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Abstract. In the stable exchange problem the agents are endowed with
a single good, e.g. a house or a kidney donor, and they have preferences
over the others’ endowments. The problem is to find an exchange of goods
such that no group of agents can block the solution in an exchange cycle.
An exchange is called stable if there is no blocking cycle where all the
agents involved strictly prefer the new solution. An exchange is strongly
stable if no weakly blocking cycle exists, where at least one agent im-
proves and neither of them gets a worse allocation. When the lengths of
the exchange cycles is not limited then a stable solution always exists and
can be found efficiently by Gale’s Top Trading Cycle algorithm. However,
when the length of the exchange cycles is limited then a (strongly) stable
solution may not exist and the problem of deciding the existence is NP-
hard. This setting is particularly relevant in kidney exchange programs,
where the length of exchange cycles is limited due to the simultaneity of
the transplantations, e.g. the maximum length of the cycles is 3 in the
UK and 4 in the Netherlands. In this work we develop several integer
programming formulations to solve the (strongly) stable exchange prob-
lem, which is a novel approach for this solution concept. We compare the
effectiveness of these models by conducting computational experiments
on generated kidney exchange data.
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1 Introduction

Barter exchange markets — such as kidney exchange programs — can be repre-
sented as directed graphs where agents are vertices and arcs indicate exchange
opportunities. A solution consists of a set of disjoint cycles. In this paper we
consider the case where agents have preferences, represented by ranks on outgo-
ing arcs. An exchange that contains no cycle with length more than k is a k-way
exchange. A k-way stable exchange is a k-way exchange such that there is no
cycle where all the vertices would be better off, according to their preferences,
than in the current solution. When strict preference in the blocking cycle is re-
quired only for one vertex then we speak about strongly stable exchanges. The
problem of deciding existence is NP-hard for both problems [2,5]. In this work,
we present three novel integer programming formulations for these problems,
which is a novel approach in the literature. Preliminary computational results
highlight the efficiency of one formulation over the others.

1.1 Notation and definitions

Consider a digraph G = (V, A), where V' is the set of vertices and A is the set of
arcs. Define also the preference list of i € V as theset (i) = {j | (i,j) € A} CV
where there is a strict preference order on its elements. Each j € 6(4) is ranked
with value r € {1,...,]6(2)|}. For j,j" € (i) ranked with r,r’, respectively, we
say that vertex i prefers j to 7/, and denote by j <; j/, if ¥’ > 7.

Within this context, a matching M C A is a set of pairs (i,j) where i € V
and j € 6(¢). In addition, a vertex always prefers to be matched to any of the
elements in its preference list, rather than be unmatched. A vertex i is unmatched
if there is no vertex j such that (4, j) € M. Let C be a set of cycles in G of length
at most k. We denote by V(c) and A(c) the set of vertices and arcs, respectively,
that are involved in a cycle ¢ € C. We say that ¢ € M if, and only if, A(c) C M.
Let |c| denote the length of cycle ¢, i.e., |¢| = |V(c)| = |A(c)|. Let C(i) C C
be the set of cycles that contain vertex i. We say that vertex ¢ prefers cycle
¢ € C(i) over cycle ¢ € C(i), and denote by ¢ <; ¢, if for (i,j) € A(c) and
(i,5") € A(c), j <; j' Vertex i is indifferent between cycles ¢ and ¢ if there
exists a vertex j such that (i,5) € A(c) N A(¢), ie., (4,7) is both in ¢ and ¢'.
Finally, ¢ weakly prefers c to ¢’ if it prefers ¢ to ¢ or it is indifferent between
them. We define the Stable (Strongly Stable) Exchange Problem as the problem
of finding in G a vertex-disjoint packing of directed cycles with length at most k
that corresponds to a stable (strongly stable) matching. The definitions of stable
and strongly stable matchings [2, 5] are provided below.

Definition 1. A blocking cycle ¢ ¢ M is a cycle such that every vertex i in V(c)
is either unmatched in M or prefers ¢ to ¢/, where ¢’ € C(i) N M. A matching
M is called stable if there is no blocking cycle ¢ ¢ M.

