Noble metal-free, Ni-Zn-Al-based oxide/spinel nanostructures for high performance, methane-selective CO₂ hydrogenation reactions

T. Rajkumar^a, András Sápi^{a,b,*}, Marietta Ábel^a, Juan Fernando Gómez-Pérez^a, Ákos Kukovecz^a, Zoltán Kónya^{a,c}

^aUniversity of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary ^bInstitute of Environmental and Technological Sciences, University of Szeged, H-6720, Szeged, Hungary ^cMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, H-6720, Szeged, Hungary

*Corresponding author at: University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary.

E-mail address: sapia@chem.u-szeged.hu (A. Sápi).

Abstract

In the present study, NiO modified ZnAl₂O₄ and ZnO modified NiAl₂O₄ spinel along with pure Al₂O₃, ZnAl₂O₄ and NiAl₂O₄ for comparison in the CO₂ hydrogenation reaction have been investigated. It was found that NiAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts exhibited outstanding activity and selectivity towards methane even at high temperature compared to similar spinel structures reported in the literature. NiO/ZnAl₂O₄ catalyst showed CO₂ consumption rate of ~ 19 μ mol/g[·]s at 600 °C and ~ 85 % as well as ~ 50 % of methane selectivity at 450 °C and 600 °C, respectively. The high activity and selectivity of methane can be attributed to the presence of metallic Ni and Ni/NiO/ZnAl₂O₄ interface under the reaction conditions evidenced by ex-situ XRD results.

Introduction

Utilization of fossil fuels leads to CO₂ emission which in turn leads to global warming¹. Currently, CO₂ hydrogenation is desirable strategy to not only reduce the CO₂ emission but also to produce useful chemicals/fuels^{2, 3}. Depending upon the catalysts used, different kinds of products were obtained at ambient pressures such as CO (RWGS), methane (Sabatier reaction) and methanol⁴⁻⁶. In recent years, variety of catalytic materials have been studied for the above reactions. Among them Cu⁷, Pt⁸ and Rh⁹ on various supports have been reported as the most active catalysts for reducing CO₂ to CO. Ni¹⁰, Ru⁵ and Rh¹¹ are most widely used catalysts for CO_2 methanation reaction. Cu^{12} and Pd^{13} are most widely used catalysts for the reduction of CO_2 to methanol.

Spinel oxides have been used in various fields such as in catalysis¹⁴, sensors¹⁵ and refractory materials¹⁶ due to their catalytic properties and thermal stability. Nickel aluminate (NiAl₂O₄) is has an inverse spinel structure with nickel ion occupies the octahedral site. NiAl₂O₄ were used in various fields such as in catalysis ¹⁷⁻²⁰, adsorption²¹, sensors¹⁵ and as flexible materials²². They have also been used as catalyst support due to its low reactivity with the active phase and its high resistance to high temperatures and acidic or basic atmospheres²³. Interestingly, NiAl₂O₄ was found to minimize the coke formation in CO₂ reforming of methane²⁴.

ZnAl₂O₄ is a normal spinel with all the zinc cations in the tetrahedral and all the aluminium cations in the octahedral sites of the cubic face-centered lattice of oxygen anions²⁵. Zinc aluminate (ZnAl₂O₄) were used in various fields such as in catalysis²⁶⁻²⁸, adsorption²⁹ and optics³⁰. They have specific properties including low acidity and high thermal stability ³¹. These features minimize the coke formation which leads to high product selectivity³².

In this work, various Nickel-Zinc-Aluminum-based spinels as well as oxide/spinel catalysts were produced where the position of the nickel and zinc atoms or ions were changed. The catalysts were characterized by X-ray diffraction (XRD), N₂ physisorption and Transmission Electron Microscopy (TEM). These catalysts were tested in CO₂ hydrogenation reaction in the gas phase. It was found that NiAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts during the reaction conditions exhibited outstanding activity and selectivity towards methane even at high temperature as these catalysts presented metallic nanoparticles in their structure. Due to the presence of metallic nickel and Ni/NO/ZnAl₂O₄ interface under the reaction conditions, NiO/ZnAl₂O₄ catalyst showed CO₂ consumption rate of ~ 19 µmol/g s at 600 °C and ~ 85 % as well as ~ 50 % of methane selectivity at 450 °C and 600 °C, respectively.

