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Abstract 

The goal of this work was to study the effect of alkaline pretreatments on the 

thermal decomposition and composition of industrial hemp (Cannabis sativa L.) 

samples. Thermogravimetric/mass spectrometric measurements (TG/MS) have 

been performed, on untreated, hot water washed and alkali treated hemp samples. 

The main differences between the thermal decomposition of the samples are 

interpreted in terms of the different alkali ion contents which have been 

determined using inductively coupled plasma-optical emission spectroscopy (ICP-

OES) method. Principal Component Analysis (PCA) has been used to find 

statistical correlations between the data. Correlations have been obtained between 

the parameters of the thermal decomposition and the alkali ion content as well as 

the altered chemical structure of the samples. The differences in the thermal 

behaviour of the samples are explained by the different K+ and Na+ content and 

the changed structure of the hemicellulose component of the samples due to the 

pretreatments. The more alkali ions remain in the hemp samples after the alkali 

treatment, the more ash, char and lower molecular products are formed during 

thermal decomposition.  
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Introduction  

Areas of the tropical and temperate zone, just like the main part of the Earth, 

possess very suitable local conditions to cultivate industrial hemp (Cannabis 

sativa L.). It has been cultivated for thousands of years, because its strong fibers 

take the humidity extremely well. Nowadays the hemp is utilized by the textile 

industry, producing technical textiles, sail-clothes and ropes. Recently, the 

application in fiber-reinforced composite materials [1, 2] and energetic utilization 

of the plant [3] have been studied extensively. Hemp can become one of the main 

substrates of the second generation bioethanol fermentation due to its high 

cellulose content [4-6]. Lignocellulosic natural materials after chemical and 

biological conversion can be used as a replacement of fossil fuels. 



2 

Thermo- and biochemical processes are used for converting the non-food crops, 

plant and waste biomass into energy. Nowadays, the second generation – 

lignocellulosic – bioethanol production represents an important research area [7-

9]. The cellulose and hemicellulose component of biomass can be hydrolyzed to 

produce monomeric sugars, which can be fermented to ethanol. If cellulolytic 

enzymes are added to the biomass samples, the conversion of cellulose to sugar 

will be extremely slow since the cellulose is well protected by the matrix of 

hemicellulose and lignin. Therefore, pretreatment of the raw material is necessary 

to expose the cellulose or modify the pores in the material to allow the enzymes to 

penetrate into the fibres and hydrolyse the cellulose to monomeric sugars.  

Various alkaline pretreatments are used for breaking up the fibers [10, 11] as well 

as various fermentation techniques are studied to achieve higher ethanol yield [12, 

13]. However, alkaline pretreatments lead to severe changes in the chemical 

composition of the samples.  

It is difficult to establish the composition of biomass samples by conventional 

structure determination methods because the biopolymers can not be completely 

separated and dissolved. On the other hand, the thermochemical methods are 

suitable for examining the composition and thermal features of the biomass 

samples without separation of the components [14, 15]. More valuable 

information can be obtained about the composition of the biomass samples using 

coupled techniques, where the volatile decomposition products are monitored by a 

mass spectrometer [16-18] or an infrared spectrometer [19, 20].  

The thermal degradation of various biomass samples has been studied extensively 

[21-24]. Several factors may influence the thermal behavior of plant materials. 

The inorganic ions are known to exert a great influence on the thermal 

decomposition of cellulose [25-33] and lignin [34-35] as well. Less information is 

available on the thermal decomposition of hemp. Rachini et al. [36] studied the 

effect of various treatments on the thermal stability of hemp fiber and concluded 

that NaOH-treatment increases the thermal stability due to the reduction of pectin 

and hemicellulose component of hemp. Del Rio and coworkers [37-39] studied 

hemp lignin by pyrolysis-GC/MS and established that guaiacyl derivatives 

dominate among the pyrolysis products. Kristensen et al. [40] used multivariate 

analysis techniques to differentiate between various fibers on the basis of their 

pyrolysis products.  

In this work, thermogravimetric/mass spectrometric (TG/MS) measurements have 

been carried out to study the thermal stability of hemp samples as well as the 

evolution rate and the yield of decomposition products. The alkali ion contents of 

the hemp samples were analyzed by ICP-OES system. The effects of the alkali ion 

contents have been studied on the thermal behavior of 17 samples with the goal of 

finding correlations between the alkali ion content and the thermal behavior in a 

relatively wide concentration range. 

 

Experimental 

Materials 

The whole dry stems of hemp (Cannabis sativa L.) were ground by a cutting mill 

to <1 mm and further ground to <0.12 mm particle size. The investigated 

materials were untreated, washed and various alkaline pretreated hemp samples. 