Definition 2. A weakly blocking cycle is a cycle ¢ ¢ M such that for every i €
V(c), i is either unmatched in M or weakly prefers ¢ to ¢/, where ¢’ € C(i) N M,
with strict preference for at least one vertex. A matching M is called strongly
stable if there is no weakly blocking cycle ¢ ¢ M.
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2 Integer Programming Formulations

The Stable Exchange Problem can be seen as a optimization problem. In what
follows we propose three integer programming formulations for it.

2.1 Stable Cycle Formulation

For each pair (i,c), ¢ € V, ¢ € C(i) we define two sets of cycles: B; . = {¢ €
C(i),¢ # c: ¢ =<; ¢}, which is the set of cycles that are different from ¢ and better
or equally preferable for ¢ than ¢, and S; . = {¢ € C(i) : ¢ <; ¢}, which is the
set of cycles that are strictly better for vertex i than cycle c¢. Consider vector

x = (1,...,2)¢)) of variables such that z. = 1 if all arcs in A(c) are in M, 0
otherwise. The following set of constraints will define a stable matching M:
> oz <1 VieV (1)
c:ieV(c)
T+ Z zs > 1, Ve eC, (2)
s€U;ev (o) Bliso)
z. € {0,1} Ve e C, (3)

Constraints (1) guarantee that M is a set of disjoint cycles. Constraints (2) mean
that either ¢ € M, or, for some vertex i € V/(c), there exists a cycle ¢’ € B(i,c)
such that ¢ € V() and ¢ <; ¢. For a strongly stable matching, constraints (2)
are replaced by:
Te+ >z >1vcec, (4)
s€Uiev (o) S(60)

Constraints (4) guarantee that either c is in the matching, or otherwise one of
its vertices is matched in a cycle strictly better than c.

The objective function considered maximizes the maximum number of cycles
in M and is described as follows:

F(x) = |d .. ()
c:ceC
2.2 Stable Edge Formulation

To define the stable edge formulation, we depart from the edge formulation in
[1], where y; ; is a binary variable denoting whether arc (4, j) is included in
the solution, or not. A feasible solution with cycles of length at most k can be

formalized as follows:
> o= Y. %i;=0 VieV (6)

J:(Ji)EA J:(i,j)€A
> w1 VieV (7)
j:(i,5)€EA
Z Yi,j < k—1 Vp eP. (8)
(i,.9)€A(p)
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where P is a set of all non-cyclic paths p in G with k arcs, and A(p) is the set
of arcs of G in p. Note that sub-cycles with more than k arcs are removed from
the set of feasible solutions by constraints (8). To achieve stability, according to
definition 1, we introduce the following set of constraints:

Z Yi,j + Z Yir| =1, Ve e C. 9)

(1,5)€A(c) mir<ij

Strong stability can be achieved by replacing inequalities (9) by the following
set of constraints:

LN D D W 7 S W R g | VeecC.  (10)

(i,§)EA(c) rir<ij (,7)€A(c)

The inequality is satisfied for cycle ¢ by the first term if there is an agent strictly
preferring her matching in the solution to what she would receive in c. The
second term ensures that a cycle already in the solution cannot be a blocking
cycle.
Since the sum of all binary variables y; ; is equal to | M|, the objective func-
tion can be written as:
Fy) = Z Yij- (11)

(i,5)€A

Note that, if the feasibility constraints from (6) to (8) and the stability con-
straints (9) or strong stability constrains (10) are satisfied, we obtain the maxi-
mum number of cycles in M by maximizing F(y) in (11).

2.3 Stable Cycle-Edge Formulation

In the stable (strongly stable) cycle-edge formulation, we use the integer variables
of the two formulations above in a consistent way. That is, for every cycle ¢ € C,
we require that z. = 1 if and only if y; ; = 1 for every (i,j) € A(c). This
correspondence can be achieved by the basic feasibility cycle-constraints (1) and
edge-constraints (6), and by adding the following three sets of inequalities:

le| - 2. < Z Yij, Ve €C, (12)
(i,4)€A(c)
Sy —ld+1<a,veec, (13)
(i,7)€A(c)
Y owig< Y wVieV (14)
Ji(i,j)€A c:ieV(c)

Stability and strong stability are assured by constraints (9) and (10), respec-
tively. Both (5) and (11) can be used as objective functions.
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Table 1. Stable exchange problem formulations: stable cycle formulation (SCF), stable
edge formulation (SEF) and stable cycle-edge formulation (SCEF).