Results and discussion

X-ray diffraction (XRD)

The crystal structure of catalysts was investigated by XRD. Fig. 1 shows the XRD patterns of Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄. The peaks located at 2 θ of 19.86°, 32.38°, 37.85°, 46.20°, 57.40°, 61.02° and 67.12° are assigned to (111), (220), (311), (400),

(422), (511) and (440) planes of the cubic structure of γ -Al₂O₃³³. The peaks located at 20 of 18.9°, 31.38°, 36.67°, 44.39° and 64.88° are assigned to the (111), (220), (311), (400) and (440) planes of the cubic spinel structure of NiAl₂O₄ respectively (JCPDS Card no. 73-0239)³⁴. The peaks located at 20 of 18.99°, 31.69°, 37.17°, 45.26°, 49.06°, 55.66°, 59.65°, 65.62°, 74.15° and 77.33° are assigned to the (111), (220), (311), (400), (331), (422), (511), (440), (620) and (536) planes of the cubic spinel structure of ZnAl₂O₄ respectively (JCPDS Card no. 05-0669)²⁷. For NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ samples no peaks characteristics of ZnO and NiO are seen indicating fine dispersion of these species on the NiAl₂O₄ and ZnAl₂O₄ supports respectively or may be overlapped with the supports diffraction peaks.

Fig. 1 XRD patterns of Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

N2 adsorption-desorption isotherm

Fig. 2 shows the nitrogen adsorption-desorption isotherms and Fig. 3 shows corresponding pore size distribution of the catalysts. The characteristic specific surface area together with the pore volume and pore size was summarized in Table 1. The N₂ adsorption-desorption isotherms of ZnO/NiAl₂O₄ exhibit type IV isotherm with a narrow hysteresis loop of type H3 associated

with plate-like particles giving rise to slit-shaped pores³⁵. However, Al₂O₃, NiAl₂O₄, ZnAl₂O₄ and NiO/ZnAl₂O₄ displays type IV isotherms with H2 hysteresis loop at P/P₀ = 0.4-1.0 associated with pores with narrow necks and wide bodies, referred to as 'ink-bottle' pores^{35, 36}. The average pore size distribution is in the range of 2-25 nm indicating the presence of mesopores. After loading ZnO and NiO respectively on NiAl₂O₄ and ZnAl₂O₄, the resulting catalyst showed decreased surface area and pore volume.

Fig. 2 N₂ adsorption-desorption isotherm of Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

Fig. 3 Pore size distributions of Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

Samples	BET surface	Pore volume	Average pore
	area (m²/g)	(cm ³ /g)	size (nm)
Al ₂ O ₃	321	0.42	2.51
NiAl ₂ O ₄	226	0.33	2.29
ZnAl ₂ O ₄	175	0.31	1.80
NiO/ZnAl ₂ O ₄	120	0.19	1.80
ZnO/NiAl ₂ O ₄	94	0.13	1.80

Table 1. Textural parameters of the catalysts

Transmission Electron Microscopy (TEM)

The morphology and particle size of the catalysts were examined by TEM measurements and shown in Fig. 4. NiAl₂O₄ shows spherical shaped morphology with the size of 10 to 20 nm. TEM images of the NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts show two separate phases of

metal oxides and supports that are well mixed and dispersed which is similar to what have been reported in the literature for NiO/NiAl₂O₄ catalyst³⁷.

Fig. 4 TEM images of (a) NiAl₂O₄ (b) NiO/ZnAl₂O₄ (c) ZnO/NiAl₂O₄

Catalytic performances

To explore the catalytic performance, CO₂ hydrogenation was performed over the prepared catalysts. Fig. 5 depicts the CO₂ conversion as a function of temperature over all the catalysts. CO₂ conversion and product selectivity are given in Table 2 over all the catalysts. In general, the activity of Ni based catalysts are remarkably better than that of Zn-based catalysts and Al₂O₃ catalyst. NiAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts exhibit highest activity with CO₂ conversion of 65% at 600 °C, which is 2.8 fold superior in catalytic activity than that of

 Al_2O_3 (Conversion = 23%) and 2 fold superior in catalytic activity than that of $ZnAl_2O_4$ (Conversion = 31%).

