin 497 

solutions, metabolites of bacterial strains and OTA degradation products could provide an 498 

alternative way for studying the toxin detoxification-properties of microbial strains. The 499 

zebrafish embryo – thanks to their sensitivity – proved to be a good model for the studies. 500 

Toxicity differences between substances may be detected even after 3 days of exposure on the 501 

basis of mortality, that can be completed and further refined by the evaluation of sublethal 502 

data. 503 

Microinjection enables the selection of microbial strains that are able to degrade the toxin and 504 

the identification of the most effective and environmentally safe microbes from the selected 505 

strains. 506 

 507 
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Tables and figures 643 

 644 

Fig1 Variations in the diameter (A) and volume (B) of the injected droplet and mortality 645 

(C) and morphology (D) effects of control solutions. The largest decrease in volume was 646 

detected in case of the 1.77 nL droplet size (17.51% (1.46 nL)), while the largest volume 647 

increase was seen in case of the 0.22 nL droplet size (18.18% (0.26 nL)). Droplet diameter 648 

and volume stayed within ±20%, and no significant difference was detected between 649 

measurements. Average mortality rate of 120 hpf embryos injected with 4.17 nL was very low 650 

in all cases ((Non-inj-c (non-injected control): 0%, 20% LB: 5%, 20% LB + Acetone: 5%, 651 

ZFR (Zebrafish Ringers’s solution): 5.83%). There was no significant difference between 652 

treatment groups and no malformations were detected in any case. Scale bar: 500µm. 653 
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 654 

 655 

Fig 2 Effects of the metabolites of Cupriavidus basilensis ŐR16 strain, injected in 656 

different volumes, on the mortality of zebrafish embryos at 72 (A) and 120 hpf (B). After 657 

72 hours of exposure, statistical significant differences were observed between the non-658 

injected control and 1.77 nL (p < 0.05), non-injected control and 4.17 nL (p < 0.05), 0.22 nL 659 

and 4.17 nL (p < 0.01). Lethality was below 10% in the non-injected control, 0.22 nL and 660 

0.52 nL. After 120 hours of exposure statistical significant differences were observed between 661 

the non-injected control and 1.77 nL (p < 0.01), non-injected control and 4.17 nL (p < 0.01), 662 

0.22 nL and 4.17 nL (p < 0.001). Mortality was below 10% in the non-injected control and 663 

0.22 nL. 664 

 665 

 666 
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 667 

Fig 3  Effects of ochratoxin A (OTA) injected in different concentrations and volumes on 668 

the mortality of 72 (A) and 120 (B) hpf zebrafish embryos  and the effects of 7 mg/L 669 

OTA injected in different volumes  on the mortality of 72 (C) and 120 (D) hpf zebrafish 670 

embryos. At 72 hpf, lethality results in the non-injected control were below 10%. Statistical 671 

significant differences were observed in the 0.52 nL (p < 0.05), 1.77 nL (p < 0.05) and 4.17 672 

nL (p < 0.01) groups compared to the non-injected control. Significant differences were 673 

detected between 0.22 nL and 1.77 nL (p < 0.01), 0.22 nL and 4.17 nL (p < 0.0001), 0.52 nL 674 

and 1.77 nL (p < 0.0001), 0.52 nL and 4.17 nL (p < 0.05) (C). At 120 hpf lethality results 675 

were below 10% in the non-injected control. Statistically significant differences were 676 

observed between the non-injected control and 0.52 nL (p < 0.05), 1.77 nL (p < 0.05) and 677 

4.17 nL (p < 0.01) groups. Significant differences were detected between 0.22 nL and 1.77 nL 678 

(p < 0.01), 0.22 nL and 4.17 nL (p < 0.0001), 0.52 nL and 1.77 nL (p < 0.001), 0.52 nL and 679 

4.17 nL (p < 0.05) (D). 680 
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Fig 4 Ochratoxin A (OTA) degradation efficiency of Cupravidus basiliensis ŐR16 strain 683 

following 120 hours of incubation with 7 mg/L OTA (A) and effects of OTA degradation 684 

products injected in different volumes on the survival of zebrafish embryos at 72 (B) 685 

and 120 (right) hpf (C). At 72 hpf, no significant difference was observed between treatment 686 

groups and mortality was less than 10% in the non-injected control (Non-inj-c), 0.22 nL and 687 