The alkaline pretreatments were carried out in an autoclave on 40 g hemp samples 
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using 360 ml alkali (sodium or potassium) solutions. The alkali concentration, 

temperature and time of the pretreatments were varied and 9 different treatment 

conditions were applied. After cooling down, the samples were filtered and 

washed with boiling water 3-4 times. The original and 2 alkali treated samples 

were washed with 60°C hot water for 2 hours, filtered and dried at 105°C. The 

pretreatment conditions are summarized in Table 1. 

 

Methods 

TG/MS 

The TG/MS system consists of a modified Perkin-Elmer TGS-2 termobalance and 

a Hiden HAL quadrupole mass spectrometer. About 3 mg samples were measured 

in argon atmosphere at a flow rate of 140 ml min-1. The samples were heated at a 

rate of 10°C min-1 from 25 to 900°C in a platinum sample pan. The evolved 

products were introduced through a glass lined metal capillary heated at 300°C 

into the ion source of the mass spectrometer which was operated at 70 eV electron 

energy. The mass range of 15-155 Da was scanned at every 25 s excluding the 

main ions of the argon carrier gas. The ion intensities were normalized to the 

sample mass and to the intensity of the 38Ar isotope of the carrier gas. 

 

ICP-OES 

About 1 g samples were ashed at 520°C in a furnace. The amounts of the ashes 

have been determined using a CEN/TS 14775 EU standard method. The ashes 

were fused at 920°C with a fusion blend (Li2B4O7 : LiBO2, 2 : 1) and digested by 

25 cm3 33 % HNO3. The K+ and Na+ contents of the samples were determined by 

a Spectro Genesis ICP-OES equipment (Spectro Analytical Instruments) with 

axial plasma observation.  

 

Results and discussions 

Alkali ion contents of the samples 

Table 1 shows the types of treatments and the characterization of the hemp 

samples. The experiments of the untreated and two alkali-treated samples have 

been repeated to verify the repeatability of the applied methods. The volatile 

content and the char yield were determined by thermogravimetry heating the 

samples up to 900°C. The char yield of the untreated hemp samples were 17-19 

%, while the alkali-treated samples produced 23-26 % char, which can be 

explained by the catalytic effect of the alkali ions on the char formation [27]. The 

alkali ion contents of the samples were determined in order to distinguish between 

the effect of alkali pretreatment on the composition of hemp and the impact of the 

residual alkali ions on the thermal behavior of the samples. The untreated samples 

contained 4-5 thousands ppm potassium and 1-3 hundreds ppm sodium ions. The 

alkali treatment resulted in an increased alkali ion content in spite of the washing 

the samples 3-4 times by boiling water. The potassium content of the hemp 

samples was about doubled by the KOH treatments, while the amount of the 
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sodium ions was not changed significantly. As an effect of the NaOH treatments, 

the sodium ion contents were increased several times comparing to the untreated 

samples, while the majority of the potassium ions were removed or substituted for 

sodium ions. The prolonged washing with hot water (60°C) for 2 hours appeared 

to be very effective in eliminating the alkali ion contents of the samples as 

suggested previously [41]. About 98 % of the potassium ion content and about 40 

% of the sodium ion content of the untreated hemp sample were removed by the 

washing. The alkali ion contents of the hot-water washed NaOH or KOH treated 

samples were also decreased considerably. The hot-water washing reduced not 

only the alkali ion content, but the total ash content was diminished by about half. 

Table 1 Characterization of the hemp samples studied.  

 

 