Fig. 6 depicts the selectivity as a function of temperature for all the studied catalysts. The CO selectivity increases with increasing temperature due to the endothermic RWGS reaction. Among the five systems (Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄) considered in this study, the Ni containing catalysts such as NiAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ and CO as the product but the Zn containing catalysts such as ZnAl₂O₄ as well as Al₂O₃ produced CO as the only product. All the nickel-containing spinels and oxide/spinel structures showed a high selectivity towards methane even at high temperature. NiO/ZnAl₂O₄ system has a methane selectivity of ~ 85 % as well as ~ 50 % at 450 °C and 600 °C, respectively.

The CO₂ conversion exhibit a decrease in the order: < NiO/ZnAl₂O₄ < NiAl₂O₄ < ZnO/NiAl₂O₄ < ZnAl₂O₄ < Al₂O₃. This can be correlated with increasing Ni content. Given that an increase in Ni content can enhance CO₂ hydrogenation activity³⁸. The NiO/ZnAl₂O₄ exhibited 65% CO₂ conversion at 600 °C with CH₄ and CO as the products. All of the Ni containing catalysts produce CH₄ as main products and CO as minor products while ZnO and other Zn containing catalysts as well as Al₂O₃ produce only CO.

In general, Ni based catalysts produce CH₄ through decomposition of formate species to CO and subsequent hydrogenation of adsorbed CO leads to the production of CH₄³⁹ and ZnO is more active for the RWGS reaction⁴⁰. Table 3 lists the CO₂ consumption rates of all the catalysts studied at 600 °C. Fig. 7 depicts the CO₂ consumption rate as a function of temperature for all the studied catalysts. The CO₂ consumption rate is highest on NiO/ZnAl₂O₄, namely ca. 19.7 μ mol h⁻¹ g⁻¹ at 600 °C which was 2.5 times higher than that of Al₂O₃ (ca. 7.9 μ mol h⁻¹ g⁻¹ at 600 °C) catalyst. This catalyst also outperforms other reported spinel catalysts (Table 4) in the CO₂ hydrogenation reaction.

Although the surface area of Al_2O_3 was far higher than the NiO/ZnAl₂O₄, the CO₂ consumption rate was far higher on NiO/ZnAl₂O₄. This was due to presence of metallic Ni under reaction condition in NiO/ZnAl₂O₄ than in the other catalysts. Comparative table of CO₂ consumption rate of the catalyst in this study with the spinel catalyst reported in the literature for CO₂ hydrogenation is given in Table 4.

Fig. 5 CO₂ conversion as a function of temperature over Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

Fig. 6 Selectivity for the CO₂ hydrogenation over Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

Fig. 7 CO₂ consumption rate as a function of temperature over Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

Catalysts	CO ₂ Conversion (%)	Selectivity (%)		
		СО	CH4	
Al ₂ O ₃	22.91	100	0	
NiAl2O4	65.57	49.60	50.40	
ZnAl ₂ O ₄	31.02	100	0	
NiO/ZnAl ₂ O ₄	65.18	53.35	46.65	
ZnO/NiAl ₂ O ₄	65.71	59.83	40.17	

Table 2 Conversion and selectivity for CO₂ hydrogenation over various catalysts ^[a]

[a] Reaction conditions: T = 600 °C, $CO_2/H_2 = 1/4$, catalyst weight = 0.15g

Table 3. The CO₂ consumption rate (µmol/g.s) at 600 °C in CO₂ hydrogenation reaction over Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts

Catalysts	CO2 consumption rate (µmol/g.s)
Al ₂ O ₃	7.97
NiAl ₂ O ₄	17.29
ZnAl ₂ O ₄	11.23
NiO/ZnAl ₂ O ₄	19.73
ZnO/NiAl ₂ O ₄	18.61

Table 4 Comparative table of CO₂ consumption rate with the reported spinel catalyst for CO₂ hydrogenation