Instances

SEF

SCF SCEF

al A | e iz [k| Rows |“OU™| Nonzeros 'ﬁ‘:g'(’;? "?':‘E'!V(es’) Rows | Columns| Non-zeros "'I‘r’"ag'(’g lﬁr“]é"(es; Rows |Columns| Non-zeros Iﬂl::g? ‘ﬁ:’é"(es')
37 3s8a 3| 7 a7 550 000 | 000 | 3681 | 165 | 11617 |00274| 003 | 189 | 202 | 1205 | 000 | 0.00

30[165| 153 | 17477 4| 177 | 153 14016 | 001 | 002 | 17690 | 165 | 72772 |01509| 015 | sa1 | 318 | 5724 | 001 | 001
29 | 73636 |5| 204 | 260 | 51515 | 004 | 007 | 73965 | 165 | 369782 [07135| 069 | 890 | 43¢ | 109013 | 001 | 002

ssa | 82009 |3 es2 | sea 88616 | 005 | 0.14 | 82693 | 617 | 265292 | 060 | 116 | 190 | 1201 | 27,089 | 003 | 0.06

50| 617 | 5236 | 951,322 |a| 5284 | 5236 | 10,188,648 | 580 |12670 | 956,658 | 617 | 4,028,087 | 7.25 | 49.64 | 15856 | 5853 | 317,803 | 023 | 156
38,591 | 11,004,062 |5| 38,639 | 38,591 | 794566412 52510 | n.m. [11,042,753| 617 |56920039 | 89.02 | 926.14 | 115921 | 39,208 | 2,852,320 | 181 | 2427

611 | 174480 |3| ec2 | 6w 80809 | 004 | 019 | 175231 | 1135 | 548667 | 131 | 516 | 2019 | 1746 | 33321 | 005 | 013

70|1135| 6,700 | 2135151 [4| 6753 | 6,700 | 14,035,100 | 7.81 |150.48 2,141,991 | 1,135 | 8876487 | 1588 | 191.83 | 20288 | 7.835 | 458502 | 0.36 | 5.70
48,762 26,135,720 |5| 48,815 | 48,762 |1,092,827,519| 721.96 | n.m. [26,184,622| 1,135 [133510,623| 229.04 |2061.98| 146,474 | 29,807 | 4,081,818 | 2.82 | 60.31

3214 | 8sag02 |3| 3208 | 3214 | 1846921 | 104 | 1392 | 888196 | 2063 | 2829076 | 591 |133.75| 9904 | 5277 | 218618 | 021 | 0.4

90|2063| 49,386 | 18,407,917 |4| 49,471 | 49,386 | 687,653,906 | 406.07 | n.m. [18.457,483| 2,063 |77,174,437 | 14118 |1414.87| 148,421 | 51,449 | 4,440,627 | 3.46 | 5114
710,726( 382,999,769 (5| n.m. | n.m. nm. am [ nm | nmo | nm nm. | nm | nm. |2132.441(712,789(78,912.742 | 52.86 |1061.07

Table 2. Strongly stable exchange problem formulations: strongly stable cycle formu-
lation (SSCF), strongly stable edge formulation (SSEF) and strongly stable cycle-edge
formulation (SSCEF).

Instances

SSEF

SSCF SSCEF

nl A e 121 k| Rows |Columns| Non-zeros ';I‘r’::'('g lls;"év(es’) Rows  |Columns| Non-zeros ';I‘r’:‘:'('g “s"?é"fs') Rows °°"S‘"‘" Non-zeros ';I‘r"?g'(gg)‘ “s"?év(es')
37 3584 [3| 57 | a7 490 000 | 000 | 3681 | 165 | 11617 | 002 | 000 | 189 | 202 | 1205 | 000 | 000

30| 165| 153 | 17477 |a| 177 | 153 11181 | 001 | 000 | 17690 | 165 | 72772 | 009 | 002 | 541 | 318 | 5724 | 001 | 0.00
269 | 73636 |5| 204 | 269 20684 | 002 | 001 | 73965 | 165 | 369782 | 041 | 020 | 890 | 432 | 10013 | 001 | 000

584 | 82009 |3| 632 | 584 81497 | 005 | 002 | 82693 | 617 | 265202 | 040 | 009 | 1900 | 1201 | 27089 | 003 | 001