0.52 nL groups. At 120 hpf, mortality was below 10 % in the non-injected control. Statistical 688 

significant differences were observed between the non-injected control and 0.52 nL (p < 689 

0.05), non-injected control and 1.77 nL (p < 0.05), non-injected and 4.17 nL (p < 0.05). 690 

Significant differences were detected between 0.22 nL and 1.77 nL (p < 0.05), 0.22 nL and 691 

4.17 nL (p < 0.05). 692 
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 696 

Fig 5 Effects of 7 mg/L Ochratoxin A (OTA 7 mg/L), bacterial metabolites (ŐR16) and 697 

OTA degradation products (degraded OTA) derived from the biodegradation 698 

experiment with Cupriavidus basilensis ŐR16 strain on the survival of 72 (A) and 120 699 

(B) hpf zebrafish embryos. At 72 hpf mortality in the non-injected control was below 10%. 700 

Statistical significant differences were observed between OTA and degraded OTA (p < 0.05), 701 

OTA and ŐR16 (p < 0.05) in case of 0.52 nL, OTA and degraded OTA (p < 0.01), OTA and 702 

ŐR16 (p < 0.01) in case of 1.77 nL, and OTA and degraded OTA (p < 0.01), OTA and ŐR16 703 

(p < 0.01) in case of 4.17 nL. At 120 hpf mortality in the non-injected control was below 704 

10%. Statistical significant differences were observed between OTA and ŐR16 (p < 0.05) in 705 

case of 0.52 nL, OTA and degraded OTA (p < 0.05), OTA and ŐR16 (p < 0.01) in case of 706 

1.77 nL, and OTA and degraded OTA (p < 0.001), OTA and ŐR16 (p < 0.01) in case of 4.17 707 

nL. 708 

 709 
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Fig 6 Effects of 7 mg/L Ochratoxin A (OTA 7 mg/L), bacterial metabolites (ŐR 16) and 713 

OTA degradation products (Degraded OTA) derived from the biodegradation 714 

experiment with Cupriavidus basilensis ŐR16 strain on the frequency of developmental 715 

deformities in 72 (A) and 120 (B) hpf zebrafish embryos. At 72 hpf, the highest frequency 716 

of morphological disorders was detected in the 7 mg/L OTA group. Statistically significant 717 

difference was only observed between the 1.77 nl OTA 7 mg/L and 1.77 nL ŐR16 (p < 0.01) 718 

groups. In 120 hpf embryos, the ratio of deformed embryos was the highest in the groups 719 

treated with OTA from 0.52 nL and above. Statistically significant difference was observed 720 

between OTA 7 mg/L and ŐR16 (p < 0.01) and OTA 7 mg/L and degraded OTA injected in 721 

1.77 nL (p < 0.05), OTA 7 mg/L and degraded OTA 7 mg/L and ŐR16 (p < 0.01) and OTA 7 722 

mg/L and degraded OTA (p < 0.05) injected in 4.17 nL. No significant difference was 723 

detected between the deformation frequencies in the groups injected with the bacterial 724 

metabolites and OTA degradation products. 725 
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Fig 7 Representative development dysfunctions in zebrafish embryos following injection. 729 

Ochratoxin A (OTA 7 mg/L), bacterial metabolites (ŐR16) and OTA degradation products 730 

(Degraded OTA) derived from biodegradation experiment with Cupriavidus basilensis ŐR16 731 

strain were injected in 1.7, 1.77 and 4.17 nL volumes and disorders were examined following 732 

72 and 120 hours of injection (A). Non-injected control embryos (Non inj. control) are shown 733 

on Figure 8B. Scale bar: 500µm. 734 
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HIGHLIGHTS: 

• ŐR16 degrades OTA to nontoxic products, however bacteria have intrinsic toxicity 

• Toxicity differences between test solutions are detectable after 3 days of exposure 

• Injection volume variations and control mortality correspond with OECD TG 236 

• Microinjection is proper for qualifying the toxin-degrading properties of microbes 

• The method helps in selecting the most effective, safe strains for detoxification