Catalysts	CO ₂ conver sion (%)	Catalyst Weight (g)	Temper ature (°C)	Flow rate of CO ₂ (ml/s)	CO2 consumption rate (µmol/g.s)	Refere nces
NiO/ZnAl ₂ O ₄	65	0.15	600	0.17	19.730	This work
0.08wt%Na/ZnFe ₂ O ₄	34	1	340	0.13	1.807	[41]
Co ₃ O ₄ spinel	48	1	450	0.17	3.335	[42]
Fe(2+)[Fe(3+) _{0.5} Al _{0.5}] ₂ O ₄ spinel	40	1	320	0.12	1.962	[43]
Cu _x Zn _{1x} Al ₂ O ₄ spinel	4	1	250	0.42	0.687	[44]
ZnFeO _x -nNa	39	0.5	320	0.28	8.927	[45]
Cu–Zn–Al/SAPO-34	33	0.5	400	0.19	5.126	[46]
ZnGa2O4/SAPO-34	37	0.5	450	0.19	5.747	[46]

Characterization of spent catalysts

The spent catalysts were studied by XRD to elucidate the structural changes. The XRD of spent catalysts after catalytic test are displayed in Fig. 8. All Ni containing spent catalysts show peaks in addition to fresh ones at $2\theta = 45.39^{\circ}$, 52.62° and 77° corresponding to the (111), (200) and (220) planes attributed to the metallic nickel (JCPDS No. 04-0850)⁴⁷. However Zn containing

spinels and Al_2O_3 spent catalysts showed almost no changes in their crystalline phases indicating that their crystal structures are more stable during the reaction.

Fig. 8 XRD profiles of spent catalysts after catalytic test

Conclusion

CO₂ hydrogenation over Al₂O₃, NiAl₂O₄, ZnAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts have been investigated and it was found that NiAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts exhibit high activity with CO₂ conversion of 65% at 600 °C, which is several times more active compared to other catalysts reported in the literature. On the other hand, these catalysts showed a high methane selectivity even at high temperatures. The higher catalytic activity and CH₄ selectivity of NiAl₂O₄, NiO/ZnAl₂O₄ and ZnO/NiAl₂O₄ catalysts can be attributed to the presence of metallic Ni under the reaction conditions which can enhance the CO₂ hydrogenation activity.

Experimental details

Chemicals

 $Zn(NO_3)_2 \cdot 6H_2O (\ge 99\%)$ and $Al(NO_3)_3 \cdot 9H_2O (\ge 98\%)$ were purchased from Sigma-Aldrich. Aqueous ammonia solution was purchased from Molar chemicals. $Ni(NO_3)_2 \cdot 6H_2O$ was purchased from Merck.

Catalyst preparation

The ZnAl₂O₄ oxide was synthesized by a co-precipitation method in accordance with the procedure reported in the previous work⁴⁸. Typically, appropriate amount of Zn(NO₃)₂·6H₂O and Al(NO₃)₃·9H₂O with a molar ratio of 1:2 were dissolved in 100 mL deionized water. Then, an aqueous ammonia solution was added dropwise into the mixed solution at room temperature until pH value of about 7. The obtained precipitate was aged for 2 h at 70 °C. Then, the solid product was recovered by filtration, washing with deionized water and drying overnight at 100 °C. The ZnAl₂O₄ was obtained after calcination in air at 500 °C for 5 h. The NiAl₂O₄ and pure Al₂O₃ were prepared by the same procedure using their corresponding metal nitrate precursors. In order to investigate the interphase effect of metal cations present in the ZnAl₂O₄ and NiAl₂O₄ spinels, we loaded exactly the amount of ZnO present in ZnAl₂O₄ onto NiAl₂O₄ and vice versa. Based on the calculation, we loaded 44wt% of ZnO on NiAl₂O₄ and represented as ZnO/NiAl₂O₄ and 42wt% of NiO on ZnAl₂O₄ and represented as NiO/ZnAl₂O₄.