50| 617 | 5236 | 951322 |4| 5284 | 5236 | 9203007 | 520 | 360 | 956658 | 617 | 4028087 | 458 | 187 | 15856 | 5853 | 317803 | 0.23 | 0.12
38,591 | 11,004,062 |5| 38,639 | 38,591 | 725,505,674 | 437.41 |385.20| 11,042,753 | 617 | 56,920,039 | 56.87 | 28.57 | 115921 | 39,208 | 2,852,320 | 185 | 1.38

611 | 174480 |3| e62 | 611 74205 | 004 | 002 | 175231 | 1135 | 548667 | 084 | 023 | 2019 | 1746 | 33321 | 005 | 0.02

701135 6,700 | 2,135,151 |4| 6,753 | 6,700 | 12928785 | 7.01 | 509 | 2141901 | 1135 | 8876487 | 1049 | 445 | 20288 | 7.835 | 458502 | 0.37 | 036
48,762 | 26,135,720 |5| 48,815 | 48,762 |1,001,482,550| 610.08 | n.m. |26,184,622 | 1,135 |133,510,623|134.24 | 67.56 | 146474 | 29,807 | 4081818 | 281 | 356

3214 | ssasoz |3 3208 | 3214 | 1765803 | 096 | 061 | 888196 | 2063 | 2820076 | 3.95 | 161 | 9904 | 5277 | 218618 | 023 | 025

90|2063| 49,386 | 18,407,917 |4| 49,471 | 49,386 | 659,470,242 | 389.51 |341.85 | 18,457,483 | 2,063 | 77,174,437 | 9175 | 4411 | 148,421 |51.449 | 440,627 | 335 | 597
710,726 382,999,769 5| n.m. | n.m. nm. am [ am | nmo | nm nm. | nm | nm |2132441(712,789| 78,912,742 | 53.14 | 10428

Computational Experiments

In this section, we compare the proposed formulations in terms of time needed
to find a solution, time needed to load the coefficient matrix associated with
each formulation (loading time) and the length of that matrix (number of rows,
columns and non-zeros elements). We consider four instances from the literature
[3], with 30, 50, 70 and 90 vertices (n), and consider that the maximum length
of cycles (k) allowed ranges from 3 to 5. We used C++ language and GUROBI
library [4], with default options, as integer programming solver. Tests were ex-
ecuted in a computer with 12 cores Intel(R) Xeon(R) CPU X5675/3.07GHz,
50GB of RAM memory, Ubuntu 16.04.3 LTS operation system and g++ ver-
sion 5.4.0. Preliminary tests on the (Strongly) Stable Cycle-Edge Formulation
(SCEF and SSCEF), showed that by using (11) as objective function, the model
was more efficient. Therefore, for the two formulations above, we only report
results obtained when this objective was considered.
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In Tables 1 and 2, |C| and |P| are the number of cycles of length at most
k and the number of non-cyclic paths with k arcs, respectively. Entries “n.m.”
indicate that execution was halted due to insufficient memory.

Table 1 shows the experiments results for stable formulations. Notice that for
k = 3, SCF presents better times then SEF. This fact can be explained by the
number of rows and non-zero elements in the coefficient matrix. SEF has more
rows because of constraints (8), that are written for all paths in P. However, for
k =4 and k = 5, the number of non-zero elements in SCF matrices considerably
increased, as well as loading times and solver times. This is due to the number
of elements in sets B; . that increases according to k and to the number of arcs
and vertices which are common to cycles in C. Table 1 also shows that, for all
k, there is a reduction in the number of rows, columns and non-zero elements in
SCEF. This happens because, in this formulation, 1) the path constraints (8) are
no longer required; 2) since the stability constraints are written in terms of y;;,
the number of columns and non-zero elements are reduced. Table 2 shows the
corresponding results for strongly stable formulations. The observations made
for Table 1 also hold here.

4 Conclusion

In this work, we presented three new integer formulations for modeling k-way
stable exchange problems. Computational tests were done with small instances
selected from [3]. Results show that the number of rows, columns and non-zero
elements of the coefficient matrix associated with each formulation increases
the loading time, the solver time and the memory usage with increasing values
of k. Furthermore, SCEF and SSCEF outperform the other formulations for
all instances, independently of k. These formulations do also request for less
memory.
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