No. Samples and treatments 
Volatiles 

/% 
Char 
/% 

 Ash 
content 

/% 

K+ content 
/ppm 

Na+ content 
/ppm 

1 Untreated, ground to <1mm / 1 81.0 19.0  2.41 4907 107 

2 Untreated, ground to <1mm / 2 81.1 18.9  2.13 4656 173 

3 
Untreated,  ground to 

<0.12mm 
82.6 17.4 

 
2.14 4397 277 

4 Washed with 60°C water 87.6 12.4  1.04 95 64 

5 
2% NaOH, 120°C, 2 hours and 

washed with 60°C water 
86.7 13.3 

 
1.80 65 347 

6 
2% KOH, 120°C, 2 hours and 

washed with 60°C water 
86.5 13.5 

 
1.64 644 99 

7 2% NaOH, 120°C, 2 hours / 1 76.4 23.6  3.43 782 7341 

8 2% NaOH, 120°C, 2 hours / 2 74.0 26.0  3.54 900 7934 

9 2% NaOH, 120°C, 1 hour  74.2 25.8  3.57 840 8658 

10 1% NaOH, 120°C, 2 hours  76.1 23.9  2.86 1001 5706 

11 1% NaOH, 120°C, 1 hour  75.7 24.2  3.05 1095 5736 

12 1% NaOH, 140°C, 1 hour  76.1 23.9  2.62 873 5875 

13 2% KOH, 120°C, 2 hours / 1 75.6 24.4  3.23 9131 266 

14 2% KOH, 120°C, 2 hours / 2 76.8 23.2  3.34 8158 274 

15 1% KOH, 120°C, 2 hours  76.5 23.5  2.74 8474 127 

16 1% KOH, 140°C, 2 hours  77.2 22.8  2.33 5789 266 

17 1% KOH, 120°C, 1 hour  74.3 25.7  2.91 9208 257 

 

TG/MS results 

Figs. 1a and b show the thermogravimetry (TG) and derivative thermogravimetry 

(DTG) curves of selected hemp samples, respectively. As Fig. 1a shows, the char 

yield of the hemp samples presents a twofold difference. The lowest yields of the 

carbonaceous residue were produced during the decomposition of the washed and 

the alkaline treated-washed samples, which can be explained by the lowest 

amounts of potassium and sodium ions as a result of the hot water washing (Table 

1). The highest char yield was formed during the decomposition of the alkaline 

treated samples because the formation of the carbonaceous residue was promoted 

by the relatively high potassium and sodium ion content. It is in agreement with 

the literature data describing the large effect of alkali ions on the cellulose 

decomposition [25-27, 31, 32]. 
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Fig. 1 a –  TG and b – DTG curves of untreated and pretreated hemp samples at 10°C min-1 

heating rate in argon atmosphere 

 

The main DTG peak of the hemp samples (Fig. 1b) can be attributed to the 

decomposition of cellulose, and the shoulder at about 300°C originates from the 

hemicellulose decomposition. The lignin decomposition is not separated on the 

DTG curve due to its low decomposition rate and a broad temperature range of 

decomposition (from 250°C to 500°C). The DTG curves show that the thermal 

decomposition of the washed alkaline treated samples starts at the highest 

temperature and the decomposition rate of these hemp samples has the highest 

maximum (DTGmax) too. The thermal decomposition of the untreated sample 

starts at the lowest temperature and the curve have a shoulder characteristic of the 

hemicellulose decomposition. This shoulder on the other DTG curves disappears 

due to the alkaline treatment indicating that the structure of hemicellulose has 

changed. Since the hemicellulose content of the alkaline treated samples did not 

change significantly [42] we assume that the side groups (e.g. acetyl groups) of 

the hemicellulose were removed by the alkaline washing. Thus the thermal 

stability of the hemicellulose was increased and it decomposes in a similar 

temperature range as cellulose. This assumption explains that the washed alkaline 

treated hemp has higher DTG peak than the washed untreated sample in spite of 

the similar alkali ion content. 

Further information is given by the mass spectrometric curves about the reactions 

of the thermal decomposition. As Fig. 2 illustrates, the most important 

decomposition products of the untreated and NaOH-treated hemp samples at the 

lower mass range are methane (m/z 15), water (m/z 18), carbon monoxide (m/z 

28), carbon dioxide (m/z 44) and formaldehyde (m/z 30), while acetic acid and 

hydroxyacetaldehyde (m/z 60), furanone (m/z 84) and furfural (m/z 95 and 96) can 

be monitored at the higher mass range. Unfortunately, higher molecular mass 

products (e.g., levoglucosan and phenol derivatives) can not be detected by 

TG/MS due to condensation.  
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Fig. 2 DTG and mass spectrometric curves of a, b – untreated (Sample No. 1.) and c, d –  NaOH 

treated (Sample No. 7.) samples 

 

 

The yield of the lower mass products is increased, while the intensity of the higher 

mass products is reduced in the NaOH-treated sample, which has elevated sodium 

ion content. The methane formation is monitored by its fragment ion (m/z 15) 

because the molecular ion (m/z 16) is biased by the fragment ions of the main 

decomposition products (water, carbon monoxide, carbon dioxide). The methyl 

ion can be formed by different reactions. The first peak (at about 330°C) can be 

attributed to the formation of fragment ions from various decomposition products; 

the second peak (at about 440°C) represents mostly the methane evolution from 

lignin [35] and the third one (at 540°C) is due to the charring reactions. The 

intensities of water and carbon monoxide have been doubled by the NaOH 

treatment. In Figs. 2a-b a shoulder can be seen on the MS-curves, which can be 

attributed to the decomposition of the hemicellulose component of hemp. The 

most remarkable effect of the alkaline treatment is the lack of the partially 

separated hemicellulose peak on the DTG and MS curves. Recently, Rachini et al. 

concluded that the pectin content of hemp degrades at about 235°C. We do not see 

separated DTG peak at this temperature, but the formaldehyde curve presents a 

shoulder at around 240°C, which is possible to be originated from the side groups 

of pectin. This shoulder also disappeared at the evolution curve of formaldehyde 

from the alkali-treated samples. 