Catalyst Characterization

N2 adsorption-desorption isotherm measurements

The specific surface area (BET method), the pore size distribution and the total pore volume were determined by the BJH method using a Quantachrome NOVA 2200 gas sorption analyzer by N₂ gas adsorption/desorption at -196 °C. Before the measurements, the samples were pre-treated in a vacuum (<~0.1 mbar) at 200 °C for 2 hours.

Powder X-ray Diffraction (XRD)

XRD studies of all samples were performed on a Rigaku MiniFlex II instrument with a Ni-filtered CuK α source in the range of $2\theta = 10-80^{\circ}$.

Transmission Electron Microscopy (TEM)

Imaging of the all the samples were carried out using an FEI TECNAI G2 20 X-Twin high-resolution transmission electron microscope (equipped with electron diffraction) operating at an accelerating voltage of 200 kV. The samples were drop-cast onto carbon film coated copper grids from ethanol suspension.

Catalytic activity studies

Hydrogenation of carbon-dioxide in a continuous flow reactor

Before the catalytic experiments, the as-received catalysts were oxidized in O_2 atmosphere at 300 °C for 30 min and thereafter were reduced in H_2 at 300 °C for 60 min. Catalytic reactions were carried out at atmospheric pressure in a fixed-bed continuous-flow reactor (200 mm long with 8 mm i.d.) which was heated externally. The dead volume of the reactor was filled with quartz beads. The operating temperature was controlled by a thermocouple placed inside the oven close to the reactor wall, to assure precise temperature measurement. For catalytic studies, small fragments (about 1 mm) of slightly compressed pellets were used. Typically, the reactor filling contained 150 mg of catalyst. In the reacting gas mixture, the CO_2 : H_2 molar ratio was 1:4, if not denoted otherwise. The CO_2 : H_2 mixture was fed with the help of mass flow controllers (Aalborg), the total flow rate was 50 ml/min. The reacting gas mixture flow entered and left the reactor through an externally heated tube in order to avoid condensation. The analysis of the products and reactants was performed with an Agilent 6890 N gas chromatograph using HP-PLOTQ column. The gases were detected

simultaneously by thermal conductivity (TC) and flame ionization (FI) detectors. The CO_2 was transformed by a methanizer to methane and it was also analysed by FID. CO_2 conversion was calculated on a carbon atom basis, i.e.

$$CO_2 \text{ conversion}(\%) = \frac{CO_{2 \text{ inlet}} - CO_{2 \text{ outlet}}}{CO_{2 \text{ inlet}}} \times 100\%$$

CH4 selectivity and CO selectivity were calculated as following

$$CH_4 \text{ selectivity}(\%) = \frac{CH_4 \text{ outlet}}{CO_2 \text{ inlet} - CO_2 \text{ outlet}} \times 100\%$$

$$CO \text{ selectivity}(\%) = \frac{CO_{outlet}}{CO_{2 \text{ inlet}} - CO_{2 \text{ outlet}}} \times 100\%$$

where $CO_{2 \text{ inlet}}$ and $CO_{2 \text{ outlet}}$ represent the CO_{2} concentration in the feed and effluent, respectively, and $CH_{4 \text{ outlet}}$ and $CO_{\text{ outlet}}$ represent the concentration of CH_{4} and CO in the effluent, respectively.

Acknowledgement

This paper was supported by the Hungarian Research Development and Innovation Office through grants NKFIH OTKA PD 120877 of AS. AK, and KZ is grateful for the fund of NKFIH (OTKA) K112531 & NN110676 and K120115, respectively. The financial support of the Hungarian National Research, Development and Innovation Office through the GINOP-2.3.2-15-2016-00013 project "Intelligent materials based on functional surfaces - from syntheses to applications" and the Ministry of Human Capacities through the EFOP-3.6.1-16-2016-00014 project and the, grant 20391-3/2018/FEKUSTRAT is acknowledged.

Keywords: Spinel, Co-precipitation method, XRD, CO₂ hydrogenation

References

[1] G. A. Florides, P. Christodoulides Environment international. 2009, 35, 390-401.

[2] W. Wang, S. Wang, X. Ma, J. Gong Chemical Society Reviews. 2011, 40, 3703-3727.

[3] S. Roy, A. Cherevotan, S. C. Peter ACS Energy Letters. 2018, 3, 1938-1966.

[4] X. Zhang, X. Zhu, L. Lin, S. Yao, M. Zhang, X. Liu, X. Wang, Y.-W. Li, C. Shi, D. Ma ACS Catal. **2016**, *7*, 912-918.

[5] F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D. G. Evans, X. Duan J. Am. Chem. Soc. **2016**, 138, 6298-6305.

[6] M. M.-J. Li, C. Chen, T. c. e. Ayvalı, H. Suo, J. Zheng, I. F. Teixeira, L. Ye, H. Zou, D. O'Hare, S. C. E. Tsang ACS Catal. **2018**, *8*, 4390-4401.

[7] E. L. Fornero, D. L. Chiavassa, A. L. Bonivardi, M. A. Baltanás J. CO2 Util. 2017, 22, 289-298.

[8] X. Chen, X. Su, H. Duan, B. Liang, Y. Huang, T. Zhang *Catalysis today*. **2017**, *281*, 312-318.

[9] L. Dietz, S. Piccinin, M. Maestri *The Journal of Physical Chemistry C.* 2015, 119, 4959-4966.

[10] W. WANG, C. Duong-Viet, H. Ba, W. Baaziz, G. Tuci, S. Caporali, L. Nguyen-Dinh, O. Ersen, G. Giambastiani, C. Pham-Huu *ACS Applied Energy Materials*. **2018**.

[11] H. Arandiyan, K. Kani, Y. Wang, B. Jiang, J. Kim, M. Yoshino, M. Rezaei, A. E. Rowan, H. Dai, Y. Yamauchi *ACS applied materials & interfaces*. **2018**, *10*, 24963-24968.

[12] B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M. Choi, O. M. Yaghi, G. A. Somorjai *Nano Lett.* **2016**, *16*, 7645-7649.

[13] H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev *Journal of Catalysis*. **2016**, *343*, 133-146.

[14] L. Zhou, Y. Guo, J.-M. Basset, H. Kameyama Chem. Commun. 2015, 51, 12044-12047.

[15] J. J. Vijaya, L. J. Kennedy, G. Sekaran, B. Jeyaraj, K. Nagaraja J. Hazard. Mater. 2008, 153, 767-774.

[16] Y. Chen, G. Liu, W. Zhen, Y. Zhang, B. Fan, R. Zhang, H. Li *J Alloys Compd.* **2019**, 770, 356-368.

[17] C. Jiménez-González, Z. Boukha, B. de Rivas, J. R. González-Velasco, J. I. Gutiérrez-Ortiz, R. n. López-Fonseca *Energy & Fuels*. **2014**, *28*, 7109-7121.

[18] X. Yan, C. Yuan, J. Bao, S. Li, D. Qi, Q. Wang, B. Zhao, T. Hu, L. Fan, B. Fan *Catalysis Science & Technology*. **2018**.

[19] B. Valle, N. García-Gómez, A. Arandia, A. Remiro, J. Bilbao, A. G. Gayubo Int J Hydrogen Energy. 2019.

[20] A. Morales-Marín, J. Ayastuy, U. Iriarte-Velasco, M. Gutiérrez-Ortiz Appl. Catal. B Environ. 2019, 244, 931-945.

[21] N. Salleh, A. Jalil, S. Triwahyono, J. Efendi, R. Mukti, B. Hameed *Appl Surf Sci.* 2015, 349, 485-495.

[22] M. A. Rahman, E. Ahamed, M. R. I. Faruque, M. T. Islam Sci. Rep. 2018, 8, 14948.

[23] A. L. García-Lario, M. Aznar, I. Martinez, G. S. Grasa, R. Murillo *Int J Hydrogen Energy*. **2015**, *40*, 219-232.

[24] Y. Kathiraser, W. Thitsartarn, K. Sutthiumporn, S. Kawi *The Journal of Physical Chemistry C.* **2013**, *117*, 8120-8130.

[25] M. Nasr, R. Viter, C. Eid, F. Warmont, R. Habchi, P. Miele, M. Bechelany *RSC Adv.* **2016**, *6*, 103692-103699.