There are two peaks at m/z 60 from the untreated hemp sample (Fig. 2c). The first 

one (at about 320°C) can be attributed to acetic acid originating from the 

hemicellulose component of the samples, while the second one (at about 380°C) 

represents hydroxyacetaldehyde evolving from the cellulose part [43]. The 

intensity of m/z 60 ion is reduced to one half. The first peak attributed to acetic 
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acid disappeared confirming the hypothesis that the acetyl groups of 

hemicellulose were eliminated during the alkaline treatment.   

It is well-known that alkali ions have significant influence on the thermal 

decomposition of cellulose [25-27] and lignin [34, 35], however, the 

concentration effect is less studied. In this work, we examined the effect of K+- 

and Na+-ions in a wide range of concentration. It was not possible to remove these 

ions completely from the hemp samples, hence we could not study their influence 

separately. Therefore we used the sum of the molar amounts of K+- and Na+-ions 

in the plots assuming that they have similar impacts on the decomposition 

mechanisms. Fig. 3 presents the change of four thermogravimetric parameters as a 

function of the alkali ion contents of hemp samples. Figs. 3a and 3b show the 

temperature of the maximum decomposition rate (Tpeak) and the temperature of the 

end of decomposition (Tend), which was determined by extrapolation of the DTG 

peak. These parameters are characteristic of the cellulose decomposition and they 

decrease with increasing K+ and Na+ ion content. . We can conclude that the 

changes of the TG parameters are very large in the lower concentration range (0-

0.2 mmol g-1, while the additional alkali ions have decreasing effects on the 

decomposition.  

As Fig. 3c illustrates, the yield of the carbonaceous residue (char) is also strongly 

influenced by the alkali ion content. The more alkali ion is present in the sample, 

the more char is formed because the decomposition mechanism of cellulose and 

lignin has been changed by the presence of the alkali ions. The largest alteration 

can be observed in the 0-0.2 mmol g-1 concentration range similarly to the DTG 

parameters.  

 

Fig. 3 Thermogravimetric parameters as a function of the alkali ion content of the samples (a – 

temperature of the maximum decomposition rate, b – temperature of the end of decomposition, c – 

yield of carbonaceous residue, d – starting temperature of the decomposition)  
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Fig. 3d shows the starting temperature of the decomposition (Tstart), which was 

determined by extrapolation of the DTG peak. As discussed above, the shoulder 

on the DTG curves (Fig. 1b) can be attributed to hemicellulose decomposition. 

Therefore the starting temperature of the decomposition also belongs to the 

hemicellulose decomposition, which is about 240°C in the washed and untreated 

hemp samples (Fig. 3d). The shoulder of the DTG curves disappeared in the 

alkaline treated samples (Fig. 1b) and the beginning of the decomposition shifted 

to higher temperatures (270-340°C) indicating the modification of hemicellulose 

structure. Nevertheless, the alkali ion content have similar effect on the beginning 

temperature of decomposition as on the other T parameters, but the alkali-treated 

samples differs from the untreated samples due to the altered hemicellulose 

structure upon alkaline treatment. 

The thermogravimetric parameters imply that the increased alkali ion content of 

the hemp samples alters the decomposition mechanism. This conclusion is 

confirmed by the yield of the decomposition products. The char yield and the 

intensity of the lower molecular mass products increased, while less products of 

high molecular mass were formed (Fig. 2.). Fig. 4 shows the integrated intensity 

of a few products as a function of the alkali ion content of the samples. As Fig. 

4a-b illustrate the yield of methane (m/z 15) and water (m/z 18) increased with the 

increasing alkali ion content more prominently in the 0-0.2 mmol g-1 alkali ion 

concentration range.  

 

Fig. 4 Mass spectrometric intensities as a function of the alkali ion contents of the samples (a – 

methane, b – water, c – formaldehyde) 
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The treated samples of high alkali ion content release about ten times higher yield 

of water than the washed sample, which contains the least amounts of alkali ions. 

On the other hand, the amount of the formaldehyde (Fig. 4c) is half in the case of 

alkali treated samples than that from the untreated or washed samples.  