[26] F. Le Peltier, P. Chaumette, J. Saussey, M. Bettahar, J. Lavalley J. Mol. Catal. A Chem. **1998**, 132, 91-100.

[27] J. Liu, W. Zhou, D. Jiang, W. Wu, C. Miao, Y. Wang, X. Ma Industrial & Engineering Chemistry Research. 2018, 57, 11265-11270.

[28] A. Wang, J. Wang, C. Lu, M. Xu, J. Lv, X. Wu Fuel. 2018, 234, 430-440.

[29] L. Zhao, S. Bi, J. Pei, X. Li, R. Yu, J. Zhao, C. J. Martyniuk J. Ind. Eng. Chem. 2016, 41, 151-157.

[30] W. Mulwa, B. Dejene, M. Onani, C. Ouma Journal of Luminescence. 2017, 184, 7-16.

[31] J. Okal, M. Zawadzki Appl Catal A Gen. 2013, 453, 349-357.

[32] S. A. Bocanegra, A. Guerrero-Ruiz, S. R. de Miguel, O. A. Scelza *Appl Catal A Gen.* **2004**, 277, 11-22.

[33] J. Sun, Y. Wang, H. Zou, X. Guo, Z.-j. Wang *Journal of Energy Chemistry*. **2019**, *29*, 3-7.

[34] Y. Sun, E. Jiang, X. Xu, J. Wang, Z. Li ACS Sustainable Chemistry & Engineering. 2018, 6, 14660-14668.

[35] K. S. Sing Pure Appl. Chem. 1985, 57, 603-619.

[36] F. R. Shamskar, M. Rezaei, F. Meshkani Int J Hydrogen Energy. 2017, 42, 4155-4164.

[37] C. Wang, Y. Chen, Z. Cheng, X. Luo, L. Jia, M. Song, B. Jiang, B. Dou *Energy & Fuels*. **2015**, *29*, 7408-7418.

[38] C. Heine, B. A. Lechner, H. Bluhm, M. Salmeron J. Am. Chem. Soc. 2016, 138, 13246-13252.

[39] X. Jia, X. Zhang, N. Rui, X. Hu, C.-j. Liu Appl. Catal. B Environ. 2019, 244, 159-169.

[40] S.-W. Park, O.-S. Joo, K.-D. Jung, H. Kim, S.-H. Han *Appl Catal A Gen.* **2001**, *211*, 81-90.

[41] Y. H. Choi, E. C. Ra, E. H. Kim, K. Y. Kim, Y. J. Jang, K. N. Kang, S. H. Choi, J. H. Jang, J. S. Lee *ChemSusChem.* **2017**, *10*, 4764-4770.

[42] H. Kierzkowska-Pawlak, P. Tracz, W. Redzynia, J. Tyczkowski J. CO2 Util. 2017, 17, 312-319.

[43] N. Utsis, R. Vidruk-Nehemya, M. Landau, M. Herskowitz Faraday discussions. 2016, 188, 545-563.

[44] F. Conrad, C. Massue, S. Kühl, E. Kunkes, F. Girgsdies, I. Kasatkin, B. Zhang, M. Friedrich, Y. Luo, M. Armbrüster *Nanoscale*. **2012**, *4*, 2018-2028.

[45] X. Cui, P. Gao, S. Li, C. Yang, Z. Liu, H. Wang, L. Zhong, Y. Sun ACS Catal. 2019, 9, 3866-3876.

[46] X. Liu, M. Wang, C. Zhou, W. Zhou, K. Cheng, J. Kang, Q. Zhang, W. Deng, Y. Wang *Chem. Commun.* **2018**, *54*, 140-143.

[47] S. Song, S. Yao, J. Cao, L. Di, G. Wu, N. Guan, L. Li *Appl. Catal. B Environ.* **2017**, *217*, 115-124.

[48] W. Zhou, J. Kang, K. Cheng, S. He, J. Shi, C. Zhou, Q. Zhang, J. Chen, L. Peng, M. Chen *Angewandte Chemie*. **2018**, *130*, 12188-12192.