 

PCA calculations 

Principal component analysis has been used to reveal further correlations between 

TG/MS data as well as the K+ and Na+ contents of the samples. Two calculations 

have been carried out by the PCA. In the first one, the TG parameters (Tpeak, 

DTGmax, T1%, Tstart, Tend, Char yield) and the K+ and Na+ contents have been used 

as input data to find similarities and differences between the original and treated 

hemp samples (Table 1 and Fig. 5a-b). Beside the extrapolated Tstart value, the 

beginning of the decomposition was also characterized by T1%, which belongs to 

the temperature of 1% mass loss. Tstart is characteristic of the beginning of 

hemicellulose decomposition, while T1% reflects the evaporation of extractive 

components and the decomposition of pectin that occurs at lower temperature than 

the hemicellulose decomposition.  In the PCA calculation the first principal 

component (Factor 1) described 67.6 % of the total variance of the 

thermogravimetric data and the second component (Factor 2) described 28.8 % of 

the total variance. The score plot (Fig. 5a) shows that the thermogravimetric 

characteristics of the NaOH or KOH treated hemp samples clearly differ from the 

others. The first principal component separates the hot-water washed samples 

from the others, while the second principal component can be attributed to the 

effect of the alkali-treatments. The thermogravimetric characteristics of the 

washed NaOH- or KOH-treated samples differ to a great extent from that of the 

washed untreated hemp samples. Since the alkali content of these samples are 

rather similar, the different thermal behaviour can be explained by the assumption 

that the alkali treatment caused chemical changes in the composition of hemp. 

The loading plot (Fig. 5b) suggests that the char yield, Tpeak and Tend correlates 

mostly with the K+ and Na+ content of the samples. These variables and DTGmax 

contribute mostly to the differences between the washed and unwashed samples. 

These DTG parameters can be attributed to the cellulose decomposition.  The 

temperatures of the start of the decomposition (Tstart and T1%) contribute mainly to 

the second principal component. The second component describes mainly the 

differences between the alkali treated and untreated samples independently of the 

washing. These differences can be explained mainly by the effect of alkaline 

treatments on the structure of hemicellulose component of hemp. 

In the second evaluation the integrated intensities of mass spectrometric ions have 

been used. It can be seen in Figs. 5c-d that 60.0 % and 18.8 % of the total variance 

was described by factor 1 and factor 2, respectively. The first component 

separates the alkali-treated samples from the others, whereas the second 

component separates the washed samples from the untreated samples.  The 

loading plot reveals that the yields of CO, furanone, methane, water as well as 

potassium and sodium ion contents play the most significant role in determining 

the first principal component. The increased K+ and Na+ content of the samples 

leads to enhanced methane, water and carbon-monoxide formation as well as to 

reduced  formaldehyde evolution.  The m/z 60 and 44 ions (acetic acid and CO2) 

contribute mostly to the second principal component, which is different mostly 

between the untreated and other samples.  
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Fig. 5 Results of the principal component analysis: score and loading plots based on a – b – 

thermogravimetric parameters, c – d – mass spectrometric intensities of the selected ions  

 

Conclusions 

Thermal decomposition of untreated, washed and various alkaline pretreated 

hemp samples was measured by TG/MS analytical method. The alkali ion 

contents of the samples were determined by ICP-OES system. The obtained data 

have been evaluated by principal component analysis. As a result of the PCA, the 

washed, untreated and treated-washed samples were separated from the alkali 

treated hemp samples. We concluded that the alkaline pretreatment caused two 

major effects on the decomposition of the samples. On the one hand, chemical 

changes occurred mainly in the hemicellulose component of hemp: the acetyl 

groups were apparently removed by the alkaline treatment. Thus the thermal 

decomposition of the hemicellulose component shifted to higher temperature in 

the alkali-treated samples. On the other hand, the residual sodium and potassium 

ions exhibit substantial impact on the thermal decomposition. We established that 

the amount of the sodium and potassium ions determine the extent of the effect. 

The largest alteration of the TG/MS parameters can be observed in the 0-0.2 

mmol g-1 concentration range of the alkali ions. The DTG parameters 

characteristic of the cellulose decomposition (Tpeak, Tend) show the most 

prominent correlation with the sodium and potassium content of the samples 

confirming the fact that cellulose decomposition is highly sensitive for the 

presence of alkali ions. The yield of the char residue as well as the evolution of 

water and methane increased, while the formation of higher molecular mass 

products (acetic acid, furanone, furfural) decreased in the case of alkaline treated 

samples. 
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